51
|
Yamasaki S, Anderson P. Reprogramming mRNA translation during stress. Curr Opin Cell Biol 2008; 20:222-6. [PMID: 18356035 DOI: 10.1016/j.ceb.2008.01.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 01/26/2008] [Indexed: 01/26/2023]
Abstract
The survival of mammalian cells exposed to adverse environmental conditions requires a radical reprogramming of protein translation. Stress-activated kinases target components of the initiation machinery (e.g. eIF2alpha, eIF4E-BP, eIF4B, and ribosomal protein S6) to inhibit the translation of 'housekeeping' proteins and promote the translation of repair enzymes. Accumulating untranslated mRNA is concentrated at stress granules where it is sorted and triaged to sites of storage, reinitiation, or decay. At the same time, the translation of mRNAs encoding repair enzymes is selectively preserved by both internal ribosome entry site-dependent and -independent mechanisms. In combination, these stress-activated processes coordinately reprogram mRNA translation and decay in a way that conserves anabolic energy, preserves essential mRNAs, and promotes the repair of stress-induced molecular damage.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, United States
| | | |
Collapse
|
52
|
Abaza I, Gebauer F. Functional domains of Drosophila UNR in translational control. RNA (NEW YORK, N.Y.) 2008; 14:482-490. [PMID: 18203923 PMCID: PMC2248260 DOI: 10.1261/rna.802908] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/21/2007] [Indexed: 05/25/2023]
Abstract
Translational repression of male-specific-lethal 2 (msl-2) mRNA by Sex-lethal (SXL) is an essential regulatory step of X chromosome dosage compensation in Drosophila. Translation inhibition requires that SXL recruits the protein upstream of N-ras (UNR) to the 3' UTR of msl-2 mRNA. UNR is a conserved, ubiquitous protein that contains five cold-shock domains (CSDs). Here, we dissect the domains of UNR required for translational repression and complex formation with SXL and msl-2 mRNA. Using gel-mobility shift assays, the domain involved in interactions with SXL and msl-2 was mapped specifically to the first CSD (CSD1). Indeed, excess of a peptide containing this domain derepressed msl-2 translation in vitro. The CSD1 of human UNR can also form a complex with SXL and msl-2. Comparative analyses of the CSDs of the Drosophila and human proteins together with site-directed mutagenesis experiments revealed that three exposed residues within CSD1 are required for complex formation. Tethering assays showed that CSD1 is not sufficient for translational repression, indicating that UNR binding to SXL and msl-2 can be distinguished from translation inhibition. Repression by tethered UNR requires residues from both the amino-terminal Q-rich stretch and the two first CSDs, indicating that the translational effector domain of UNR resides within the first 397 amino acids of the protein. Our results identify domains and residues required for UNR function in translational control.
Collapse
Affiliation(s)
- Irina Abaza
- Centre de Regulació Genòmica (CRG-UPF), Gene Regulation Programme, 08003 Barcelona, Spain
| | | |
Collapse
|
53
|
Anderson EC, Hunt SL, Jackson RJ. Internal initiation of translation from the human rhinovirus-2 internal ribosome entry site requires the binding of Unr to two distinct sites on the 5' untranslated region. J Gen Virol 2007; 88:3043-3052. [PMID: 17947529 DOI: 10.1099/vir.0.82463-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Internal initiation of translation from the human rhinovirus-2 (HRV-2) internal ribosome entry site (IRES) is dependent upon host cell trans-acting factors. The multiple cold shock domain protein Unr and the polypyrimidine tract-binding protein have been identified as synergistic activators of HRV-2 IRES-driven translation. In order to investigate the mechanism by which Unr acts in this process, we have mapped the binding sites of Unr to two distinct secondary structure domains of the HRV-2 IRES, and have identified specific nucleotides that are involved in the binding of Unr to the IRES. The data suggest that Unr acts as an RNA chaperone to maintain a complex tertiary IRES structure required for translational competency.
Collapse
Affiliation(s)
- Emma C Anderson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sarah L Hunt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Richard J Jackson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
54
|
Kozak M. Lessons (not) learned from mistakes about translation. Gene 2007; 403:194-203. [PMID: 17888589 DOI: 10.1016/j.gene.2007.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/16/2007] [Accepted: 08/27/2007] [Indexed: 01/01/2023]
Abstract
Some popular ideas about translational regulation in eukaryotes have been recognized recently as mistakes. One example is the rejection of a long-standing idea about involvement of S6 kinase in translation of ribosomal proteins. Unfortunately, new proposals about how S6 kinase might regulate translation are based on evidence that is no better than the old. Recent findings have also forced rejection of some popular ideas about the function of sequences at the 3' end of viral mRNAs and rejection of some ideas about internal ribosome entry sequences (IRESs). One long-held belief was that tissue-specific translation via an IRES underlies the neurotropism of poliovirus and the attenuation of Sabin vaccine strains. Older experiments that appeared to support this belief and recent experiments that refute it are discussed. The hypothesis that dyskeratosis congenita is caused by a defect in IRES-mediated translation is probably another mistaken idea. The supporting evidence, such as it is, comes from a mouse model of the disease and is contradicted by studies carried out with cells from affected patients. The growing use of IRESs as tools to study other questions about translation is discussed and lamented. The inefficient function of IRESs (if they are IRESs) promotes misunderstandings. I explain again why it is not valid to invoke a special mechanism of initiation based on the finding that edeine (at very low concentrations) does not inhibit the translation of a putative IRES from cricket paralysis virus. I explain why new assays, devised to rule out splicing in tests with dicistronic vectors, are not valid and why experiments with IRESs are not a good way to investigate the mechanism whereby microRNAs inhibit translation.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
55
|
Dhar D, Roy S, Das S. Translational control of the interferon regulatory factor 2 mRNA by IRES element. Nucleic Acids Res 2007; 35:5409-21. [PMID: 17698501 PMCID: PMC2018642 DOI: 10.1093/nar/gkm524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translational control represents an important mode of regulation of gene expression under stress conditions. We have studied the translation of interferon regulatory factor 2 (IRF2) mRNA, a negative regulator of transcription of interferon-stimulated genes and demonstrated the presence of internal ribosome entry site (IRES) element in the 5′UTR of IRF2 RNA. Various control experiments ruled out the contribution of leaky scanning, cryptic promoter activity or RNA splicing in the internal initiation of IRF2 RNA. It seems IRF2-IRES function is not sensitive to eIF4G cleavage, since its activity was only marginally affected in presence of Coxsackievirus 2A protease. Interferon α treatment did not affect the IRF2-IRES activity or the protein level significantly. Also, in cells treated with tunicamycin [an agent causing endoplasmic reticulum (ER) stress], the IRF2-IRES activity and the protein levels were unaffected, although the cap-dependent translation was severely impaired. Analysis of the cellular protein binding with the IRF2-IRES suggests certain cellular factors, which might influence its function under stress conditions. Interestingly, partial knockdown of PTB protein significantly inhibited the IRF2-IRES function. Taken together, it appears that IRF2 gene expression during stress condition is controlled by the IRES element, which in turn influences the cellular response.
Collapse
Affiliation(s)
| | | | - Saumitra Das
- *To whom correspondence should be addressed. +91 80 293 2886+91 80 360 2697
| |
Collapse
|
56
|
Hu D, Valentine M, Kidd VJ, Lahti JM. CDK11(p58) is required for the maintenance of sister chromatid cohesion. J Cell Sci 2007; 120:2424-34. [PMID: 17606997 DOI: 10.1242/jcs.007963] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cyclin-dependent kinase 11 (CDK11) mRNA produces a 110-kDa protein (CDK11(p110)) throughout the cell cycle and a 58-kDa protein (CDK11(p58)) that is specifically translated from an internal ribosome entry site sequence during G2/M. CDK11(p110) is involved in transcription and RNA processing, and CDK11(p58) is involved in centrosome maturation and spindle morphogenesis. Deletion of the CDK11 gene in mice leads to embryonic lethality at E3.5, and CDK11-deficient blastocysts exhibit both proliferative defects and mitotic arrest. Here we used hypomorphic small interfering RNAs (siRNAs) to demonstrate that, in addition to playing a role in spindle formation and structure, CDK11(p58) is also required for sister chromatid cohesion and the completion of mitosis. Moderate depletion of CDK11 causes misaligned and lagging chromosomes but does not prevent mitotic progression. Further diminution of CDK11 caused defective chromosome congression, premature sister chromatid separation, permanent mitotic arrest and cell death. These cells exhibited altered Sgo1 localization and premature dissociation of cohesion complexes. This severe phenotype was not corrected by codepletion of CDK11 and either Plk1 or Sgo1, but it was rescued by CDK11(p58). These findings are consistent with the mitotic arrest we observed in CDK11-deficient mouse embryos and establish that CDK11(p58) is required for the maintenance of chromosome cohesion and the completion of mitosis.
Collapse
Affiliation(s)
- Dongli Hu
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
57
|
Origanti S, Shantz LM. Ras Transformation of RIE-1 Cells Activates Cap-Independent Translation of Ornithine Decarboxylase: Regulation by the Raf/MEK/ERK and Phosphatidylinositol 3-Kinase Pathways. Cancer Res 2007; 67:4834-42. [PMID: 17510413 DOI: 10.1158/0008-5472.can-06-4627] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and generally rate-limiting enzyme in polyamine biosynthesis. Deregulation of ODC is critical for oncogenic growth, and ODC is a target of Ras. These experiments examine translational regulation of ODC in RIE-1 cells, comparing untransformed cells with those transformed by an activated Ras12V mutant. Analysis of the ODC 5' untranslated region (5'UTR) revealed four splice variants with the presence or absence of two intronic sequences. All four 5'UTR species were found in both cell lines; however, variants containing intronic sequences were more abundant in Ras-transformed cells. All splice variants support internal ribosome entry site (IRES)-mediated translation, and IRES activity is markedly elevated in cells transformed by Ras. Inhibition of Ras effector targets indicated that the ODC IRES element is regulated by the phosphorylation status of the translation factor eIF4E. Dephosphorylation of eIF4E by inhibition of mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) or the eIF4E kinase Mnk1/2 increases ODC IRES activity in both cell lines. When both the Raf/MEK/ERK and phosphatidylinositol 3-kinase/mammalian target of rapamycin pathways are inhibited in normal cells, ODC IRES activity is very low and cells arrest in G(1). When these pathways are inhibited in Ras-transformed cells, cell cycle arrest does not occur and ODC IRES activity increases, helping to maintain high ODC activity.
Collapse
Affiliation(s)
- Sofia Origanti
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
58
|
Abstract
This review discusses the need to re-examine some popular but unproven ideas about regulation of translation in eukaryotes. Translational control is invoked often on superficial grounds, such as a discrepancy between mRNA and protein levels which could be explained instead by rapid turnover of the protein. It is essential to verify that there is translational control (i.e., essential to rule out alternative mechanisms) before asking how translation is regulated. Many of the postulated control mechanisms are dubious. It is easy to create artifactual regulation (a slight increase or decrease in translation) by over-expressing recombinant RNA-binding proteins. The internal-initiation hypothesis is the source of other misunderstandings. Recent claims about the involvement of internal ribosome entry sequences (IRESs) in cancer and other diseases are discussed. The scanning model for initiation provides a more credible framework for understanding many aspects of translation, including ways to restrict the production of potent regulatory proteins which would be harmful if over-expressed. The rare production in eukaryotes of dicistronic mRNAs (e.g., from retrotransposons) raises questions about how the 3' cistron gets translated. Some proposed mechanisms are discussed, but the available evidence does not allow resolution of the issue.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
59
|
Schepens B, Tinton SA, Bruynooghe Y, Parthoens E, Haegman M, Beyaert R, Cornelis S. A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J 2006; 26:158-69. [PMID: 17159903 PMCID: PMC1782369 DOI: 10.1038/sj.emboj.7601468] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 11/06/2006] [Indexed: 11/09/2022] Open
Abstract
The upstream of N-Ras (Unr) protein is involved in translational regulation of specific genes. For example, the Unr protein contributes to translation mediated by several viral and cellular internal ribosome entry sites (IRESs), including the PITSLRE IRES, which is activated at mitosis. Previously, we have shown that translation of the Unr mRNA itself can be initiated through an IRES. Here, we show that UNR mRNA translation and UNR IRES activity are significantly increased during mitosis. Functional analysis identified hnRNP C1/C2 proteins as UNR IRES stimulatory factors, whereas both polypyrimidine tract-binding protein (PTB) and Unr were found to function as inhibitors of UNR IRES-mediated translation. The increased UNR IRES activity during mitosis results from enhanced binding of the stimulatory hnRNP C1/C2 proteins and concomitant dissociation of PTB and Unr from the UNR IRES RNA. Our data suggest the existence of an IRES-dependent cascade in mitosis comprising hnRNP C1/C2 proteins that stimulate Unr expression, and Unr, in turn, contributes to PITSLRE IRES activity. The observation that RNA interference-mediated knockdown of hnRNP C1/C2 and Unr, respectively, abrogates and retards mitosis points out that regulation of IRES-mediated translation by hnRNP C1/C2 and Unr might be important in mitosis.
Collapse
Affiliation(s)
- Bert Schepens
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB-Ghent University, Gent-Zwijnaarde, Belgium
| | - Sandrine A Tinton
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB-Ghent University, Gent-Zwijnaarde, Belgium
| | - Yanik Bruynooghe
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB-Ghent University, Gent-Zwijnaarde, Belgium
| | - Eef Parthoens
- Microscopy Core Facility, Department for Molecular Biomedical Research, VIB-Ghent University, Gent-Zwijnaarde, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB-Ghent University, Gent-Zwijnaarde, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB-Ghent University, Gent-Zwijnaarde, Belgium
- These authors contributed equally to this work
- Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, 9052 Gent (Zwijnaarde), Belgium. Tel.: +32 9 3313 600; Fax: +32 9 3313 609; E-mail:
| | - Sigrid Cornelis
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB-Ghent University, Gent-Zwijnaarde, Belgium
- These authors contributed equally to this work
- Tel.: +32 9 3313 770; Fax: +32 9 3313 609; E-mail:
| |
Collapse
|
60
|
Dormoy-Raclet V, Markovits J, Malato Y, Huet S, Lagarde P, Montaudon D, Jacquemin-Sablon A, Jacquemin-Sablon H. Unr, a cytoplasmic RNA-binding protein with cold-shock domains, is involved in control of apoptosis in ES and HuH7 cells. Oncogene 2006; 26:2595-605. [PMID: 17086213 DOI: 10.1038/sj.onc.1210068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unr (upstream of N-ras) is a cytoplasmic RNA-binding protein involved in the regulation of messenger RNA stability and internal initiation of translation. We have used Unr-deficient murine embryonic stem (ES) cells to analyse Unr role in cell proliferation and response to stress. Disruption of both unr gene copies had no effect on ES cell proliferation. However, after ionizing radiation (IR), clonogenic survival of unr(-/-) ES cells was approximately 3-fold enhanced as compared to unr(+/+) cells. We further determined that IR-induced apoptosis was decreased in unr(-/-) ES cells, and that reintroduction of the unr gene in unr(-/-) cells restored normal IR-induced apoptosis. Three pro-apoptotic genes, p53, caspase-3 and Gadd45gamma, were downregulated in unr(-/-) ES cells, indicating that Unr, as other cytoplasmic RNA-binding proteins, regulates a complex genetic program, promoting cell death after IR. In contrast, in the human hepatoma cell line HuH7, Unr knockdown using unr-specific small interfering RNAs induced apoptosis, both in untreated and gamma-irradiated cells. Thus, our results establish that Unr acts as a positive or negative regulator of cell death, depending on the cell type. Manipulating the level of Unr may constitute a specific approach to sensitize cancer cells to anticancer treatments.
Collapse
|
61
|
Abstract
The cell has many ways to regulate the production of proteins. One mechanism is through the changes to the machinery of translation initiation. These alterations favor the translation of one subset of mRNAs over another. It was first shown that internal ribosome entry sites (IRESes) within viral RNA genomes allowed the production of viral proteins more efficiently than most of the host proteins. The RNA secondary structure of viral IRESes has sometimes been conserved between viral species even though the primary sequences differ. These structures are important for IRES function, but no similar structure conservation has yet to be shown in cellular IRES. With the advances in mathematical modeling and computational approaches to complex biological problems, is there a way to predict an IRES in a data set of unknown sequences? This review examines what is known about cellular IRES structures, as well as the data sets and tools available to examine this question. We find that the lengths, number of upstream AUGs, and %GC content of 5'-UTRs of the human transcriptome have a similar distribution to those of published IRES-containing UTRs. Although the UTRs containing IRESes are on the average longer, almost half of all 5'-UTRs are long enough to contain an IRES. Examination of the available RNA structure prediction software and RNA motif searching programs indicates that while these programs are useful tools to fine tune the empirically determined RNA secondary structure, the accuracy of de novo secondary structure prediction of large RNA molecules and subsequent identification of new IRES elements by computational approaches, is still not possible.
Collapse
Affiliation(s)
- Stephen D Baird
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
62
|
Dove B, Brooks G, Bicknell K, Wurm T, Hiscox JA. Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. J Virol 2006; 80:4147-56. [PMID: 16571830 PMCID: PMC1440480 DOI: 10.1128/jvi.80.8.4147-4156.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G1 regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G2/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the G0 phase or asynchronously replicating cells. Our data suggested that IBV induces a G2/M phase arrest in infected cells to promote favorable conditions for viral replication.
Collapse
Affiliation(s)
- Brian Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
63
|
Abaza I, Coll O, Patalano S, Gebauer F. Drosophila UNR is required for translational repression of male-specific lethal 2 mRNA during regulation of X-chromosome dosage compensation. Genes Dev 2006; 20:380-9. [PMID: 16452509 PMCID: PMC1361708 DOI: 10.1101/gad.371906] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The inhibition of male-specific lethal 2 (msl-2) mRNA translation by the RNA-binding protein sex-lethal (SXL) is an essential regulatory step for X-chromosome dosage compensation in Drosophila melanogaster. The mammalian upstream of N-ras (UNR) protein has been implicated in the regulation of mRNA stability and internal ribosome entry site (IRES)-dependent mRNA translation. Here we have identified the Drosophila homolog of mammalian UNR as a cofactor required for SXL-mediated repression of msl-2 translation. UNR interacts with SXL, a female-specific protein. Although UNR is present in both male and female flies, binding of SXL to uridine-rich sequences in the 3' untranslated region (UTR) of msl-2 mRNA recruits UNR to adjacent regulatory sequences, thereby conferring a sex-specific function to UNR. These data identify a novel regulator of dosage compensation in Drosophila that acts coordinately with SXL in translational control.
Collapse
Affiliation(s)
- Irina Abaza
- Centre de Regulació Genómica (CRG-UPF), 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
64
|
Duncan K, Grskovic M, Strein C, Beckmann K, Niggeweg R, Abaza I, Gebauer F, Wilm M, Hentze MW. Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3' UTR: translational repression for dosage compensation. Genes Dev 2006; 20:368-79. [PMID: 16452508 PMCID: PMC1361707 DOI: 10.1101/gad.371406] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MSL-2 (male-specific lethal 2) is the limiting component of the Drosophila dosage compensation complex (DCC) that specifically increases transcription from the male X chromosome. Ectopic expression of MSL-2 protein in females causes DCC assembly on both X chromosomes and lethality. Inhibition of MSL-2 synthesis requires the female-specific protein sex-lethal (SXL), which binds to the msl-2 mRNA 5' and 3' untranslated regions (UTRs) and blocks translation through distinct UTR-specific mechanisms. Here, we purify translationally silenced msl-2 mRNPs and identify UNR (upstream of N-ras) as a protein recruited to the 3' UTR by SXL. We demonstrate that SXL requires UNR as a corepressor for 3'-UTR-mediated regulation, imparting a female-specific function to the ubiquitously expressed UNR protein. Our results reveal a novel functional role for UNR as a translational repressor and indicate that UNR is a key component of a "fail-safe" dosage compensation regulatory system that prevents toxic MSL-2 synthesis in female cells.
Collapse
Affiliation(s)
- Kent Duncan
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Feng Y, Ariza M, Goulet AC, Shi J, Nelson M. Death-signal-induced relocalization of cyclin-dependent kinase 11 to mitochondria. Biochem J 2006; 392:65-73. [PMID: 16004605 PMCID: PMC1317665 DOI: 10.1042/bj20050195] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fas receptor-Fas ligand interaction appears to be important in carcinogenesis, tumour outgrowth and metastasis. Emerging evidence suggests that CDK11 (cyclin-dependent kinase 11) plays a role in apoptosis and melanoma development. Here, we show that CDK11p110 protein kinase was cleaved after induction of apoptosis by Fas. The N-terminal portion of CDK11p110, CDK11p60, was translocated from the nucleus to the mitochondria. The targeting of CDK11p60 to mitochondria occurred as early as 12 h after treatment. Overexpression of EGFP (enhanced green fluorescent protein)-tagged CDK11p60 could partially break down the mitochondrial membrane potential, induce cytochrome c release and promote apoptosis. Reduction of endogenous CDK11p110 protein levels with siRNA (small interfering RNA) resulted in the suppression of both cytochrome c release and apoptosis. In addition, subcellular fractionation studies of Fas-mediated apoptosis demonstrated that CDK11p60 was associated with the mitochondrial import motor, mitochondrial heat shock protein 70. Taken together, our data suggest that CDK11p60 can contribute to apoptosis by direct signalling at the mitochondria, thereby amplifying Fas-induced apoptosis in melanoma cells.
Collapse
Affiliation(s)
- Yongmei Feng
- Department of Pathology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, U.S.A
| | - Maria E. Ariza
- Department of Pathology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, U.S.A
| | - Anne-Christine Goulet
- Department of Pathology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, U.S.A
| | - Jiaqi Shi
- Department of Pathology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, U.S.A
| | - Mark A. Nelson
- Department of Pathology, Arizona Cancer Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
66
|
Duncan K, Grskovic M, Strein C, Beckmann K, Niggeweg R, Abaza I, Gebauer F, Wilm M, Hentze MW. Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3' UTR: translational repression for dosage compensation. Genes Dev 2006. [PMID: 16452508 DOI: 10.1101/gad.371406.form] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
MSL-2 (male-specific lethal 2) is the limiting component of the Drosophila dosage compensation complex (DCC) that specifically increases transcription from the male X chromosome. Ectopic expression of MSL-2 protein in females causes DCC assembly on both X chromosomes and lethality. Inhibition of MSL-2 synthesis requires the female-specific protein sex-lethal (SXL), which binds to the msl-2 mRNA 5' and 3' untranslated regions (UTRs) and blocks translation through distinct UTR-specific mechanisms. Here, we purify translationally silenced msl-2 mRNPs and identify UNR (upstream of N-ras) as a protein recruited to the 3' UTR by SXL. We demonstrate that SXL requires UNR as a corepressor for 3'-UTR-mediated regulation, imparting a female-specific function to the ubiquitously expressed UNR protein. Our results reveal a novel functional role for UNR as a translational repressor and indicate that UNR is a key component of a "fail-safe" dosage compensation regulatory system that prevents toxic MSL-2 synthesis in female cells.
Collapse
Affiliation(s)
- Kent Duncan
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Le Breton M, Cormier P, Bellé R, Mulner-Lorillon O, Morales J. Translational control during mitosis. Biochimie 2006; 87:805-11. [PMID: 15951098 DOI: 10.1016/j.biochi.2005.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/09/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Translation is now recognized as an important process in the regulation of gene expression. During the cell cycle, translation is tightly regulated. Protein synthesis is necessary for entry into and progression through mitosis and conversely, modifications of translational activity are observed during the cell cycle. This review focuses on translational control during mitosis (or M-phase) and the role of CDK1/cyclin B, the universal cell cycle regulator implicated in the G2/M transition, in protein synthesis regulation.
Collapse
Affiliation(s)
- Magali Le Breton
- Equipe Cycle Cellulaire et Développement, UMR 7150 CNRS/UPMC, Station Biologique de Roscoff, BP 74, 29682 Roscoff cedex, France
| | | | | | | | | |
Collapse
|
68
|
Schepens B, Tinton SA, Bruynooghe Y, Beyaert R, Cornelis S. The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res 2005; 33:6884-94. [PMID: 16396835 PMCID: PMC1310900 DOI: 10.1093/nar/gki1000] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 01/12/2023] Open
Abstract
When oxygen supply is restricted, protein synthesis is rapidly abrogated owing to inhibition of global translation. However, HIF-1alpha protein expression can persist during hypoxia, owing to an internal ribosome entry site (IRES) in the 5'-untranslated region of its mRNA. Here, we report on the molecular mechanism of HIF-1alpha IRES-mediated translation during oxygen deprivation. Using RNA affinity chromatography and UV-crosslinking experiments, we show that the polypyrimidine tract binding protein (PTB) can specifically interact with the HIF-1alpha IRES, and that this interaction is enhanced in hypoxic conditions. Overexpression of PTB enhanced HIF-1alpha IRES activity, whereas RNA interference-mediated downregula-tion of PTB protein expression inhibited HIF-1alpha IRES activity. Furthermore, hypoxia-induced stimulation of the HIF-1alpha IRES was reduced in cells in which PTB function was downregulated. In agreement with these results, the IRES activity of HIF-1alpha IRES deletion mutants that are deficient in PTB-binding could not be stimulated by oxygen deprivation. All together, our data suggest that PTB plays a stimulatory role in the IRES-mediated translation of HIF-1alpha when oxygen supply is limited.
Collapse
Affiliation(s)
- Bert Schepens
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Sandrine A. Tinton
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Yanik Bruynooghe
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Rudi Beyaert
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Sigrid Cornelis
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| |
Collapse
|
69
|
Kozak M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 2005; 33:6593-602. [PMID: 16314320 PMCID: PMC1298923 DOI: 10.1093/nar/gki958] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/26/2005] [Indexed: 01/27/2023] Open
Abstract
This review takes a second look at a set of mRNAs that purportedly employ an alternative mechanism of initiation when cap-dependent translation is reduced during mitosis or stress conditions. A closer look is necessary because evidence cited in support of the internal initiation hypothesis is often flawed. When putative internal ribosome entry sequences (IRESs) are examined more carefully, they often turn out to harbor cryptic promoters or splice sites. This undermines the dicistronic assay, wherein IRES activity is measured by the ability to support translation of the 3' cistron. Most putative IRESs still have not been checked carefully to determine whether the dicistronic vector produces only the intended dicistronic mRNA. The widespread use of the pRF vector is a major problem because this vector, which has Renilla luciferase as the 5' cistron and firefly luciferase as the 3' cistron, has been found to generate spliced transcripts. RNA transfection assays could theoretically circumvent these problems, but most candidate IRESs score very weakly in that test. The practice of calling even very weak results 'positive' is one of the problems discussed herein. The extremely low efficiency of putative IRESs is inconsistent with their postulated biological roles.'
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
70
|
Derrington EA, López-Lastra M, Darlix JL. Dicistronic MLV-retroviral vectors transduce neural precursors in vivo and co-express two genes in their differentiated neuronal progeny. Retrovirology 2005; 2:60. [PMID: 16194277 PMCID: PMC1266060 DOI: 10.1186/1742-4690-2-60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/29/2005] [Indexed: 11/10/2022] Open
Abstract
Dicistronic MLV-based retroviral vectors, in which two IRESes independently initiate the translation of two proteins from a single RNA, have been shown to direct co-expression of proteins in several cell culture systems. Here we report that these dicistronic retroviral vectors can drive co-expression of two gene products in brain cells in vivo. Injection of retroviral vector producer cells leads to the transduction of proliferating precursors in the external granular layer of the cerebellum and throughout the ventricular regions. Differentiated neurons co-expressing both transgenes were observed in the cerebellum and in lower numbers in distant brain regions such as the cortex. Thus, we describe an eukaryotic dicistronic vector system that is capable of transducing mouse neural precursors in vivo and maintaining the expression of genes after cell differentiation.
Collapse
Affiliation(s)
- Edmund A Derrington
- LaboRétro, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364 Cedex 07, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jean-Luc Darlix
- LaboRétro, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364 Cedex 07, France
| |
Collapse
|
71
|
Feng Y, Qi W, Martinez J, Nelson MA. The cyclin-dependent kinase 11 interacts with 14-3-3 proteins. Biochem Biophys Res Commun 2005; 331:1503-9. [PMID: 15883043 DOI: 10.1016/j.bbrc.2005.04.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Cyclin-dependent kinase 11 isoforms (CDK11) are members of the p34(cdc2) superfamily. They have been shown to play a role in RNA processing and apoptosis. In the present study, we investigate whether CDK11 interacts with 14-3-3 proteins. Our study shows that the putative 14-3-3 binding site (113-RHRSHS-118) within the N-terminal domain of CDK11(p110) is functional. Endogenous CDK11(p110) binds directly to 14-3-3 proteins and phosphorylation of the serine 118 within the RHRSHS motif seems to be required for the binding. Besides, CDK11(p110) is capable of interacting with several different isoforms of 14-3-3 proteins both in vitro and in vivo. The interaction of 14-3-3 gamma with CDK11(p110) occurs throughout the entire cell cycle and reaches maximum at the G2/M phase. Interestingly, 14-3-3 gamma shows strong interaction with N-terminal portion of caspase-cleaved CDK11(p110) (CDK11(p60)) product at 48 h after Fas treatment, which correlates with the maximal cleavage level of CDK11(p110) and the maximum activation level of CDK11 kinase activity during apoptosis. Collectively, these results suggest that CDK11 kinases could be regulated by interaction with 14-3-3 proteins during cell cycle and apoptosis.
Collapse
Affiliation(s)
- Yongmei Feng
- Department of Pathology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
72
|
Komar AA, Hatzoglou M. Internal Ribosome Entry Sites in Cellular mRNAs: Mystery of Their Existence. J Biol Chem 2005; 280:23425-8. [PMID: 15749702 DOI: 10.1074/jbc.r400041200] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although studies on viral gene expression were essential for the discovery of internal ribosome entry sites (IRESs), it is becoming increasingly clear that IRES activities are present in a significant number of cellular mRNAs. Remarkably, many of these IRES elements initiate translation of mRNAs encoding proteins that protect cells from stress (when the translation of the vast majority of cellular mRNAs is significantly impaired). The purpose of this review is to summarize the progress on the discovery and function of cellular IRESs. Recent findings on the structures of these IRESs and specifically regulation of their activity during nutritional stress, differentiation, and mitosis will be discussed.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
73
|
Cornelis S, Tinton SA, Schepens B, Bruynooghe Y, Beyaert R. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Res 2005; 33:3095-108. [PMID: 15928332 PMCID: PMC1142345 DOI: 10.1093/nar/gki611] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream of N-ras (Unr) has been described as an internal initiation trans-acting factor (ITAF) in the cap-independent translation of some particular viral and cellular mRNAs. Two factors led us to hypothesize that the UNR 5′-untranslated region (5′-UTR) may contain an internal ribosome entry site (IRES). The first was the requirement for persisting Unr expression under conditions that correlate with cap-independent translation. The other was the observation that the primary UNR transcript contains a 447 nt long 5′-UTR including two upstream AUGs that may restrict translation initiation via cap-dependent ribosome scanning. Here we report that the UNR 5′-UTR allows IRES-dependent translation, as revealed by a dicistronic reporter assay. Various controls ruled out the contribution of leaky scanning, cryptic promoter sequences or RNA processing events to the ability of the UNR 5′-UTR to mediate internal initiation of translation. Ultraviolet cross-linking analysis and RNA affinity chromatography revealed the binding of polypyrimidine tract binding protein (PTB) to the UNR IRES, requiring a pyrimidine-rich region (nucleotides 335–355). Whereas overexpression of PTB in several cell lines inhibited UNR IRES activity and UNR protein expression, depletion of endogenous PTB using RNAi increased UNR IRES activity. Moreover, a mutant version of the UNR IRES lacking the PTB binding site was more efficient at directing IRES-mediated translation. In conclusion, our results demonstrate that translation of the ITAF Unr can itself be regulated by an IRES that is downregulated by PTB.
Collapse
Affiliation(s)
- Sigrid Cornelis
- Department for Molecular Biomedical Research, VIB-Ghent University, Unit of Molecular Signal Transduction in Inflammation B-9052 Gent-Zwijnaarde, Belgium.
| | | | | | | | | |
Collapse
|