51
|
Iijima N, Yanagawa Y, Onoé K. Role of early- or late-phase activation of p38 mitogen-activated protein kinase induced by tumour necrosis factor-alpha or 2,4-dinitrochlorobenzene during maturation of murine dendritic cells. Immunology 2003; 110:322-8. [PMID: 14632659 PMCID: PMC1783058 DOI: 10.1046/j.1365-2567.2003.01746.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) are maturated by a variety of stimuli. However, the precise mechanisms underlying the maturation of DCs are not fully understood. In the present study, we analysed the effects of tumour necrosis factor-alpha (TNF-alpha) and 2,4-dinitrochlorobenzene (DNCB) on phenotypic maturation and p38 mitogen activated protein kinase (MAPK) activity, using a murine DC line. TNF-alpha markedly increased the surface expression of major histocompatibility complex (MHC) and costimulatory molecules, CD86 and CD80, on DCs. DNCB more markedly enhanced the surface expression of costimulatory molecules, but showed less stimulatory capability on MHC molecules, compared with TNF-alpha. Simultaneous treatment of DCs with TNF-alpha and DNCB showed additive enhancement of costimulatory molecule expression. TNF-alpha activated p38 MAPK in DCs only at an early time-point (15 min). In contrast, DNCB activated p38 MAPK at later time-points (3-6 hr). SB203580, a specific inhibitor of p38 MAPK, partially or markedly inhibited the phenotypic changes of DCs induced by TNF-alpha or DNCB, respectively. In addition, N-acetyl-l-cysteine, a reducing supplier, completely inhibited the DNCB-induced expression of MHC and costimulatory molecules, but not those induced by TNF-alpha. These findings demonstrate that TNF-alpha and DNCB activate the p38 MAPK pathway at an early and a late phase, respectively, and thereby induce DC maturation through different signal pathways.
Collapse
Affiliation(s)
- Norifumi Iijima
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
52
|
Choi SC, Kim KD, Kim JT, Kim JW, Yoon DY, Choe YK, Chang YS, Paik SG, Lim JS. Expression and regulation of NDRG2 (N-myc downstream regulated gene 2) during the differentiation of dendritic cells. FEBS Lett 2003; 553:413-8. [PMID: 14572661 DOI: 10.1016/s0014-5793(03)01030-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We searched for genes with expressions specific to human monocyte-derived dendritic cells (DCs) using differential display reverse transcription-polymerase chain reaction, and found that N-myc downstream regulated gene 2 (NDRG2), a member of a new family of differentiation-related genes, was expressed in DCs. While DCs derived from CD34(+) progenitor cells also showed strong NDRG2 expression, the corresponding mRNA expression was absent in other cell lines including monocytes, B cells, and NK cells. The inhibition of DC differentiation by dexamethasone or vitamin D(3) treatment down-regulated the expression of the NDRG2 gene in DCs. In addition, gene expression was induced in a myelomonocytic leukemia cell line, which is capable of differentiating into DCs in cytokine-conditioned culture. The level of NDRG2 gene expression in DCs was significantly higher than that of other members of the NDRG gene family. Finally, in contrast to the stable NDRG2 expression in CD40-stimulated DCs, the induction of DC maturation by lipopolysaccharide (LPS) resulted in the down-regulation of NDRG2 gene expression. This down-regulation is likely to be due to a modification and subsequent destabilization of NDRG2 mRNA, because co-treating with actinomycin D and LPS significantly blocked this LPS effect. Taken together, our results indicate that NDRG2 is expressed during the differentiation of DCs, and that NDRG2 gene expression is differentially regulated by maturation-inducing stimuli.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Laboratory of Cell Biology, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yuseong-gu, 305-333 Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Langerhans cells (LC) are dendritic cells of the epidermis. They are highly specialized leukocytes that serve immunogenic and tolerogenic purposes. Here, we review some aspects of LC biology, emphasizing those areas where LC are or may turn out to be special.
Collapse
Affiliation(s)
- Nikolaus Romani
- Department of Dermatology, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
54
|
Cruz MT, Duarte CB, Gonçalo M, Figueiredo A, Carvalho AP, Lopes MC. The sensitizer 2,4-dinitrofluorobenzene activates caspase-3 and induces cell death in a skin dendritic cell line. Int J Toxicol 2003; 22:43-8. [PMID: 12573948 DOI: 10.1080/10915810305069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work, a dendritic cell line derived from mouse skin (FSDC) was used, as an in vitro experimental model, to evaluate the cytotoxic effect of two chemical sensitizers, a strong sensitizer (2,4-dinitrofluorobenzene, DNFB) and a weak sensitizer (2,4-dichloronitrobenzene, DCNB). The results indicated that DNFB reduces the cellular metabolism of FSDC, as evaluated by the reduction of the tetrazolium salt, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). All the DNFB concentrations tested, ranging from 5.2 micro M to 26 micro M, significantly inhibited the MTT reduction after 1 hour of cell exposure to the sensitizer. In contrast, incubation of FSDC with the weak sensitizer DCNB had no significant effect on the MTT reduction assay. When the cells were incubated with DNFB (13 micro M), for 3 and 6 hours, morphological changes characteristics of cell death by apoptosis were observed, as assessed by propidium iodide (PI) DNA staining and annexin-V externalization analysis. These results correlate well with an increase of caspase-3-like activity after FSDC exposure to DNFB (13 micro M) for 6 hours. Together, these results indicate that apoptotic death of skin dendritic cells occurs after exposure to the sensitizer DNFB, although necrotic cell death was also observed when the cells were incubated with high concentrations of DNFB (26 micro M), or after long periods of cell exposure to the chemical DNFB (13 micro M, for 6 hours).
Collapse
|
55
|
Matsunaga T, Ishida T, Takekawa M, Nishimura S, Adachi M, Imai K. Analysis of gene expression during maturation of immature dendritic cells derived from peripheral blood monocytes. Scand J Immunol 2002; 56:593-601. [PMID: 12472671 DOI: 10.1046/j.1365-3083.2002.01179.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) are the most important antigen-presenting cells. Many recent studies have compared the function of immature DCs (iDCs) and mature DCs (mDCs), but there have been few reports of the molecular changes that occur in DCs during maturation. Here, we report on differential gene expression in iDCs generated from peripheral blood monocytes compared with mDCs. Gene expression was evaluated using the differential display method after activation of iDCs with a low concentration of lipopolysaccharide (LPS) to induce maturation. Proteasome subunit alpha type 3 (PSMA3), transcription factor EC (TFEC) isoform and BTK region clone 2f10-rpi were transiently upregulated. Tryptophanyl-tRNA synthetase and CD63 antigen were upregulated for at least 24 h. Neuronal apoptosis inhibitory protein (NAIP) and transforming growth factor-beta-induced 68 kDa protein were downregulated. This is the first report of NAIP expression in human DCs. By comparing the expression of NAIP with that of other members of the inhibitor of apoptosis protein (IAP) family and the Bcl-2 family, only NAIP was found to be strongly expressed in iDCs before stimulation by LPS. PSMA3 was also induced in the DCs stimulated with immune complex. These findings might contribute to our understanding of DC maturation and the effectiveness of DC-based vaccines.
Collapse
Affiliation(s)
- T Matsunaga
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Kim HS, Lee JK, Yang IH, Ahn JK, Oh YI, Kim CJ, Kim YS, Lee CK. Identification of hepatitis C virus core domain inducing suppression of allostimulatory capacity of dendritic cells. Arch Pharm Res 2002; 25:364-9. [PMID: 12135111 DOI: 10.1007/bf02976640] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hepatitis C virus (HCV) is remarkably efficient at establishing chronic infection. One of the reasons for this appears to be the suppression of the accessory cell function of professional antigen presenting cells. In the present study, the immunosuppressive activity of HCV protein was examined on dendritic cells (DCs) generated from mouse bone marrow progenitor cells in vitro. We found that the DCs forced to express HCV protein have defective allostimulatory ability. DCs expressing HCV protein were phenotypically indistinguishable from normal DCs. However, they were unable to produce IL-12 effectively when stimulated with lipopolysaccharide. The functional domain of the HCV protein essential for immunosuppression was determined using a series of NH2-and C-terminal deletion mutants of HCV core protein. We found that amino acid residues residing between the 21st and the 40th residues from the NH2-terminus of HCV core protein are required for immunosuppression. These findings suggest that HCV core protein suppresses the elicitation of protective Th1 responses by the inhibition of IL-12 production by DCs.
Collapse
Affiliation(s)
- Ho Sang Kim
- Department of Pharmacy, and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Pennie WD, Kimber I. Toxicogenomics; transcript profiling and potential application to chemical allergy. Toxicol In Vitro 2002; 16:319-26. [PMID: 12020605 DOI: 10.1016/s0887-2333(02)00007-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Novel transcript profiling technologies allow simultaneous measurement of the changes in expression of many hundreds or many thousands of genes. The availability of these methods has brought about revolutionary changes in many areas of investigative biology, where analyses of patterns of gene expression, rather than of individual genes, are being employed. The application of these technologies to toxicology (toxicogenomics) offers new opportunities for both mechanistic toxicity research and predictive toxicology. Here we provide an overview of the basic approaches used in this field. The development of a series of toxicology-specific microarrays in our own laboratory is discussed, together with an example of one area of mechanistic research, chemical allergy, where we believe judicious application of toxicogenomics will make an important contribution.
Collapse
Affiliation(s)
- W D Pennie
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield SK10 4TJ, UK
| | | |
Collapse
|
58
|
Abstract
Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. Excessive production of ROS may, however, lead to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. A balance between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and adaptation to diverse growth conditions. Thioredoxin reductase (TrxR) in conjunction with thioredoxin (Trx) is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In mammals, extracellular forms of Trx also have cytokine-like effects. Mammalian TrxR has a highly reactive active site selenocysteine residue resulting in a profound reductive capacity, reducing several substrates in addition to Trx. Due to the reactivity of TrxR, the enzyme is inhibited by many clinically used electrophilic compounds including nitrosoureas, aurothioglucose, platinum compounds, and retinoic acid derivatives. The properties of TrxR in combination with the functions of Trx position this system at the core of cellular thiol redox control and antioxidant defense. In this review, we focus on the reactions of the Trx system with ROS molecules and different cellular antioxidant enzymes. We summarize the TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone (Q10). We also discuss the general cellular effects of TrxR inhibition. Dinitrohalobenzenes constitute a unique class of immunostimulatory TrxR inhibitors and we consider the immunomodulatory effects of dinitrohalobenzene compounds in view of their reactions with the Trx system.
Collapse
Affiliation(s)
- J Nordberg
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
59
|
Affiliation(s)
- D A Basketter
- SEAC Toxicology Unit, Unilever Research, Sharnbrook, Bedfordshire, UK
| | | |
Collapse
|
60
|
Kimber I, Pichowski JS, Betts CJ, Cumberbatch M, Basketter DA, Dearman RJ. Alternative approaches to the identification and characterization of chemical allergens. Toxicol In Vitro 2001; 15:307-12. [PMID: 11566554 DOI: 10.1016/s0887-2333(01)00027-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical allergy can take a variety of forms, those of greatest importance in an occupational setting being skin sensitization resulting in allergic contact dermatitis and sensitization of the respiratory tract associated with asthma and other symptoms. In both cases there is a need for predictive test methods that allow the accurate identification of sensitizing chemicals. Well characterized methods are available for skin sensitization testing, and although to date no tests for respiratory sensitization have been formally validated, progress has been made in defining suitable animal models. In recent years there have been significant advances in our understanding of the cellular and molecular mechanisms through which allergic sensitization to chemicals is induced and regulated. Such progress provides us now with new opportunities to consider alternative approaches to sensitization testing, including the design of in vitro test methods. The greatest investment has been in exploring novel methods for the identification of contact sensitizers and it is upon this aspect of chemical allergy that this article is focused. Described here are some of the general requirements of in vitro test methods for skin sensitization, and progress that has been made in developing suitable approaches with particular emphasis on the utility of dendritic cell culture systems.
Collapse
Affiliation(s)
- I Kimber
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK.
| | | | | | | | | | | |
Collapse
|
61
|
Lee JK, Lee MK, Yun YP, Kim Y, Kim JS, Kim YS, Kim K, Han SS, Lee CK. Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int Immunopharmacol 2001; 1:1275-84. [PMID: 11460308 DOI: 10.1016/s1567-5769(01)00052-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acemannan, a major carbohydrate fraction of Aloe vera gel, has been known to have antiviral and antitumoral activities in vivo through activation of immune responses. The present study was set out to define the immunomodulatory activity of acemannan on dendritic cells (DCs), which are the most important accessory cells for the initiation of primary immune responses. Immature DCs were generated from mouse bone marrow (BM) cells by culturing in a medium supplemented with GM-CSF and IL-4, and then stimulated with acemannan, sulfated acemannan, and LPS, respectively. The resultant DCs were examined for phenotypic and functional properties. Phenotypic analysis for the expression of class II MHC molecules and major co-stimulatory molecules such as B7-1, B7-2, CD40 and CD54 confirmed that acemannan could induce maturation of immature DCs. Functional maturation of immature DCs was supported by increased allogeneic mixed lymphocyte reaction (MLR) and IL-12 production. The differentiation-inducing activity of acemannan was almost completely abolished by chemical sulfation. Based on these results, we propose that the adjuvant activity of acemannan is at least in part due to its capacity to promote differentiation of immature DCs.
Collapse
Affiliation(s)
- J K Lee
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
As the free ion and in the form of some complexes, there is no doubt that copper can promote damage to cellular molecules and structures through radical formation. At the same time, and perhaps as a consequence, mammals have evolved means of minimizing levels of free copper ions and destructive copper complexes that enter the organism and its cells. These means include tight binding of copper ions to protein carriers and transporters; direct exchange of copper between protein carriers, transporters, and cuproenzymes; and mobilization of secretory mechanisms and excretory pathways, as needed. As a consequence, normally, and except under certain genetic conditions, copper is likely to be benign to most mammals and not responsible for genomic instability, including fragmentation of and/or alterations to DNA, induction of mutations or apoptosis, or other toxic events. Indeed, cuproenzymes are important members of the antioxidant system of the organism.
Collapse
Affiliation(s)
- M C Linder
- Department of Chemistry and Biochemistry, Institute for Molecular Biology and Nutrition, California State University, 92834-6866, Fullerton, CA, USA.
| |
Collapse
|
63
|
Pichowski JS, Cumberbatch M, Dearman RJ, Basketter DA, Kimber I. Allergen-induced changes in interleukin 1 beta (IL-1 beta) mRNA expression by human blood-derived dendritic cells: inter-individual differences and relevance for sensitization testing. J Appl Toxicol 2001; 21:115-21. [PMID: 11288134 DOI: 10.1002/jat.742] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The development of in vitro methods for the identification of skin sensitizers based upon analysis of Langerhans cell (LC) function has been constrained by the fact that these cells represent only a minority population in the skin that, once isolated, alter their phenotype spontaneously and rapidly. Methods have been developed recently that allow the expansion in culture using appropriate cytokine conditions of LC-like dendritic cells (DCs) from certain tissues, including human peripheral blood. It has been demonstrated that culture of human blood-derived LC-like cells with selected potent contact allergens such as 2,4-dinitrofluorobenzene (DNFB) stimulates selective phenotypic changes, including the up-regulation of interleukin 1 beta (IL-1 beta) mRNA expression, under conditions where skin irritants are without effect. However, in our own previous investigations, we have observed that there appear to be differences between blood donors with respect to the responsiveness of DCs to DNFB-induced changes in IL-1 beta expression, differences that could compromise the utility of this approach as a screening method for contact allergens. We have therefore investigated donor variability in DC responsiveness to a panel of known human contact allergens (DNFB; paraphenylene diamine, PPD; methyl- chloroisothiazolinone/methylisothiazolinone, CMIT), to the skin irritant benzalkonium chloride and to the mitogen phorbol myristate acetate (PMA). Dendritic cells derived from all donors expressed IL-1 beta mRNA constitutively. Treatment of DCs isolated from donors with a responder phenotype to DNFB with PPD or CMIT resulted also in up-regulation of IL-1 beta mRNA expression, although such changes were always comparatively modest, generally resulting in a twofold induction compared with vehicle-treated controls. Dendritic cells derived from donors with a non-responder phenotype to DNFB failed also to respond to these additional contact allergens under conditions where the mitogen PMA caused similar increases in IL-1 beta expression to those observed for allergen-responsive donors. Benzalkonium chloride failed to provoke changes in the expression of this cytokine in any donor examined, irrespective of their responder phenotype. The temporal stability of the responder/non-responder DC phenotype was confirmed, with stable phenotypes with respect to DNFB-induced changes in IL-1 beta mRNA expression observed over a period of some 18 months. Fifty per cent (6/12) of donors tested over this period displayed a responder phenotype. These data demonstrate that chemical allergens do stimulate consistent changes in IL-1 beta mRNA expression in the proportion of donors who have a responsive phenotype, and that such responses are apparently selective for allergen using the relatively narrow range of materials assessed to date. However, the modest response to very strong contact allergens, coupled with the difficulties of responder/non-responder phenotypes, means that in its present form this approach does not lend itself to the routine assessment of skin sensitizing activity.
Collapse
Affiliation(s)
- J S Pichowski
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK
| | | | | | | | | |
Collapse
|
64
|
Abstract
The activation of dendritic cells, necessary for the initiation of primary and secondary immune responses, can be induced by endogenous danger signals - released by tissues undergoing stress, damage or abnormal death - and also by exogenous danger signals elaborated by pathogens. Some endogenous danger signals that recently have been discovered are heat-shock proteins, nucleotides, reactive oxygen intermediates, extracellular-matrix breakdown products, neuromediators and cytokines like the IFNs. We propose that allergy may be initiated by the direct damage of dendritic or other cells by toxic chemicals and allergenic proteases, and suggest that the triggering of danger signal receptors by exogenous pathogen-derived molecules may be more to the advantage of the pathogen than to the host.
Collapse
Affiliation(s)
- S Gallucci
- Ghost Laboratory, Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 111, Bethesda, MD 20892, USA.
| | | |
Collapse
|