51
|
Dwarakanath S, Brenzinger S, Gleditzsch D, Plagens A, Klingl A, Thormann K, Randau L. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens. Nucleic Acids Res 2015; 43:8913-23. [PMID: 26350210 PMCID: PMC4605320 DOI: 10.1093/nar/gkv882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/26/2022] Open
Abstract
Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs.
Collapse
Affiliation(s)
- Srivatsa Dwarakanath
- Prokaryotic Small RNA Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hessen D-35043, Germany
| | - Susanne Brenzinger
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Hessen D-35392, Germany
| | - Daniel Gleditzsch
- Prokaryotic Small RNA Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hessen D-35043, Germany
| | - André Plagens
- Prokaryotic Small RNA Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hessen D-35043, Germany
| | - Andreas Klingl
- Plant Development, Department Biology I, Biocentre LMU Munich, Großhaderner Str. 2-4, Planegg-Martinsried D-82152, Germany
| | - Kai Thormann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Hessen D-35392, Germany
| | - Lennart Randau
- Prokaryotic Small RNA Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hessen D-35043, Germany LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Hessen D-35043, Germany
| |
Collapse
|
52
|
Hrle A, Maier LK, Sharma K, Ebert J, Basquin C, Urlaub H, Marchfelder A, Conti E. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family. RNA Biol 2015; 11:1072-82. [PMID: 25483036 PMCID: PMC4615900 DOI: 10.4161/rna.29893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.
Collapse
Key Words
- CRISPR
- CRISPR, Clustered regulatory short interspaced palindromic repeats
- Cas, CRISPR-associated
- Cas7
- H1 and H2 and H1-2, β-hairpins of insertion domain 1 (or lid domain)
- Mk, Methanopyrus kandleri
- RAMP, Repeat associated mysterious protein
- RNA binding
- RNAi, RNA interference
- RRM domain
- RRM, RNA recognition motif
- Rmsd, Root mean square deviation
- SAD, Single-wavelength anomalous dispersion
- Ss, Sulfolobus solfataricus
- Tp, Thermofilum pendens
- crRNA, CRISPR RNA
- dCASCADE, interference complex subtype I-D
- eCASCADE, interference complex subtype I-E
- prokaryotic immune system
Collapse
Affiliation(s)
- Ajla Hrle
- a Structural Cell Biology Department; Max Planck Institute of Biochemistry ; Martinsried , Germany
| | | | | | | | | | | | | | | |
Collapse
|
53
|
van Erp PBG, Jackson RN, Carter J, Golden SM, Bailey S, Wiedenheft B. Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res 2015; 43:8381-91. [PMID: 26243775 PMCID: PMC4787809 DOI: 10.1093/nar/gkv793] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 01/09/2023] Open
Abstract
In bacteria and archaea, short fragments of foreign DNA are integrated into Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci, providing a molecular memory of previous encounters with foreign genetic elements. In Escherichia coli, short CRISPR-derived RNAs are incorporated into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Recent structures of Cascade capture snapshots of this seahorse-shaped RNA-guided surveillance complex before and after binding to a DNA target. Here we determine a 3.2 Å x-ray crystal structure of Cascade in a new crystal form that provides insight into the mechanism of double-stranded DNA binding. Molecular dynamic simulations performed using available structures reveal functional roles for residues in the tail, backbone and belly subunits of Cascade that are critical for binding double-stranded DNA. Structural comparisons are used to make functional predictions and these predictions are tested in vivo and in vitro. Collectively, the results in this study reveal underlying mechanisms involved in target-induced conformational changes and highlight residues important in DNA binding and protospacer adjacent motif recognition.
Collapse
Affiliation(s)
- Paul B G van Erp
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Ryan N Jackson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joshua Carter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah M Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
54
|
|
55
|
Majumdar S, Zhao P, Pfister NT, Compton M, Olson S, Glover CVC, Wells L, Graveley BR, Terns RM, Terns MP. Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus. RNA (NEW YORK, N.Y.) 2015; 21:1147-58. [PMID: 25904135 PMCID: PMC4436667 DOI: 10.1261/rna.049130.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/25/2015] [Indexed: 05/27/2023]
Abstract
CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5' ends (8-nt repeat-derived 5' tag sequences) but heterogeneous 3' ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3' end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.
Collapse
Affiliation(s)
- Sonali Majumdar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Peng Zhao
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Neil T Pfister
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Mark Compton
- Department of Poultry Science, University of Georgia, Athens, Georgia 30602, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030-6403, USA
| | - Claiborne V C Glover
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030-6403, USA
| | - Rebecca M Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA Department of Genetics, University of Georgia, Athens, Georgia 30602, USA Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
56
|
Abstract
The pathway of CRISPR-Cas immunity redefines the roles of RNA in the flow of genetic information and ignites excitement for next-generation gene therapy tools. CRISPR-Cas machineries offer a fascinating set of new enzyme assemblies from which one can learn principles of molecular interactions and chemical activities. The interference step of the CRISPR-Cas immunity pathway congregates proteins, RNA, and DNA into a single molecular entity that selectively destroys invading nucleic acids. Although much remains to be discovered, a picture of how the interference process takes place is emerging. This review focuses on the current structural data for the three known types of RNA-guided nucleic acid interference mechanisms. In it, we describe key features of individual complexes and we emphasize comparisons across types and along functional stages. We aim to provide readers with a set of core principles learned from the three types of interference complexes and a deep appreciation of the diversity among them.
Collapse
Affiliation(s)
- Tsz Kin Martin Tsui
- Institute of Molecular Biophysics and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306;
| | | |
Collapse
|
57
|
Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 2015; 39:428-41. [PMID: 25994611 PMCID: PMC5965381 DOI: 10.1093/femsre/fuv023] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-associated (Cas) protein(s) to cognate invading genomes for their destruction. Different types of CRISPR-Cas systems have evolved distinct crRNA biogenesis pathways that implicate highly sophisticated processing mechanisms. In Types I and III CRISPR-Cas systems, a specific endoribonuclease of the Cas6 family, either standalone or in a complex with other Cas proteins, cleaves the pre-crRNA within the repeat regions. In Type II systems, the trans-acting small RNA (tracrRNA) base pairs with each repeat of the pre-crRNA to form a dual-RNA that is cleaved by the housekeeping RNase III in the presence of the protein Cas9. In this review, we present a detailed comparative analysis of pre-crRNA recognition and cleavage mechanisms involved in the biogenesis of guide crRNAs in the three CRISPR-Cas types. This review presents a detailed comparative analysis of pre-crRNA recognition and cleavage mechanisms involved in the biogenesis of guide crRNAs in the different bacterial and archaeal CRISPR-Cas immune systems.
Collapse
Affiliation(s)
- Emmanuelle Charpentier
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Hannover Medical School, Hannover 30625, Germany
| | - Hagen Richter
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen 6703 HB, the Netherlands
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
58
|
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.
Collapse
|
59
|
Plagens A, Richter H, Charpentier E, Randau L. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol Rev 2015; 39:442-63. [PMID: 25934119 PMCID: PMC5965380 DOI: 10.1093/femsre/fuv019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/26/2022] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) adaptive immune systems use small guide RNAs, the CRISPR RNAs (crRNAs), to mark foreign genetic material, e.g. viral nucleic acids, for degradation. Archaea and bacteria encode a large variety of Cas proteins that bind crRNA molecules and build active ribonucleoprotein surveillance complexes. The evolution of CRISPR-Cas systems has resulted in a diversification of cas genes and a classification of the systems into three types and additional subtypes characterized by distinct surveillance and interfering complexes. Recent crystallographic and biochemical advances have revealed detailed insights into the assembly and DNA/RNA targeting mechanisms of the various complexes. Here, we review our knowledge on the molecular mechanism involved in the DNA and RNA interference stages of type I (Cascade: CRISPR-associated complex for antiviral defense), type II (Cas9) and type III (Csm, Cmr) CRISPR-Cas systems. We further highlight recently reported structural and mechanistic themes shared among these systems. This review details and compares the assembly and the DNA/RNA targeting mechanisms of the various surveillance complexes of prokaryotic CRISPR-Cas immune systems.
Collapse
Affiliation(s)
- André Plagens
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
| | - Hagen Richter
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany
| | - Emmanuelle Charpentier
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Hannover Medical School, Hannover 30625, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
| |
Collapse
|
60
|
The history and market impact of CRISPR RNA-guided nucleases. Curr Opin Virol 2015; 12:85-90. [PMID: 25914022 DOI: 10.1016/j.coviro.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 01/21/2023]
Abstract
The interface between viruses and their hosts' are hot spots for biological and biotechnological innovation. Bacteria use restriction endonucleases to destroy invading DNA, and industry has exploited these enzymes for molecular cut-and-paste reactions that are central to many recombinant DNA technologies. Today, another class of nucleases central to adaptive immune systems that protect bacteria and archaea from invading viruses and plasmids are blazing a similar path from basic science to profound biomedical and industrial applications.
Collapse
|
61
|
Blosser TR, Loeff L, Westra ER, Vlot M, Künne T, Sobota M, Dekker C, Brouns SJJ, Joo C. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol Cell 2015; 58:60-70. [PMID: 25752578 DOI: 10.1016/j.molcel.2015.01.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses-interference and priming-remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets.
Collapse
Affiliation(s)
- Timothy R Blosser
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Luuk Loeff
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Edze R Westra
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB, Wageningen, The Netherlands
| | - Marnix Vlot
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB, Wageningen, The Netherlands
| | - Tim Künne
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB, Wageningen, The Netherlands
| | - Małgorzata Sobota
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB, Wageningen, The Netherlands
| | - Cees Dekker
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB, Wageningen, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| |
Collapse
|
62
|
Jiang F, Doudna JA. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 2015; 30:100-111. [PMID: 25723899 PMCID: PMC4417044 DOI: 10.1016/j.sbi.2015.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/27/2015] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of ∼30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of these targeting complexes, with a focus on structural studies of the multisubunit Type I CRISPR RNA-guided surveillance and the Cas9 DNA endonuclease found in Type II CRISPR-Cas systems. These complexes have distinct structures that are each capable of site-specific double-stranded DNA binding and local helix unwinding.
Collapse
Affiliation(s)
- Fuguo Jiang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute (HHMI), University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
63
|
Wei Y, Chesne MT, Terns RM, Terns MP. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 2015; 43:1749-58. [PMID: 25589547 PMCID: PMC4330368 DOI: 10.1093/nar/gku1407] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are RNA-based immune systems that protect prokaryotes from invaders such as phages and plasmids. In adaptation, the initial phase of the immune response, short foreign DNA fragments are captured and integrated into host CRISPR loci to provide heritable defense against encountered foreign nucleic acids. Each CRISPR contains a ∼100-500 bp leader element that typically includes a transcription promoter, followed by an array of captured ∼35 bp sequences (spacers) sandwiched between copies of an identical ∼35 bp direct repeat sequence. New spacers are added immediately downstream of the leader. Here, we have analyzed adaptation to phage infection in Streptococcus thermophilus at the CRISPR1 locus to identify cis-acting elements essential for the process. We show that the leader and a single repeat of the CRISPR locus are sufficient for adaptation in this system. Moreover, we identified a leader sequence element capable of stimulating adaptation at a dormant repeat. We found that sequences within 10 bp of the site of integration, in both the leader and repeat of the CRISPR, are required for the process. Our results indicate that information at the CRISPR leader-repeat junction is critical for adaptation in this Type II-A system and likely other CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yunzhou Wei
- Departments of Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia Athens, GA 30602, USA
| | - Megan T. Chesne
- Departments of Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia Athens, GA 30602, USA
| | - Rebecca M. Terns
- Departments of Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia Athens, GA 30602, USA
| | - Michael P. Terns
- Departments of Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia Athens, GA 30602, USA
| |
Collapse
|
64
|
Maier LK, Dyall-Smith M, Marchfelder A. The Adaptive Immune System of Haloferax volcanii. Life (Basel) 2015; 5:521-37. [PMID: 25692903 PMCID: PMC4390866 DOI: 10.3390/life5010521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022] Open
Abstract
To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated). Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III) and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA) maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM) sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.
Collapse
Affiliation(s)
| | - Mike Dyall-Smith
- School of Biomedical Sciences, Charles Sturt University, 2650 NSW, Australia.
| | | |
Collapse
|
65
|
Barrangou R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 2015; 32:36-41. [PMID: 25574773 DOI: 10.1016/j.coi.2014.12.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and accompanying Cas proteins constitute the adaptive CRISPR-Cas immune system in bacteria and archaea. This DNA-encoded, RNA-mediated defense system provides sequence-specific recognition, targeting and degradation of exogenous nucleic acid. Though the primary established role of CRISPR-Cas systems is in bona fide adaptive antiviral defense in bacteria, a growing body of evidence indicates that it also plays critical functional roles beyond immunity, such as endogenous transcriptional control. Furthermore, benefits inherent to maintaining genome homeostasis also come at the cost of reduced uptake of beneficial DNA, and preventing strategic adaptation to the environment. This opens new avenues for the investigation of CRISPR-Cas systems and their functional characterization beyond adaptive immunity.
Collapse
Affiliation(s)
- Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
66
|
Peng W, Feng M, Feng X, Liang YX, She Q. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res 2015; 43:406-17. [PMID: 25505143 PMCID: PMC4288192 DOI: 10.1093/nar/gku1302] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis identified a trinucleotide sequence in the 3'-region of crRNA that was crucial for RNA interference. Studying mutants lacking Cmr-α or Cmr-β system showed that each Cmr complex exhibited RNA interference. Strikingly, these analyses further revealed that the two Cmr systems displayed distinctive interference features. Whereas Cmr-β complexes targeted transcripts and could be recycled in RNA cleavage, Cmr-α complexes probably targeted nascent RNA transcripts and remained associated with the substrate. Moreover, Cmr-β exhibited much stronger RNA cleavage activity than Cmr-α. Since we previously showed that S. islandicus Cmr-α mediated transcription-dependent DNA interference, the Cmr-α constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA.
Collapse
Affiliation(s)
- Wenfang Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mingxia Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xu Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
67
|
|
68
|
Benda C, Ebert J, Scheltema RA, Schiller HB, Baumgärtner M, Bonneau F, Mann M, Conti E. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol Cell 2014; 56:43-54. [PMID: 25280103 DOI: 10.1016/j.molcel.2014.09.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022]
Abstract
The Cmr complex is an RNA-guided endonuclease that cleaves foreign RNA targets as part of the CRISPR prokaryotic defense system. We investigated the molecular architecture of the P. furiosus Cmr complex using an integrative structural biology approach. We determined crystal structures of P. furiosus Cmr1, Cmr2, Cmr4, and Cmr6 and combined them with known structural information to interpret the cryo-EM map of the complex. To support structure determination, we obtained residue-specific interaction data using protein crosslinking and mass spectrometry. The resulting pseudoatomic model reveals how the superhelical backbone of the complex is defined by the polymerizing principles of Cmr4 and Cmr5 and how it is capped at the extremities by proteins of similar folds. The inner surface of the superhelix exposes conserved residues of Cmr4 that we show are required for target-cleavage activity. The structural and biochemical data thus identify Cmr4 as the conserved endoribonuclease of the Cmr complex.
Collapse
Affiliation(s)
- Christian Benda
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Judith Ebert
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Richard A Scheltema
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Herbert B Schiller
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Marc Baumgärtner
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
69
|
Tay M, Liu S, Yuan YA. Crystal structure of Thermobifida fusca Cse1 reveals target DNA binding site. Protein Sci 2014; 24:236-45. [PMID: 25420472 DOI: 10.1002/pro.2609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 11/06/2022]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) defense system is the only adaptive and inheritable immunity found in prokaryotes. The immunity is achieved through a multistep process of adaptation, expression, and interference. In the Type I-E system, interference is mediated by the CRISPR-associated complex for antiviral defense (Cascade), which recognizes invading double-stranded DNA (dsDNA) through the protospacer adjacent motif (PAM) by one of the Cascade components, Cse1. Here, we report the crystal structure of Thermobifida fusca Cse1 at 3.3 Å resolution. T. fusca Cse1 reveals the chair-like two-domain architecture with a well-defined flexible loop, L1, located at the larger N-terminal domain, which was not observed in previous structures of the single Cse1 protein. Structure-based mutagenesis analysis demonstrates that the well-defined flexible loop and a partially conserved structural motif ([FW]-X-[TH]) are involved in PAM binding and recognition, respectively. Moreover, structural docking of T. fusca Cse1 into Escherichia coli Cascade cryoelectron microscopy maps, coupled with structural comparison, reveals a conserved positive patch that is contiguous with Cse2 in the Cascade complex and adjacent to the Cas3 binding site, suggesting its role in R-loop formation/stabilization and the recruitment of Cas3 for target cleavage. Consistent with the structural observation, the introduction of alanine mutations at this positive patch abolished DNA binding activity by Cse1. Taken together, these results suggest that Cse1 is a critical Cascade component involved in Cascade assembly, dsDNA target recognition, R-loop formation, and Cas3 recruitment for target cleavage.
Collapse
Affiliation(s)
- Melanie Tay
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | | | | |
Collapse
|
70
|
Maier LK, Stachler AE, Saunders SJ, Backofen R, Marchfelder A. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein. J Biol Chem 2014; 290:4192-201. [PMID: 25512373 PMCID: PMC4326828 DOI: 10.1074/jbc.m114.617506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3′ handle are still active in triggering an interference reaction. The complete 3′ handle could be removed without loss of activity. However, manipulations of the 5′ handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference.
Collapse
Affiliation(s)
| | | | - Sita J Saunders
- the Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, and
| | - Rolf Backofen
- the Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, and the BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, Albert-Ludwigs-University Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | | |
Collapse
|
71
|
Li H. Structural Principles of CRISPR RNA Processing. Structure 2014; 23:13-20. [PMID: 25435327 DOI: 10.1016/j.str.2014.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
The Cas6 superfamily, the Cas5d subclass, and the host RNase III endoribonucleases are responsible for producing small RNAs (crRNA) that function in the CRISPR-Cas immunity. The three enzymes may also interact with the crRNA-associated nucleic acid interference complexes. Recent development in structural biology of Cas6 and Cas5d and their complexes with RNA substrates has lent new insights on principles of crRNA processing and the structural basis for linking crRNA processing to interference. Both Cas6 and Cas5d are characterized by the presence of the ferredoxin-like fold, but each has unique domain arrangement and insertion elements. Cas6 proteins often interact strongly with stable RNA stem-loop structures but can also fold unstructured RNA into stem-loop structures for their cleavage. The extraordinarily simple fold, the wide range of substrates, and kinetic properties of Cas6/Cas5d make them excellent candidates for exploring molecular evolution, protein-RNA interaction, and biotechnology applications.
Collapse
Affiliation(s)
- Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
72
|
Hochstrasser ML, Doudna JA. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci 2014; 40:58-66. [PMID: 25468820 DOI: 10.1016/j.tibs.2014.10.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 12/26/2022]
Abstract
Many bacteria and archaea possess an adaptive immune system consisting of repetitive genetic elements known as clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Similar to RNAi pathways in eukaryotes, CRISPR-Cas systems require small RNAs for sequence-specific detection and degradation of complementary nucleic acids. Cas5 and Cas6 enzymes have evolved to specifically recognize and process CRISPR-derived transcripts into functional small RNAs used as guides by interference complexes. Our detailed understanding of these proteins has led to the development of several useful Cas6-based biotechnological methods. Here, we review the structures, functions, mechanisms, and applications of the enzymes responsible for CRISPR RNA (crRNA) processing, highlighting a fascinating family of endonucleases with exquisite RNA recognition and cleavage activities.
Collapse
Affiliation(s)
- Megan L Hochstrasser
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
73
|
Staals RHJ, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, Sakamoto K, Suzuki T, Dohmae N, Yokoyama S, Schaap PJ, Urlaub H, Heck AJR, Nogales E, Doudna JA, Shinkai A, van der Oost J. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell 2014; 56:518-30. [PMID: 25457165 PMCID: PMC4342149 DOI: 10.1016/j.molcel.2014.10.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/27/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1-Csm5) with an uneven stoichiometry and a single crRNA of variable size (35-53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.
Collapse
Affiliation(s)
- Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands.
| | - Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - David W Taylor
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Jack E Kornfeld
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Marnix Vlot
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Nirajan Neupane
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Koen Varossieau
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | | | | | - Naoshi Dohmae
- Global Research Cluster, RIKEN, Saitama 351-0198, Japan
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, 37075 Göttingen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands
| | - Eva Nogales
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Department of Molecular and Cell Biology, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720-3200, USA
| | - Jennifer A Doudna
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Department of Molecular and Cell Biology, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720-3200, USA
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan; Structural Biology Laboratory, RIKEN, Kanagawa 230-0045, Japan
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands.
| |
Collapse
|
74
|
Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proc Natl Acad Sci U S A 2014; 111:16359-64. [PMID: 25368186 DOI: 10.1073/pnas.1410806111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.
Collapse
|
75
|
Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu Rev Virol 2014; 1:307-31. [DOI: 10.1146/annurev-virology-031413-085500] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - George P.C. Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
76
|
Jackson RN, Golden SM, van Erp PBG, Carter J, Westra ER, Brouns SJJ, van der Oost J, Terwilliger TC, Read RJ, Wiedenheft B. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 2014; 345:1473-9. [PMID: 25103409 PMCID: PMC4188430 DOI: 10.1126/science.1256328] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are essential components of RNA-guided adaptive immune systems that protect bacteria and archaea from viruses and plasmids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble into a 405-kilodalton multisubunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Here we present the 3.24 angstrom resolution x-ray crystal structure of Cascade. Eleven proteins and a 61-nucleotide crRNA assemble into a seahorse-shaped architecture that binds double-stranded DNA targets complementary to the crRNA-guide sequence. Conserved sequences on the 3' and 5' ends of the crRNA are anchored by proteins at opposite ends of the complex, whereas the guide sequence is displayed along a helical assembly of six interwoven subunits that present five-nucleotide segments of the crRNA in pseudo-A-form configuration. The structure of Cascade suggests a mechanism for assembly and provides insights into the mechanisms of target recognition.
Collapse
Affiliation(s)
- Ryan N Jackson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah M Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Paul B G van Erp
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joshua Carter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Edze R Westra
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | | | - Randy J Read
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
77
|
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system protects prokaryotes from infection by viruses and other potential genome invaders. This system represents an inheritable and adaptable immune system that is mediated by large ribonucleoprotein complexes, the CRISPR-Cas effector complexes. The Cmr complex is unique among CRISPR-Cas effector complexes in that it destroys invading RNA and not DNA. To date, the Cmr complexes from two species have been characterized in vitro and, strikingly, they degrade RNA via distinct mechanisms. The possible in vivo targets, as well as our current knowledge of the Cmr complex, is reviewed in the present paper.
Collapse
|
78
|
Abstract
The ternary Cas9-crRNA-tracrRNA complex (Cas9t) of the Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system functions as an Mg2+-dependent RNA-directed DNA endonuclease that locates its DNA target guided by the crRNA (CRISPR RNA) in the tracrRNA-crRNA structure and introduces a double-strand break at a specific site in DNA. The simple modular organization of Cas9t, where specificity for the DNA target is encoded by a small crRNA and the cleavage reaction is executed by the Cas9 endonuclease, provides a versatile platform for the engineering of universal RNA-directed DNA endonucleases. By altering the crRNA sequence within the Cas9t complex, programmable endonucleases can be designed for both in vitro and in vivo applications. Cas9t has been recently employed as a gene-editing tool in various eukaryotic cell types. Using Streptococcus thermophilus Cas9t as a model system, we demonstrate the feasibility of Cas9t as a programmable molecular tool for in vitro DNA manipulations.
Collapse
|
79
|
Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus. Biochem Soc Trans 2014; 41:1422-6. [PMID: 24256231 DOI: 10.1042/bst20130031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats) and Cas (CRISPR-associated) genes are widely spread in bacteria and archaea, representing an intracellular defence system against invading viruses and plasmids. In the system, fragments from foreign DNA are captured and integrated into the host genome at the CRISPR locus. The locus is transcribed and the resulting RNAs are processed by Cas6 into small crRNAs (CRISPR RNAs) that guide a variety of effector complexes to degrade the invading genetic elements. Many bacteria and archaea have one major type of effector complex. However, Sulfolobus solfataricus strain P2 has six CRISPR loci with two families of repeats, four cas6 genes and three different types of effector complex. These features make S. solfataricus an important model for studying CRISPR-Cas systems. In the present article, we review our current understanding of crRNA biogenesis and its effector complexes, subtype I-A and subtype III-B, in S. solfataricus. We also discuss the differences in terms of mechanisms between the subtype III-B systems in S. solfataricus and Pyrococcus furiosus.
Collapse
|
80
|
Electron microscopy studies of Type III CRISPR machines in Sulfolobus solfataricus. Biochem Soc Trans 2014; 41:1427-30. [PMID: 24256232 DOI: 10.1042/bst20130166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats) system is an adaptive immune system that targets viruses and other mobile genetic elements in bacteria and archaea. Cells store information of past infections in their genome in repeat-spacer arrays. After transcription, these arrays are processed into unit-length crRNA (CRISPR RNA) that is loaded into effector complexes encoded by Cas (CRISPR-associated) genes. CRISPR-Cas complexes target invading nucleic acid for degradation. CRISPR effector complexes have been classified into three main types (I-III). Type III effector complexes share the Cas10 subunit. In the present paper, we discuss the structures of the two Type III effector complexes from Sulfolobus solfataricus, SsoCSM (subtype III-A) and SsoCMR (subtype III-B), obtained by electron microscopy and single particle analysis. We also compare these structures with Cascade (CRISPR-associated complex for antiviral defence) and with the RecA nucleoprotein.
Collapse
|
81
|
Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G, Gong W, Wei Z, Wang Y. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 2014; 515:147-50. [DOI: 10.1038/nature13733] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 12/18/2022]
|
82
|
Ka D, Kim D, Baek G, Bae E. Structural and functional characterization of Streptococcus pyogenes Cas2 protein under different pH conditions. Biochem Biophys Res Commun 2014; 451:152-7. [PMID: 25079131 DOI: 10.1016/j.bbrc.2014.07.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/19/2014] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins constitute an RNA-guided microbial defense system against invading foreign genetic materials. Cas2 is one of the core Cas proteins found universally in all the subtypes of CRISPR-Cas systems and is required for incorporating new spacers into CRISPR loci. Cas2 homologues from different CRISPR-Cas subtypes were characterized previously as metal-dependent nucleases with different substrate preferences, and it was proposed that a pH-dependent conformational change mediates metal binding and catalysis. Here, we report the crystal structures of Streptococcus pyogenes Cas2 at three different pHs (5.6, 6.5, and 7.5), as well as the results of its nuclease activity assay against double-stranded DNAs at varying pHs (6.0-9.0). Although S. pyogenes Cas2 exhibited strongly pH-dependent catalytic activity, there was no significant conformational difference among the three crystal structures. However, structural comparisons with other Cas2 homologues revealed structural variability and the flexible nature of its putative hinge regions, supporting the hypothesis that conformational switching is important for catalysis. Taken together, our results confirm that Cas2 proteins have pH-dependent nuclease activity against double-stranded DNAs, and provide indirect structural evidence for their conformational changes.
Collapse
Affiliation(s)
- Donghyun Ka
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Dayoun Kim
- Department of Applied Biology and Chemistry, Seoul National University, Seoul 151-921, Republic of Korea
| | - Gyeongyun Baek
- Department of Applied Biology and Chemistry, Seoul National University, Seoul 151-921, Republic of Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
83
|
van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 2014; 12:479-92. [PMID: 24909109 PMCID: PMC4225775 DOI: 10.1038/nrmicro3279] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR-Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea.
Collapse
Affiliation(s)
- John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Edze R Westra
- 1] Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands. [2] Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Ryan N Jackson
- Department of Microbiology and Immunology, Montana State University, PO Box 173520, Bozeman, Montana 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, PO Box 173520, Bozeman, Montana 59717, USA
| |
Collapse
|
84
|
Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 2014; 54:234-44. [PMID: 24766887 DOI: 10.1016/j.molcel.2014.03.011] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.
Collapse
Affiliation(s)
- Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
85
|
Zhang D, Iyer LM, Burroughs AM, Aravind L. Resilience of biochemical activity in protein domains in the face of structural divergence. Curr Opin Struct Biol 2014; 26:92-103. [PMID: 24952217 DOI: 10.1016/j.sbi.2014.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023]
Abstract
Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
86
|
Abstract
Small non-coding RNA (ncRNA) therapeutics make use of small ncRNA effectors for desired therapeutic purposes that are essentially short (10–20 kD) RNA segments. These small ncRNA effectors are potentially tremendously powerful therapeutic agents, but are typically unable to reach disease target cells in vivo without the assistance of a delivery system or vector. The main focus of this review is the use of lipid-based nanoparticles (LNPs) for the functional delivery of small ncRNA effectors in vivo. LNPs appear to be amongst the most effective delivery systems currently available for this purpose. Moreover, studies on LNP-mediated delivery in vivo are leading to the emergence of useful biophysical parameters and physical organic chemistry rules that provide a framework for understanding LNP-mediated in vivo delivery behaviors and outcomes. These same parameters and rules should also suggest ways and means to develop next generations of LNPs with genuine utility and long-term clinical viability.
Collapse
|
87
|
Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 2014; 42:6091-105. [PMID: 24728998 PMCID: PMC4041416 DOI: 10.1093/nar/gku241] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas systems of archaeal and bacterial adaptive immunity are classified into three types that differ by the repertoires of CRISPR-associated (cas) genes, the organization of cas operons and the structure of repeats in the CRISPR arrays. The simplest among the CRISPR-Cas systems is type II in which the endonuclease activities required for the interference with foreign deoxyribonucleic acid (DNA) are concentrated in a single multidomain protein, Cas9, and are guided by a co-processed dual-tracrRNA:crRNA molecule. This compact enzymatic machinery and readily programmable site-specific DNA targeting make type II systems top candidates for a new generation of powerful tools for genomic engineering. Here we report an updated census of CRISPR-Cas systems in bacterial and archaeal genomes. Type II systems are the rarest, missing in archaea, and represented in ∼5% of bacterial genomes, with an over-representation among pathogens and commensals. Phylogenomic analysis suggests that at least three cas genes, cas1, cas2 and cas4, and the CRISPR repeats of the type II-B system were acquired via recombination with a type I CRISPR-Cas locus. Distant homologs of Cas9 were identified among proteins encoded by diverse transposons, suggesting that type II CRISPR-Cas evolved via recombination of mobile nuclease genes with type I loci.
Collapse
Affiliation(s)
- Krzysztof Chylinski
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| | - Emmanuelle Charpentier
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany Hannover Medical School, Hannover 30625, Germany
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
88
|
Abstract
The discovery of CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immune systems in prokaryotes has been one of the most exciting advances in microbiology in the past decade. Their role in host protection against mobile genetic elements is now well established, but there is mounting evidence that these systems modulate other processes, such as the genetic regulation of group behaviour and virulence, DNA repair and genome evolution. In this Progress article, we discuss recent studies that have provided insights into these unconventional CRISPR-Cas functions and consider their potential evolutionary implications. Understanding the role of CRISPR-Cas in these processes will improve our understanding of the evolution and maintenance of CRISPR-Cas systems in prokaryotic genomes.
Collapse
|
89
|
Gogleva AA, Gelfand MS, Artamonova II. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs. BMC Genomics 2014; 15:202. [PMID: 24628983 PMCID: PMC4004331 DOI: 10.1186/1471-2164-15-202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/04/2014] [Indexed: 08/30/2023] Open
Abstract
Background CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a prokaryotic adaptive defence system that provides resistance against alien replicons such as viruses and plasmids. Spacers in a CRISPR cassette confer immunity against viruses and plasmids containing regions complementary to the spacers and hence they retain a footprint of interactions between prokaryotes and their viruses in individual strains and ecosystems. The human gut is a rich habitat populated by numerous microorganisms, but a large fraction of these are unculturable and little is known about them in general and their CRISPR systems in particular. Results We used human gut metagenomic data from three open projects in order to characterize the composition and dynamics of CRISPR cassettes in the human-associated microbiota. Applying available CRISPR-identification algorithms and a previously designed filtering procedure to the assembled human gut metagenomic contigs, we found 388 CRISPR cassettes, 373 of which had repeats not observed previously in complete genomes or other datasets. Only 171 of 3,545 identified spacers were coupled with protospacers from the human gut metagenomic contigs. The number of matches to GenBank sequences was negligible, providing protospacers for 26 spacers. Reconstruction of CRISPR cassettes allowed us to track the dynamics of spacer content. In agreement with other published observations we show that spacers shared by different cassettes (and hence likely older ones) tend to the trailer ends, whereas spacers with matches in the metagenomes are distributed unevenly across cassettes, demonstrating a preference to form clusters closer to the active end of a CRISPR cassette, adjacent to the leader, and hence suggesting dynamical interactions between prokaryotes and viruses in the human gut. Remarkably, spacers match protospacers in the metagenome of the same individual with frequency comparable to a random control, but may match protospacers from metagenomes of other individuals. Conclusions The analysis of assembled contigs is complementary to the approach based on the analysis of original reads and hence provides additional data about composition and evolution of CRISPR cassettes, revealing the dynamics of CRISPR-phage interactions in metagenomes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-202) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Irena I Artamonova
- N, I, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str, 3, Moscow 119991, Russia.
| |
Collapse
|
90
|
Bondy-Denomy J, Davidson AR. To acquire or resist: the complex biological effects of CRISPR-Cas systems. Trends Microbiol 2014; 22:218-25. [PMID: 24582529 DOI: 10.1016/j.tim.2014.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeat-CRISPR associated) systems provide a sophisticated adaptive immune system that offers protection against foreign DNA. These systems are widely distributed in prokaryotes and exert an important influence on bacterial behavior and evolution. However, interpreting the biological effects of a CRISPR-Cas system within a given species can be complicated because the outcome of rejecting foreign DNA does not always provide a fitness advantage, as foreign DNA uptake is sometimes beneficial. To address these issues, here we review data pertaining to the potential in vivo costs and benefits of CRISPR-Cas systems, novel functions for these systems, and how they may be inactivated.
Collapse
Affiliation(s)
- Joseph Bondy-Denomy
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alan R Davidson
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
91
|
Jackson RN, Lavin M, Carter J, Wiedenheft B. Fitting CRISPR-associated Cas3 into the helicase family tree. Curr Opin Struct Biol 2014; 24:106-14. [PMID: 24480304 DOI: 10.1016/j.sbi.2014.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/30/2013] [Accepted: 01/04/2014] [Indexed: 01/03/2023]
Abstract
Helicases utilize NTPs to modulate their binding to nucleic acids and many of these enzymes also unwind DNA or RNA duplexes in an NTP-dependent fashion. These proteins are phylogenetically related but functionally diverse, with essential roles in virtually all aspects of nucleic acid metabolism. A new class of helicases associated with RNA-guided adaptive immune systems in bacteria and archaea has recently been identified. Prokaryotes acquire resistance to invading genetic parasites by integrating short fragments of foreign nucleic acids into repetitive loci in the host chromosome known as CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats). CRISPR-associated gene 3 (cas3) encodes a conserved helicase protein that is essential for phage defense. Here we review recent advances in Cas3 biology, and provide a new phylogenetic framework that positions Cas3 in the helicase family tree. We anticipate that this Cas3 phylogeny will guide future biochemical and structural studies.
Collapse
Affiliation(s)
- Ryan N Jackson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718, United States
| | - Matthew Lavin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59718, United States
| | - Joshua Carter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718, United States
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718, United States.
| |
Collapse
|
92
|
Brendel J, Stoll B, Lange SJ, Sharma K, Lenz C, Stachler AE, Maier LK, Richter H, Nickel L, Schmitz RA, Randau L, Allers T, Urlaub H, Backofen R, Marchfelder A. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. J Biol Chem 2014; 289:7164-7177. [PMID: 24459147 PMCID: PMC3945376 DOI: 10.1074/jbc.m113.508184] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.
Collapse
Affiliation(s)
- Jutta Brendel
- Department of Biology II, Ulm University, 89069 Ulm, Germany
| | - Britta Stoll
- Department of Biology II, Ulm University, 89069 Ulm, Germany
| | - Sita J Lange
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Kundan Sharma
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christof Lenz
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | | | | | - Hagen Richter
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Lisa Nickel
- Institute for General Microbiology, Christian-Albrechts-Universität Kiel, 24118 Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität Kiel, 24118 Kiel, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), Cluster of Excellence, University of Freiburg, 79110 Freiburg, Germany
| | | |
Collapse
|
93
|
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems that protect bacteria and archaea from infection by viruses are now being routinely repurposed for genome engineering in a wide variety of cell types and multicellular organisms.
Collapse
Affiliation(s)
- Royce Wilkinson
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| | - Blake Wiedenheft
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| |
Collapse
|
94
|
Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 2013; 52:135-145. [PMID: 24119403 DOI: 10.1016/j.molcel.2013.09.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/30/2013] [Accepted: 09/12/2013] [Indexed: 12/26/2022]
Abstract
The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA with a stoichiometry of Cmr112131445361:crRNA1. The TtCmr complex copurifies with crRNA species of 40 and 46 nt, originating from a distinct subset of CRISPR loci and spacers. The TtCmr complex cleaves the target RNA at multiple sites with 6 nt intervals via a 5' ruler mechanism. Electron microscopy revealed that the structure of TtCmr resembles a "sea worm" and is composed of a Cmr2-3 heterodimer "tail," a helical backbone of Cmr4 subunits capped by Cmr5 subunits, and a curled "head" containing Cmr1 and Cmr6. Despite having a backbone of only four Cmr4 subunits and being both longer and narrower, the overall architecture of TtCmr resembles that of Type I Cascade complexes.
Collapse
|
95
|
Abstract
Three papers in this issue of Molecular Cell report on the structure and functional activity of type III CRISPR-Cas effector complexes, revealing novel and conserved features of the ribonucleoprotein particles that underlie prokaryotic genome defense. The new structures suggest that type I and type III complexes follow the same architectural principles and are most likely descendants of a common ancestor, the differences in RNA and protein sequences and structure of individual components notwithstanding.
Collapse
Affiliation(s)
- Nadja Heidrich
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | | |
Collapse
|
96
|
Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L, White MF. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 2013; 52:124-34. [PMID: 24119402 PMCID: PMC3807668 DOI: 10.1016/j.molcel.2013.08.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/11/2013] [Accepted: 08/01/2013] [Indexed: 11/16/2022]
Abstract
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system is an adaptive immune system in prokaryotes. Interference complexes encoded by CRISPR-associated (cas) genes utilize small RNAs for homology-directed detection and subsequent degradation of invading genetic elements, and they have been classified into three main types (I-III). Type III complexes share the Cas10 subunit but are subclassifed as type IIIA (CSM) and type IIIB (CMR), depending on their specificity for DNA or RNA targets, respectively. The role of CSM in limiting the spread of conjugative plasmids in Staphylococcus epidermidis was first described in 2008. Here, we report a detailed investigation of the composition and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of electron microscopy, mass spectrometry, and deep sequencing. This reveals a three-dimensional model for the CSM complex that includes a helical component strikingly reminiscent of the backbone structure of the type I (Cascade) family.
Collapse
Affiliation(s)
- Christophe Rouillon
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. J Bacteriol 2013; 196:310-7. [PMID: 24187086 DOI: 10.1128/jb.01130-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many prokaryotes possess an adaptive immune system encoded by clustered regularly interspaced short palindromic repeats (CRISPRs). CRISPR loci produce small guide RNAs (crRNAs) that, in conjunction with flanking CRISPR-associated (cas) genes, combat viruses and block plasmid transfer by an antisense targeting mechanism. CRISPR-Cas systems have been classified into three types (I to III) that employ distinct mechanisms of crRNA biogenesis and targeting. The type III-A system in Staphylococcus epidermidis RP62a blocks the transfer of staphylococcal conjugative plasmids and harbors nine cas-csm genes. Previous biochemical analysis indicated that Cas10, Csm2, Csm3, Csm4, and Csm5 form a crRNA-containing ribonucleoprotein complex; however, the roles of these genes toward antiplasmid targeting remain unknown. Here, we determined the cas-csm genes that are required for antiplasmid immunity and used genetic and biochemical analyses to investigate the functions of predicted motifs and domains within these genes. We found that many mutations affected immunity by impacting the formation of the Cas10-Csm complex or crRNA biogenesis. Surprisingly, mutations in the predicted nuclease domains of the members of the Cas10-Csm complex had no detectable effect on antiplasmid immunity or crRNA biogenesis. In contrast, the deletion of csm6 and mutations in the cas10 Palm polymerase domain prevented CRISPR immunity without affecting either complex formation or crRNA production, suggesting their involvement in target destruction. By delineating the genetic requirements of this system, our findings further contribute to the mechanistic understanding of type III CRISPR-Cas systems.
Collapse
|
98
|
Niewoehner O, Jinek M, Doudna JA. Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res 2013; 42:1341-53. [PMID: 24150936 PMCID: PMC3902920 DOI: 10.1093/nar/gkt922] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In many bacteria and archaea, small RNAs derived from clustered regularly interspaced short palindromic repeats (CRISPRs) associate with CRISPR-associated (Cas) proteins to target foreign DNA for destruction. In Type I and III CRISPR/Cas systems, the Cas6 family of endoribonucleases generates functional CRISPR-derived RNAs by site-specific cleavage of repeat sequences in precursor transcripts. CRISPR repeats differ widely in both sequence and structure, with varying propensity to form hairpin folds immediately preceding the cleavage site. To investigate the evolution of distinct mechanisms for the recognition of diverse CRISPR repeats by Cas6 enzymes, we determined crystal structures of two Thermus thermophilus Cas6 enzymes both alone and bound to substrate and product RNAs. These structures show how the scaffold common to all Cas6 endonucleases has evolved two binding sites with distinct modes of RNA recognition: one specific for a hairpin fold and the other for a single-stranded 5'-terminal segment preceding the hairpin. These findings explain how divergent Cas6 enzymes have emerged to mediate highly selective pre-CRISPR-derived RNA processing across diverse CRISPR systems.
Collapse
Affiliation(s)
- Ole Niewoehner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA, Department of Chemistry, University of California, Berkeley, California 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
99
|
Hrle A, Su AAH, Ebert J, Benda C, Randau L, Conti E. Structure and RNA-binding properties of the type III-A CRISPR-associated protein Csm3. RNA Biol 2013; 10:1670-8. [PMID: 24157656 DOI: 10.4161/rna.26500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The prokaryotic adaptive immune system is based on the incorporation of genome fragments of invading viral genetic elements into clusters of regulatory interspaced short palindromic repeats (CRISPRs). The CRISPR loci are transcribed and processed into crRNAs, which are then used to target the invading nucleic acid for degradation. The large family of CRISPR-associated (Cas) proteins mediates this interference response. We have characterized Methanopyrus kandleri Csm3, a protein of the type III-A CRISPR-Cas complex. The 2.4 Å resolution crystal structure shows an elaborate four-domain fold organized around a core RRM-like domain. The overall architecture highlights the structural homology to Cas7, the Cas protein that forms the backbone of type I interference complexes. Csm3 binds unstructured RNAs in a sequence non-specific manner, suggesting that it interacts with the variable spacer sequence of the crRNA. The structural and biochemical data provide insights into the similarities and differences in this group of Cas proteins.
Collapse
Affiliation(s)
- Ajla Hrle
- Structural Cell Biology Department; Max Planck Institute of Biochemistry; Munich/Martinsried, Germany
| | - Andreas A H Su
- Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Straße 10, Marburg, Germany
| | - Judith Ebert
- Structural Cell Biology Department; Max Planck Institute of Biochemistry; Munich/Martinsried, Germany
| | - Christian Benda
- Structural Cell Biology Department; Max Planck Institute of Biochemistry; Munich/Martinsried, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Straße 10, Marburg, Germany
| | - Elena Conti
- Structural Cell Biology Department; Max Planck Institute of Biochemistry; Munich/Martinsried, Germany
| |
Collapse
|