51
|
An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochem J 2015; 473:297-309. [PMID: 26564204 PMCID: PMC4724949 DOI: 10.1042/bj20150880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway.
Collapse
|
52
|
Luque-Almagro V, Escribano M, Manso I, Sáez L, Cabello P, Moreno-Vivián C, Roldán M. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater. J Biotechnol 2015; 214:171-81. [DOI: 10.1016/j.jbiotec.2015.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
|
53
|
Kutvonen H, Rajala P, Carpén L, Bomberg M. Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. Front Microbiol 2015; 6:1079. [PMID: 26528251 PMCID: PMC4606121 DOI: 10.3389/fmicb.2015.01079] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
We investigated the N-utilizing bacterial community in anoxic brackish groundwater of the low and intermediate level nuclear waste repository cave in Olkiluoto, Finland, at 100 m depth using 15N-based stable isotope probing (SIP) and enrichment with 14∕15N-ammonium or 14∕15N-nitrate complemented with methane. Twenty-eight days of incubation at 12°C increased the concentration of bacterial 16S rRNA and nitrate reductase (narG) gene copies in the substrate amended microcosms simultaneously with a radical drop in the overall bacterial diversity and OTU richness. Hydrogenophaga/Malikia were enriched in all substrate amended microcosms and Methylobacter in the ammonium and ammonium+methane supplemented microcosms. Sulfuricurvum was especially abundant in the nitrate+methane treatment and the unamended incubation control. Membrane-bound nitrate reductase genes (narG) from Polarimonas sp. were detected in the original groundwater, while Burkholderia, Methylibium, and Pseudomonas narG genes were enriched due to substrate supplements. Identified amoA genes belonged to Nitrosomonas sp. 15N-SIP revealed that Burkholderiales and Rhizobiales clades belonging to the minority groups in the original groundwater used 15N from ammonium and nitrate as N source indicating an important ecological function of these bacteria, despite their low number, in the groundwater N cycle in Olkiluoto bedrock system.
Collapse
Affiliation(s)
- Heini Kutvonen
- Material Recycling and Geotechnology, VTT Technical Research Centre of Finland Espoo, Finland
| | - Pauliina Rajala
- Materials Performance, VTT Technical Research Centre of Finland Espoo, Finland
| | - Leena Carpén
- Materials Performance, VTT Technical Research Centre of Finland Espoo, Finland
| | - Malin Bomberg
- Material Recycling and Geotechnology, VTT Technical Research Centre of Finland Espoo, Finland
| |
Collapse
|
54
|
Martín-Moldes Z, Zamarro MT, del Cerro C, Valencia A, Gómez MJ, Arcas A, Udaondo Z, García JL, Nogales J, Carmona M, Díaz E. Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol 2015; 38:462-71. [DOI: 10.1016/j.syapm.2015.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022]
|
55
|
Bloom AJ. The increasing importance of distinguishing among plant nitrogen sources. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:10-6. [PMID: 25899331 DOI: 10.1016/j.pbi.2015.03.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 05/18/2023]
Abstract
Many studies of plant nitrogen relations assess only the total amount of the element available from the soil and the total amount of the element within the plant. Nitrogen, however, is a constituent of diverse compounds that participate in some of the most energy-intensive reactions in the biosphere. The following characterizes some of these reactions, especially those that involve ammonium and nitrate, and highlights the importance of distinguishing both among the nitrogen sources available to plants and among the nitrogen forms within plants when considering plant responses to rising atmospheric CO2 concentrations.
Collapse
Affiliation(s)
- Arnold J Bloom
- Mail Stop 3, Department of Plant Sciences, University of California at Davis, Davis, CA 95616-8780, United States.
| |
Collapse
|
56
|
Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, Emerson D. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. THE ISME JOURNAL 2015; 9:857-70. [PMID: 25303714 PMCID: PMC4817698 DOI: 10.1038/ismej.2014.183] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
Abstract
The Zetaproteobacteria are a candidate class of marine iron-oxidizing bacteria that are typically found in high iron environments such as hydrothermal vent sites. As much remains unknown about these organisms due to difficulties in cultivation, single-cell genomics was used to learn more about this elusive group at Loihi Seamount. Comparative genomics of 23 phylogenetically diverse single amplified genomes (SAGs) and two isolates indicate niche specialization among the Zetaproteobacteria may be largely due to oxygen tolerance and nitrogen transformation capabilities. Only Form II ribulose 1,5-bisphosphate carboxylase (RubisCO) genes were found in the SAGs, suggesting that some of the uncultivated Zetaproteobacteria may be adapted to low oxygen and/or high carbon dioxide concentrations. There is also genomic evidence of oxygen-tolerant cytochrome c oxidases and oxidative stress-related genes, indicating that others may be exposed to higher oxygen conditions. The Zetaproteobacteria also have the genomic potential for acquiring nitrogen from numerous sources including ammonium, nitrate, organic compounds, and nitrogen gas. Two types of molybdopterin oxidoreductase genes were found in the SAGs, indicating that those found in the isolates, thought to be involved in iron oxidation, are not consistent among all the Zetaproteobacteria. However, a novel cluster of redox-related genes was found to be conserved in 10 SAGs as well as in the isolates warranting further investigation. These results were used to isolate a novel iron-oxidizing Zetaproteobacteria. Physiological studies and genomic analysis of this isolate were able to support many of the findings from SAG analyses demonstrating the value of these data for designing future enrichment strategies.
Collapse
Affiliation(s)
- Erin K Field
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Audrey E Lyman
- Department of Biology, Colby College, Waterville, ME, USA
| | | | - Tanja Woyke
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, USA
| | | | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| |
Collapse
|
57
|
Jiang X, Dang H, Jiao N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS One 2015; 10:e0117473. [PMID: 25647610 PMCID: PMC4315400 DOI: 10.1371/journal.pone.0117473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/25/2014] [Indexed: 12/15/2022] Open
Abstract
Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities.
Collapse
Affiliation(s)
- Xuexia Jiang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China
| |
Collapse
|
58
|
Bloom AJ. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. PHOTOSYNTHESIS RESEARCH 2015; 123:117-28. [PMID: 25366830 DOI: 10.1007/s11120-014-0056-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/27/2014] [Indexed: 05/22/2023]
Abstract
C3 carbon fixation has a bad reputation, primarily because it is associated with photorespiration, a biochemical pathway thought to waste a substantial amount of the carbohydrate produced in a plant. This review presents evidence collected over nearly a century that (1) Rubisco when associated with Mn(2+) generates additional reductant during photorespiration, (2) this reductant participates in the assimilation of nitrate into protein, and (3) this nitrate assimilation facilitates the use of a nitrogen source that other organisms tend to avoid. This phenomenon explains the continued dominance of C3 plants during the past 23 million years of low CO2 atmospheres as well as the decline in plant protein concentrations as atmospheric CO2 rises.
Collapse
Affiliation(s)
- Arnold J Bloom
- Department of Plant Sciences, University of California at Davis, Davis, USA,
| |
Collapse
|
59
|
Reimann J, Jetten MSM, Keltjens JT. Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane. Met Ions Life Sci 2015; 15:257-313. [PMID: 25707470 DOI: 10.1007/978-3-319-12415-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University of Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
60
|
Ravcheev DA, Thiele I. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota. Front Microbiol 2014; 5:674. [PMID: 25538694 PMCID: PMC4257093 DOI: 10.3389/fmicb.2014.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg ; Division 6: Comparative Genomics of Regulation System, A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| |
Collapse
|
61
|
Wang B, Rensing C, Pierson LS, Zhao H, Kennedy C. Translational coupling of nasST expression in Azotobacter vinelandii prevents overexpression of the nasT gene. FEMS Microbiol Lett 2014; 361:123-30. [PMID: 25302751 DOI: 10.1111/1574-6968.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022] Open
Abstract
The nasST operon encodes the transcriptional regulators of assimilatory nitrate reductase operons in phylogenetically diverse bacteria. NasT is a RNA-binding antiterminator and helps RNA polymerase read through the regulatory terminator sequences upstream of the structural genes. NasS senses nitrate and nitrite and regulates the activity of NasT through stoichiometric interaction. In this study, we analyzed the nasST sequence in Azotobacter vinelandii and revealed that the nasS and nasT genes overlap by 19 nucleotides. Our genetic analyses suggested that translational initiation of NasT was coupled with NasS translation, a regulatory mechanism that prevents overproduction of NasT. The significance of tight control of nasT expression was demonstrated in a nasT-overexpression strain, where expression of the assimilatory nitrate reductase operon was deregulated.
Collapse
Affiliation(s)
- Baomin Wang
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
62
|
Konishi M, Yanagisawa S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5589-600. [PMID: 25005135 DOI: 10.1093/jxb/eru267] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrogen is one of the primary macronutrients of plants, and nitrate is the most abundant inorganic form of nitrogen in soils. Plants take up nitrate in soils and utilize it both for nitrogen assimilation and as a signalling molecule. Thus, an essential role for nitrate in plants is triggering changes in gene expression patterns, including immediate induction of the expression of genes involved in nitrate transport and assimilation, as well as several transcription factor genes and genes related to carbon metabolism and cytokinin biosynthesis and response. Significant progress has been made in recent years towards understanding the molecular mechanisms underlying nitrate-regulated gene expression in higher plants; a new stage in our understanding of this process is emerging. A key finding is the identification of NIN-like proteins (NLPs) as transcription factors governing nitrate-inducible gene expression. NLPs bind to nitrate-responsive DNA elements (NREs) located at nitrate-inducible gene loci and activate their NRE-dependent expression. Importantly, post-translational regulation of NLP activity by nitrate signalling was strongly suggested to be a vital process in NLP-mediated transcriptional activation and subsequent nitrate responses. We present an overview of the current knowledge of the molecular mechanisms underlying nitrate-regulated gene expression in higher plants.
Collapse
Affiliation(s)
- Mineko Konishi
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
63
|
Sánchez C, Itakura M, Okubo T, Matsumoto T, Yoshikawa H, Gotoh A, Hidaka M, Uchida T, Minamisawa K. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum. Environ Microbiol 2014; 16:3263-74. [PMID: 24947409 DOI: 10.1111/1462-2920.12546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 11/30/2022]
Abstract
The soybean endosymbiont Bradyrhizobium japonicum is able to scavenge the greenhouse gas N2O through the N2O reductase (Nos). In previous research, N2O emission from soybean rhizosphere was mitigated by B. japonicum Nos(++) strains (mutants with increased Nos activity). Here, we report the mechanism underlying the Nos(++) phenotype. Comparative analysis of Nos(++) mutant genomes showed that mutation of bll4572 resulted in Nos(++) phenotype. bll4572 encodes NasS, the nitrate (NO3(-))-sensor of the two-component NasST regulatory system. Transcriptional analyses of nosZ (encoding Nos) and other genes from the denitrification process in nasS and nasST mutants showed that, in the absence of NO3(-) , nasS mutation induces nosZ and nap (periplasmic nitrate reductase) via nasT. NO3(-) addition dissociated the NasS-NasT complex in vitro, suggesting the release of the activator NasT. Disruption of nasT led to a marked decrease in nosZ and nap transcription in cells incubated in the presence of NO3(-). Thus, although NasST is known to regulate the NO3(-)-mediated response of NO3(-) assimilation genes in bacteria, our results show that NasST regulates the NO3(-) -mediated response of nosZ and napE genes, from the dissimilatory denitrification pathway, in B. japonicum.
Collapse
Affiliation(s)
- Cristina Sánchez
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, Bohannan BJM, Nüsslein K, Deng Y, Tiedje JM, Pellizari VH. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 2014; 23:2988-99. [PMID: 24806276 DOI: 10.1111/mec.12786] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 11/29/2022]
Abstract
Land use change in the Amazon rainforest alters the taxonomic structure of soil microbial communities, but whether it alters their functional gene composition is unknown. We used the highly parallel microarray technology GeoChip 4.0, which contains 83,992 probes specific for genes linked nutrient cycling and other processes, to evaluate how the diversity, abundance and similarity of the targeted genes responded to forest-to-pasture conversion. We also evaluated whether these parameters were reestablished with secondary forest growth. A spatially nested scheme was employed to sample a primary forest, two pastures (6 and 38 years old) and a secondary forest. Both pastures had significantly lower microbial functional genes richness and diversity when compared to the primary forest. Gene composition and turnover were also significantly modified with land use change. Edaphic traits associated with soil acidity, iron availability, soil texture and organic matter concentration were correlated with these gene changes. Although primary and secondary forests showed similar functional gene richness and diversity, there were differences in gene composition and turnover, suggesting that community recovery was not complete in the secondary forest. Gene association analysis revealed that response to ecosystem conversion varied significantly across functional gene groups, with genes linked to carbon and nitrogen cycling mostly altered. This study indicates that diversity and abundance of numerous environmentally important genes respond to forest-to-pasture conversion and hence have the potential to affect the related processes at an ecosystem scale.
Collapse
Affiliation(s)
- Fabiana S Paula
- Instituto Oceanografico, Universidade de Sao Paulo, 05508-120, Sao Paulo, Brazil; Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-900, Sao Paulo, Brazil; Department of Biology, University of Texas, Arlington, TX, 76019, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
66
|
Cole JK, Hutchison JR, Renslow RS, Kim YM, Chrisler WB, Engelmann HE, Dohnalkova AC, Hu D, Metz TO, Fredrickson JK, Lindemann SR. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front Microbiol 2014; 5:109. [PMID: 24778628 PMCID: PMC3985010 DOI: 10.3389/fmicb.2014.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/04/2014] [Indexed: 11/24/2022] Open
Abstract
Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities.
Collapse
Affiliation(s)
- Jessica K Cole
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Janine R Hutchison
- Chemical, Biological, and Physical Sciences Division, National Security Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Ryan S Renslow
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Young-Mo Kim
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Heather E Engelmann
- Chemical, Biological, and Physical Sciences Division, National Security Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Alice C Dohnalkova
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Dehong Hu
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Thomas O Metz
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Jim K Fredrickson
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Stephen R Lindemann
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
67
|
Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence. J Bacteriol 2013; 196:949-60. [PMID: 24363343 DOI: 10.1128/jb.01378-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium's gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum's sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production.
Collapse
|
68
|
Abstract
Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments.
Collapse
|
69
|
Luque-Almagro VM, Lyall VJ, Ferguson SJ, Roldán MD, Richardson DJ, Gates AJ. Nitrogen oxyanion-dependent dissociation of a two-component complex that regulates bacterial nitrate assimilation. J Biol Chem 2013; 288:29692-702. [PMID: 24005668 PMCID: PMC3795266 DOI: 10.1074/jbc.m113.459032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression.
Collapse
|
70
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
71
|
Heylen K, Keltjens J. Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus. Front Microbiol 2012; 3:371. [PMID: 23087684 PMCID: PMC3475470 DOI: 10.3389/fmicb.2012.00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/28/2012] [Indexed: 11/13/2022] Open
Abstract
The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581(T) and B. bataviensis LMG 21833(T). In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium.
Collapse
Affiliation(s)
- Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, University of Ghent Gent, Belgium
| | | |
Collapse
|
72
|
|