51
|
Chauvatcharin N, Ahantarig A, Baimai V, Kittayapong P. Bacteriophage WO-B and Wolbachia in natural mosquito hosts: infection incidence, transmission mode and relative density. Mol Ecol 2006; 15:2451-61. [PMID: 16842419 DOI: 10.1111/j.1365-294x.2006.02947.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophages of Wolbachia bacteria have been proposed as a potential transformation tool for genetically modifying mosquito vectors. In this study, we report the presence of the WO-B class of Wolbachia-associated phages among natural populations of several mosquito hosts. Eighty-eight percent (22/25) of Wolbachia-infected mosquito species surveyed were found to contain WO-B phages. WO-B phage orf7 sequence analysis suggested that a single strain of WO-B phage was found in most singly (23/24) or doubly (1/1) Wolbachia-infected mosquitoes. However, the single Wolbachia strain infecting Aedes perplexus was found to harbour at least two different WO-B phages. Phylogenetic analysis suggested that horizontal transmission of WO-B phages has occurred on an evolutionary scale between the Wolbachia residing in mosquitoes. On an ecological scale, a low trend of co-transmission occurred among specific WO-B phages within Wolbachia of each mosquito species. Assessment of the density of WO-B phage by real-time quantitative polymerase chain reaction (RTQ-PCR) revealed an average relative density of 7.76 x 10(5)+/- 1.61 x 10(5) orf7 copies per individual mosquito for a single Wolbachia strain infecting mosquitoes, but a threefold higher density in the doubly Wolbachia-infected Aedes albopictus. However, the average combined density of WO-B phage(s) did not correlate with that of their Wolbachia hosts, which varied in different mosquito species. We also confirmed the presence of WO-B-like virus particles in the laboratory colony of Ae. albopictus (KLPP) morphologically, by transmission electron microscopy (TEM). The viral-like particles were detected after purification and filtration of Ae. albopictus ovary extract, suggesting that at least one WO-B-like phage is active (temperate) within the Wolbachia of this mosquito vector. Nevertheless, the idea of utilizing these bacteriophages as transformation vectors still needs more investigation and is likely to be unfeasible.
Collapse
Affiliation(s)
- N Chauvatcharin
- Center for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
52
|
Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 2006; 72:7098-110. [PMID: 16936055 PMCID: PMC1636189 DOI: 10.1128/aem.00731-06] [Citation(s) in RCA: 579] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eubacterial genus Wolbachia comprises one of the most abundant groups of obligate intracellular bacteria, and it has a host range that spans the phyla Arthropoda and Nematoda. Here we developed a multilocus sequence typing (MLST) scheme as a universal genotyping tool for Wolbachia. Internal fragments of five ubiquitous genes (gatB, coxA, hcpA, fbpA, and ftsZ) were chosen, and primers that amplified across the major Wolbachia supergroups found in arthropods, as well as other divergent lineages, were designed. A supplemental typing system using the hypervariable regions of the Wolbachia surface protein (WSP) was also developed. Thirty-seven strains belonging to supergroups A, B, D, and F obtained from singly infected hosts were characterized by using MLST and WSP. The number of alleles per MLST locus ranged from 25 to 31, and the average levels of genetic diversity among alleles were 6.5% to 9.2%. A total of 35 unique allelic profiles were found. The results confirmed that there is a high level of recombination in chromosomal genes. MLST was shown to be effective for detecting diversity among strains within a single host species, as well as for identifying closely related strains found in different arthropod hosts. Identical or similar allelic profiles were obtained for strains harbored by different insect species and causing distinct reproductive phenotypes. Strains with similar WSP sequences can have very different MLST allelic profiles and vice versa, indicating the importance of the MLST approach for strain identification. The MLST system provides a universal and unambiguous tool for strain typing, population genetics, and molecular evolutionary studies. The central database for storing and organizing Wolbachia bacterial and host information can be accessed at http://pubmlst.org/wolbachia/.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. MICROBIAL ECOLOGY 2006; 51:294-301. [PMID: 16598632 DOI: 10.1007/s00248-006-9036-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 05/08/2023]
Abstract
Phylogenetic studies have implicated frequent horizontal transmission of Wolbachia among arthropod host lineages. However, the ecological routes for such lateral transfer are poorly known. We surveyed the species of two arthropod communities, one on pumpkin and the other on loofah plants, for Wolbachia, constructed wsp gene phylogenies of those Wolbachia strains found to infect community members, and established ecological links among infected members. Four taxonomically diverse insects in the pumpkin arthropod community contained very closely related Wolbachia wsp sequences (<1.5% divergence by Kimura-2-parameter distances). These insects, namely, the whitefly Bemisia tabaci, the planthopper Nisia nervosa, the flea beetle Phyllotreta sp., and the fleahopper Halticus minutus, were all collected from pumpkin leaves. They were ecologically linked through feeding on the same leaf substrate. Unlike other infected leaf insects, the whitefly population appeared to have a permanent breeding relationship with pumpkin plants, and high and stable, but not fixed, monthly Wolbachia infection rates. Our findings suggest potential roles for the plant in Wolbachia transmission and for whiteflies in being an infection source for other pumpkin leaf-feeding insects.
Collapse
Affiliation(s)
- S Sintupachee
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | | | | | | | | |
Collapse
|
54
|
Abstract
Lateral gene transfer and recombination play important roles in the evolution of many parasitic bacteria. Here we investigate intragenic recombination in Wolbachia bacteria, considered among the most abundant intracellular bacteria on earth. We conduct a detailed analysis of the patterns of variation and recombination within the Wolbachia surface protein, utilizing an extensive set of published and new sequences from five main supergroups of Wolbachia. Analysis of nucleotide and amino acid sequence variations confirms four hypervariable regions (HVRs), separated by regions under strong conservation. Comparison of shared polymorphisms reveals a complex mosaic structure of the gene, characterized by a clear intragenic recombining of segments among several distinct strains, whose major recombination effect is shuffling of a relatively conserved set of amino acid motifs within each of the four HVRs. Exchanges occurred both within and between the arthropod supergroups. Analyses based on phylogenetic methods and a specific recombination detection program (MAXCHI) significantly support this complex partitioning of the gene, indicating a chimeric origin of wsp. Although wsp has been widely used to define macro- and microtaxonomy among Wolbachia strains, these results clearly show that it is not suitable for this purpose. The role of wsp in bacterium-host interactions is currently unknown, but results presented here indicate that exchanges of HVR motifs are favored by natural selection. Identifying host proteins that interact with wsp variants should help reveal how these widespread bacterial parasites affect and evolve in response to the cellular environments of their invertebrate hosts.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
55
|
Markov AV, Zakharov IA. Sexual Reproduction of Insects Is Regulated by Cytoplasmic Bacteria. Russ J Dev Biol 2005. [DOI: 10.1007/s11174-005-0038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Ahrens ME, Shoemaker D. Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evol Biol 2005; 5:35. [PMID: 15927071 PMCID: PMC1175846 DOI: 10.1186/1471-2148-5-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 05/31/2005] [Indexed: 11/30/2022] Open
Abstract
Background Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta. Results Three different Wolbachia (wsp) variants occur within S. invicta, all of which are identical to previously described strains in fire ants. A comparison of the distribution of Wolbachia variants within S. invicta to a phylogeny of mtDNA haplotypes suggests S. invicta has acquired Wolbachia infections on at least three independent occasions. One common Wolbachia variant in S. invicta (wSinvictaB) is associated with two divergent mtDNA haplotype clades. Further, within each of these clades, Wolbachia-infected and uninfected individuals possess virtually identical subsets of mtDNA haplotypes, including both putative derived and ancestral mtDNA haplotypes. The same pattern also holds for wSinvictaA, where at least one and as many as three invasions into S. invicta have occurred. These data suggest that the initial invasions of Wolbachia into host ant populations may be relatively ancient and have been followed by multiple secondary losses of Wolbachia in different infected lineages over time. Finally, our data also provide additional insights into the factors responsible for previously reported variation in Wolbachia prevalence among S. invicta populations. Conclusion The history of Wolbachia infections in S. invicta is rather complex and involves multiple invasions or horizontal transmission events of Wolbachia into this species. Although these Wolbachia infections apparently have been present for relatively long time periods, these data clearly indicate that Wolbachia infections frequently have been secondarily lost within different lineages. Importantly, the uncoupled transmission of the Wolbachia and mtDNA genomes suggests that the presumed effects of Wolbachia on mtDNA evolution within S. invicta are less severe than originally predicted. Thus, the common concern that use of mtDNA markers for studying the evolutionary history of insects is confounded by maternally inherited endosymbionts such as Wolbachia may be somewhat unwarranted in the case of S. invicta.
Collapse
Affiliation(s)
- Michael E Ahrens
- Department of Entomology, 643 Russell Labs, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Dewayne Shoemaker
- Department of Entomology, 643 Russell Labs, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
57
|
Dyer KA, Jaenike J. Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 2005; 168:1443-55. [PMID: 15579697 PMCID: PMC1448788 DOI: 10.1534/genetics.104.027854] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maternally inherited microbes that spread via male-killing are common pathogens of insects, yet very little is known about the evolutionary duration of these associations. The few examples to date indicate very recent, and thus potentially transient, infections. A male-killing strain of Wolbachia has recently been discovered in natural populations of Drosophila innubila. The population-level effects of this infection are significant: approximately 35% of females are infected, infected females produce very strongly female-biased sex ratios, and the resulting population-level sex ratio is significantly female biased. Using data on infection prevalence and Wolbachia transmission rates, infected cytoplasmic lineages are estimated to experience a approximately 5% selective advantage relative to uninfected lineages. The evolutionary history of this infection was explored by surveying patterns of polymorphism in both the host and parasite genomes, comparing the Wolbachia wsp gene and the host mtDNA COI gene to five host nuclear genes. Molecular data suggest that this male-killing infection is evolutionarily old, a conclusion supported with a simple model of parasite and mtDNA transmission dynamics. Despite a large effective population size of the host species and strong selection to evolve resistance, the D. innubila-Wolbachia association is likely at a stable equilibrium that is maintained by imperfect maternal transmission of the bacteria rather than partial resistance in the host species.
Collapse
Affiliation(s)
- Kelly A Dyer
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| | | |
Collapse
|
58
|
Dedeine F, Ahrens M, Calcaterra L, Shoemaker DD. Social parasitism in fire ants (Solenopsis spp.): a potential mechanism for interspecies transfer of Wolbachia. Mol Ecol 2005; 14:1543-8. [PMID: 15813792 DOI: 10.1111/j.1365-294x.2005.02499.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One possible mechanism for interspecific transfer of Wolbachia is through the intimate contact between parasites and their hosts. We surveyed 10 species of fly parasitoids (Pseudacteon spp.) and one inquiline social parasite, Solenopsis daguerrei, for the presence and sequence identity (wsp gene) of Wolbachia. Two Wolbachia variants infecting S. daguerrei were identical to known variants infecting the two common ant host species, Solenopsis invicta and Solenopsis richteri, suggesting possible transfers of Wolbachia between this parasite and their hosts have occurred. Our data also revealed an unexpectedly high diversity of Wolbachia variants within S. daguerrei: up to eight variants were found within each individual, which, to our knowledge, is the highest reported number of Wolbachia variants infecting a single individual of any host species.
Collapse
Affiliation(s)
- Franck Dedeine
- Department of Entomology, 643 Russell Laboratories, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
59
|
Kyei-Poku GK, Colwell DD, Coghlin P, Benkel B, Floate KD. On the ubiquity and phylogeny of Wolbachia in lice. Mol Ecol 2005; 14:285-94. [PMID: 15643971 DOI: 10.1111/j.1365-294x.2004.02409.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Wolbachia are intracellular bacteria that occur in an estimated 20% of arthropod species. They are of broad interest because they profoundly affect the reproductive fitness of diverse host taxa. Here we document the apparent ubiquity and diversity of Wolbachia in the insect orders Anoplura (sucking lice) and Mallophaga (chewing lice), by detecting single or multiple infections in each of 25 tested populations of lice, representing 19 species from 15 genera spanning eight taxonomic families. Phylogenetic analyses indicate a high diversity of Wolbachia in lice, as evidenced by the identification of 39 unique strains. Some of these strains are apparently unique to lice, whereas others are similar to strains that infect other insect taxa. Wolbachia are transmitted from infected females to their offspring via egg cytoplasm, such that similar species of lice are predicted to have similar strains of Wolbachia. This predicted pattern is not supported in the current study and may reflect multiple events of recent horizontal transmission between host species. At present, there is no known mechanism that would allow for this latter mode of transmission to and within species of lice.
Collapse
Affiliation(s)
- G K Kyei-Poku
- Canadian Forest Service, Great Lakes Forest Centre, 1219 Queen Street East, Sault Ste. Marie, ON, Canada P6A 2E5
| | | | | | | | | |
Collapse
|
60
|
Behbahani A, Dutton TJ, Davies N, Townson H, Sinkins SP. Population differentiation and Wolbachia phylogeny in mosquitoes of the Aedes scutellaris group. MEDICAL AND VETERINARY ENTOMOLOGY 2005; 19:66-71. [PMID: 15752179 DOI: 10.1111/j.0269-283x.2005.00542.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mosquito species of the Aedes (Stegomyia) scutellaris (Walker) group (Diptera: Culicidae) are distributed across many islands of the South Pacific and include major regional vectors of filariasis, such as Aedes polynesiensis (Marks). Analysis of populations of Ae. polynesiensis at the extremes of its range, from Fiji and from Moorea, French Polynesia, using the rDNA ITS2 (internal transcribed spacer 2) region and six microsatellite markers showed considerable genetic differentiation between them (F(ST) = 0.298-0.357). Phylogenetic analysis of the Wolbachia endosymbionts in three members of the complex revealed that based on the wsp gene they are all very similar and belong to the Mel subgroup of the A clade, closely related to the Wolbachia strain present in the gall wasp Callyrhytis glandium (Giraud) (Hymenoptera: Cynipidae). By contrast they are only distantly related to the A-clade Wolbachia in Aedes albopictus (Skuse), a species closely allied to the Ae. scutellaris group. There was very low differentiation between the Wolbachia in the Moorea and Fiji populations of Ae. polynesiensis.
Collapse
Affiliation(s)
- A Behbahani
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | | |
Collapse
|
61
|
Abstract
Abstract 'Candidatus Cardinium', a recently described bacterium from the Bacteroidetes group, is involved in diverse reproduction alterations of its arthropod hosts, including cytoplasmic incompatibility, parthenogenesis and feminization. To estimate the incidence rate of Cardinium and explore the limits of its host range, 99 insect and mite species were screened, using primers designed to amplify a portion of Cardinium 16S ribosomal DNA (rDNA). These arthropods were also screened for the presence of the better-known reproductive manipulator, Wolbachia. Six per cent of the species screened tested positive for Cardinium, compared with 24% positive for Wolbachia. Of the 85 insects screened, Cardinium was found in four parasitic wasp species and one armoured scale insect. Of the 14 mite species examined, one predatory mite was found to carry the symbiont. A phylogenetic analysis of all known Cardinium 16S rDNA sequences shows that distantly related arthropods can harbour closely related symbionts, a pattern typical of horizontal transmission. However, closely related Cardinium were found to cluster among closely related hosts, suggesting host specialization and horizontal transmission among closely related hosts. Finally, the primers used revealed the presence of a second lineage of Bacteroidetes symbionts, not related to Cardinium, in two insect species. This second symbiont lineage is closely allied with other arthropod symbionts, such as Blattabacterium, the primary symbionts of cockroaches, and male-killing symbionts of ladybird beetles. The combined data suggest the presence of a diverse assemblage of arthropod-associated Bacteroidetes bacteria that are likely to strongly influence their hosts' biology.
Collapse
Affiliation(s)
- Einat Zchori-Fein
- Department of Vegetable Crops, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel.
| | | |
Collapse
|
62
|
Malloch G, Fenton B. Super-infections of Wolbachia in byturid beetles and evidence for genetic transfer between A and B super-groups of Wolbachia. Mol Ecol 2005; 14:627-37. [PMID: 15660951 DOI: 10.1111/j.1365-294x.2005.02432.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wolbachia are maternally inherited bacteria responsible for altering host reproduction. The two main groups found in insects, A and B, are based on molecular characterization using ribosomal, ftsZ, wsp (Wolbachia surface protein) or groE genes. We have used the wsp and ftsZ genes to study Wolbachia in byturid beetles. Byturus affinis contained a single copy of the ftsZ gene which grouped with A ftsZ sequences and a single copy of the wsp gene which grouped with B wsp sequences. This suggests that genetic exchange between A and B groups has occurred in the Wolbachia of this beetle. FtsZ and wsp sequences that were identical or nearly identical to those of B. affinis were found in B. tomentosus, suggesting that it also contains the same recombinant Wolbachia genotype. Most other byturids had more than one wsp sequence with at least one from the A and B groups, suggesting multiple copies of bacterial genes or multiple infections. B. ochraceus and B. unicolor both had four distinct wsp gene sequences. All the byturids had a closely related A wsp sequence and most a closely related B wsp sequence. Therefore, there appears to be an association between specific A and B wsp types.
Collapse
Affiliation(s)
- G Malloch
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK.
| | | |
Collapse
|
63
|
Reuter M, Pedersen JS, Keller L. Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity (Edinb) 2004; 94:364-9. [PMID: 15674380 DOI: 10.1038/sj.hdy.6800601] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
WOLBACHIA are maternally inherited bacteria, which are very common in arthropods and nematodes. Wolbachia infection may affect host reproduction through feminisation, parthenogenesis, male-killing, cytoplasmic incompatibility and increased fecundity. Previous studies showing discrepancies between the phylogenies of Wolbachia and its arthropod hosts indicate that infection is frequently lost, but the causes of symbiont extinction have so far remained elusive. Here, we report data showing that colonisation of new habitats is a possible mechanism leading to the loss of infection. The presence and prevalence of Wolbachia were studied in three native and eight introduced populations of the Argentine ant Linepithema humile. The screening shows that the symbiont is common in the three native L. humile populations analysed. In contrast, Wolbachia was detected in only one of the introduced populations. The loss of infection associated with colonisation of new habitats may result from drift (founder effect) or altered selection pressures in the new habitat. Furthermore, a molecular phylogeny based on sequences of the Wolbachia wsp gene indicates that L. humile has been infected by a single strain. Horizontal transmission of the symbiont may be important in ants as suggested by the sequence similarity of strains in the three genera Linepithema, Acromyrmex, and Solenopsis native from South and Central America.
Collapse
Affiliation(s)
- M Reuter
- Department of Ecology and Evolution, University of Lausanne, Bâtiment de Biologie, Lausanne CH-1015, Switzerland.
| | | | | |
Collapse
|
64
|
Tagami Y, Miura K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. INSECT MOLECULAR BIOLOGY 2004; 13:359-364. [PMID: 15271207 DOI: 10.1111/j.0962-1075.2004.00492.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wolbachia are cytoplasmically inherited bacteria that are reported to infect at least 18-30% of all insect species. Our survey of Lepidoptera indicated that 44.9% of forty-nine species and 77.8% of nine families tested positive for Wolbachia using PCR with wsp primers. Nineteen species had not been described previously as infected. In particular, although Pieris rapae, which is a common species in Japan, is infected by Wolbachia, the prevalence was very low (3.4%) and there were some localities where Wolbachia could not be detected. The probability of detection of Wolbachia depends on the number of screened individuals of P. rapae. The results indicate that the actual number of species that are positive for Wolbachia may be higher than previously reported.
Collapse
Affiliation(s)
- Y Tagami
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-hiroshima 739-8521, Japan.
| | | |
Collapse
|
65
|
Gavotte L, Vavre F, Henri H, Ravallec M, Stouthamer R, Boulétreau M. Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. INSECT MOLECULAR BIOLOGY 2004; 13:147-153. [PMID: 15056362 DOI: 10.1111/j.0962-1075.2004.00471.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The bacteriophage WO was recently characterized in Wolbachia, a strictly intracellular bacterium that causes several reproductive alterations in its arthropod hosts. To gain insights into the phage-Wolbachia relationships, we studied the phage presence among Wolbachia infecting four insect species sharing several Wolbachia strains, two Drosophila and two of their parasitoid wasps. Based on the phage sequence of ORF7, we identified five different phages in six Wolbachia strains. Among these five bacteriophages, some are specific for a given bacterial strain whereas others are not, but globally phage infection appears stable on a large geographical scale and across insect generations. Their specificity contrasts with the absence of congruence between Wolbachia and phage phylogenies, suggesting phage exchanges between different Wolbachia lineages.
Collapse
Affiliation(s)
- L Gavotte
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon I CNRS, Villeurbanne, France.
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Wolbachia are obligatory, cytoplasmatically inherited alpha-Proteobacteria which are known for infecting the reproductive tissues of many arthropods. Their prevalence in the large group of Collembola, however, is not known, except for PCR detection in the parthenogenetically reproducing species Folsomia candida (Order: Entomobryomorpha; Family: Isotomidae). In this study, fluorescence in situ hybridization on microscopic sections of F. candida specimens indicated that Wolbachia-related bacteria were restricted to tissues of the ovary and brain. PCR with primers designed to detect 16S rRNA genes of Wolbachia were positive with specimens from all of five geographically independent F. candida breeding stocks and with three parthenogenetic species from another order (Poduromorpha; Family Tullbergiidae), i.e. Mesaphorura italica, M. macrochaeta and Paratullbergia callipygos. In contrast, negative results were obtained with the two sexually reproducing species, Isotoma viridis (Isotomidae) and Protaphorura fimata (Poduromorpha; Onychiuridae). The ftsZ gene of Wolbachia could be PCR-amplified from all Wolbachia-positive hosts with the exception of M. macrochaeta. The phylogenetic distances of the ftsZ and 16S rRNA gene sequences reflected the phylogenetic distances of the host organisms but the sequences of Wolbachia were relatively closely related, indicating that Wolbachia infections took place after the Collembola had diversified. Our study confirms a monophyletic branch (supergroup E) of Collembola colonizing Wolbachia and indicates that this group is a sister group of supergroup A, the latter harbouring a high diversity of host organisms within the group of insects.
Collapse
Affiliation(s)
- Alice B Czarnetzki
- Institut für Agrarökologie, Bundesforschungsanstalt für Landwirtschaft (FAL), Bundesallee 50, 38116 Braunschweig, Germany
| | | |
Collapse
|
67
|
Rasgon JL, Scott TW. Wolbachia and Cytoplasmic Incompatibility in the CaliforniaCulex pipiensMosquito Species Complex: Parameter Estimates and Infection Dynamics in Natural Populations. Genetics 2003; 165:2029-38. [PMID: 14704183 PMCID: PMC1462871 DOI: 10.1093/genetics/165.4.2029] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractBefore maternally inherited bacterial symbionts like Wolbachia, which cause cytoplasmic incompatibility (CI; reduced hatch rate) when infected males mate with uninfected females, can be used in a program to control vector-borne diseases it is essential to understand their dynamics of infection in natural arthropod vector populations. Our study had four goals: (1) quantify the number of Wolbachia strains circulating in the California Culex pipiens species complex, (2) investigate Wolbachia infection frequencies and distribution in natural California populations, (3) estimate the parameters that govern Wolbachia spread among Cx. pipiens under laboratory and field conditions, and (4) use these values to estimate equilibrium levels and compare predicted infection prevalence levels to those observed in nature. Strain-specific PCR, wsp gene sequencing, and crossing experiments indicated that a single Wolbachia strain infects Californian Cx. pipiens. Infection frequency was near or at fixation in all populations sampled for 2 years along a >1000-km north-south transect. The combined statewide infection frequency was 99.4%. Incompatible crosses were 100% sterile under laboratory and field conditions. Sterility decreased negligibly with male age in the laboratory. Infection had no significant effect on female fecundity under laboratory or field conditions. Vertical transmission was >99% in the laboratory and ∼98.6% in the field. Using field data, models predicted that Wolbachia will spread to fixation if infection exceeds an unstable equilibrium point above 1.4%. Our estimates accurately predicted infection frequencies in natural populations. If certain technical hurdles can be overcome, our data indicate that Wolbachia can invade vector populations as part of an applied transgenic strategy for vector-borne disease reduction.
Collapse
Affiliation(s)
- Jason L Rasgon
- Department of Entomology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
68
|
Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc Biol Sci 2003; 270:2185-90. [PMID: 14561283 PMCID: PMC1691482 DOI: 10.1098/rspb.2003.2475] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertically transmitted symbionts of arthropods have been implicated in several reproductive manipulations of their hosts. These include cytoplasmic incompatibility (CI), parthenogenesis induction in haplodiploid species (PI), feminization and male killing. One symbiont lineage in the alpha-Proteobacteria, Wolbachia, is the only bacterium known to cause all of these effects, and has been thought to be unique in causing CI, in which the fecundity of uninfected females is reduced after mating with infected males. Here, we provide evidence that an undescribed symbiont in the Bacteroidetes group causes CI in a sexual population of the parasitic wasp Encarsia pergandiella. Wasps were crossed in all four possible combinations of infected and uninfected individuals. In the cross predicted to be incompatible, infected (I) males x uninfected (U) females, progeny production was severely reduced, with these females producing only 12.6% of the number of progeny in other crosses. The incompatibility observed in this haplodiploid species was the female mortality type; dissections showed that most progeny from the incompatible cross died as eggs. The 16S rDNA sequence of this symbiont is 99% identical to a parthenogenesis-inducing symbiont in other Encarsia, and 96% identical to a feminizing symbiont in haplodiploid Brevipalpus mites. Thus, this recently discovered symbiont lineage is capable of inducing three of the four principal manipulations of host reproduction known to be caused by Wolbachia.
Collapse
Affiliation(s)
- Martha S Hunter
- Department of Entomology, 410 Forbes Building, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
69
|
Gotoh T, Noda H, Hong XY. Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity (Edinb) 2003; 91:208-16. [PMID: 12939620 DOI: 10.1038/sj.hdy.6800329] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Wolbachia are a group of maternally inherited bacteria that infect a wide range of arthropods. Wolbachia infections are known to result in the expression of various abnormal reproductive phenotypes, the best known being cytoplasmic incompatibility. The first systematic survey of 42 spider mite species in Japan revealed that seven species (16.7%) were infected with Wolbachia. Wolbachia in the spider mites were grouped into three subgroups in supergroup B by phylogenetic analyses of the wsp gene. Most spider mites did not show cytoplasmic incompatibility when infected males were crossed with uninfected females. However, all infected populations of Panonychus mori and Oligonychus gotohi (five and four populations, respectively) possessed modification-positive strains of Wolbachia, and the cytoplasmic incompatibility decreased egg hatchability and female ratio of the spider mites. Thus, some Wolbachia strains cause sex ratio distortion in their hosts.
Collapse
Affiliation(s)
- T Gotoh
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.
| | | | | |
Collapse
|
70
|
|
71
|
Kittayapong P, Jamnongluk W, Thipaksorn A, Milne JR, Sindhusake C. Wolbachia infection complexity among insects in the tropical rice-field community. Mol Ecol 2003; 12:1049-60. [PMID: 12753223 DOI: 10.1046/j.1365-294x.2003.01793.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolbachia are a group of intracellular bacteria that cause reproductive alterations in their arthropod hosts. Widely discordant host and Wolbachia phylogenies indicate that horizontal transmission of these bacteria among species sometimes occurs. A likely means of horizontal transfer is through the feeding relations of organisms within communities. Feeding interactions among insects within the rice-field insect community have been well documented in the past. Here, we present the results of a polymerase chain reaction-based survey and phylogenetic analysis of Wolbachia strains in the rice-field insect community of Thailand. Our field survey indicated that 49 of 209 (23.4%) rice-field insect species were infected with Wolbachia. Of the 49 infected species, 27 were members of two feeding complexes: (i) a group of 13 hoppers preyed on by 2 mirid species and parasitized by a fly species, and (ii) 2 lepidopteran pests parasitized by 9 wasp species. Wolbachia strains found in three hoppers, Recilia dorsalis, Nephotettix malayanus and Nisia nervosa, the two mirid predators, Cyrtorhinus lividipennis and Tytthus chinensis, and the fly parasitoid, Tomosvaryella subvirescens, were all in the same Wolbachia clade. In the second complex, the two lepidopteran pests, Cnaphalocrocis medinalis and Scirpophaga incertulas, were both infected with Wolbachia from the same clade, as was the parasitoid Tropobracon schoenobii. However, none of the other infected parasitoid species in this feeding complex was infected by Wolbachia from this clade. Mean (+/- SD) genetic distance of Wolbachia wsp sequences among interacting species pairs of the hopper feeding complex (0.118 +/- 0.091 nucleotide sequence differences), but not for the other two complexes, was significantly smaller than that between noninteracting species pairs (0.162 +/- 0.079 nucleotide sequence differences). Our results suggest that some feeding complexes, such as the hopper complex described here, could be an important means by which Wolbachia spreads among species within arthropod communities.
Collapse
Affiliation(s)
- P Kittayapong
- Center for Vectors and Vector-Borne Diseases, Mahidol University, Bangkok 10400, Thailand.
| | | | | | | | | |
Collapse
|
72
|
|
73
|
Ruang-Areerate T, Kittayapong P, Baimai V, O'Neill SL. Molecular phylogeny of Wolbachia endosymbionts in Southeast Asian mosquitoes (Diptera: Culicidae) based on wsp gene sequences. JOURNAL OF MEDICAL ENTOMOLOGY 2003; 40:1-5. [PMID: 12597646 DOI: 10.1603/0022-2585-40.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and nematodes and are associated with various reproductive abnormalities in their hosts. Insect-associated Wolbachia form a monophyletic clade in the alpha-Proteobacteria and recently have been separated into two supergroups (A and B) and 19 groups. Our recent polymerase chain reaction (PCR) survey using wsp specific primers indicated that various strains of Wolbachia were present in mosquitoes collected from Southeast Asia. Here, we report the phylogenetic relationship of the Wolbachia strains found in these mosquitoes using wsp gene sequences. Our phylogenetic analysis revealed eight new Wolbachia strains, five in the A supergroup and three in the B supergroup. Most of the Wolbachia strains present in Southeast Asian mosquitoes belong to the established Mors, Con, and Pip groups.
Collapse
Affiliation(s)
- Toon Ruang-Areerate
- Center for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| | | | | | | |
Collapse
|
74
|
Mitsuhashi W, Saiki T, Wei W, Kawakita H, Sato M. Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. INSECT MOLECULAR BIOLOGY 2002; 11:577-584. [PMID: 12421415 DOI: 10.1046/j.1365-2583.2002.00368.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wolbachia is an intracellular symbiont that causes reproductive disorders in many insects. Its presence in the leafhoppers Hishimonoides sellatiformis and Hishimonus sellatus, vectors of mulberry dwarf-Phytoplasma, was confirmed by the PCR analysis of 16S rDNA, ftsZ and wsp. Sequencing of cloned PCR products revealed that two Wolbachia strains coexist in both leafhoppers. The phylogenetic analysis of wsp revealed that these strains belong in novel positions in the B-group of Wolbachia. These strains were detected by PCR and/or PCR-RFLP in all of the tested non-genital organs including salivary glands, as well as in the tested genital organs of Hishimonoides sellatiformis. In addition, Wolbachia-like organisms were observed by electron microscopy in all PCR-positive organs. We discuss the possible horizontal transmission of Wolbachia via mulberry trees.
Collapse
Affiliation(s)
- W Mitsuhashi
- Department of Insect Genetics and Evolution, National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | |
Collapse
|
75
|
Shoemaker DD, Machado CA, Molbo D, Werren JH, Windsor DM, Herre EA. The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proc Biol Sci 2002; 269:2257-67. [PMID: 12427319 PMCID: PMC1691153 DOI: 10.1098/rspb.2002.2100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We surveyed for the presence and identity of Wolbachia in 44 species of chalcid wasps associated with 18 species of Panamanian figs. We used existing detailed knowledge of the population structures of the host wasps, as well as the ecological and evolutionary relationships among them, to explore the relevance of each of these factors to Wolbachia prevalence and mode of transmission. Fifty-nine per cent of these wasp species have Wolbachia infections, the highest proportion reported for any group of insects. Further, neither the presence nor the frequency of Wolbachia within hosts was correlated with the population structure of pollinator hosts. Phylogenetic analyses of wsp sequence data from 70 individuals representing 22 wasp species show that neither the close phylogenetic relationship nor close ecological association among host species is consistently linked to close phylogenetic affinities of the Wolbachia associated with them. Moreover, no genetic variation was detected within any Wolbachia strain from a given host species. Thus, the spread of Wolbachia within host species exceeds the rate of horizontal transmission among species and both exceed the rate of mutation of the wsp gene in Wolbachia. The presence and, in some cases, high frequency of Wolbachia infections within highly inbred species indicate that the Wolbachia either directly increase host fitness or are frequently horizontally transferred within these wasp species. However, the paucity of cospeciation of Wolbachia and their wasp hosts indicates that Wolbachia do not persist within a given host lineage for long time-periods relative to speciation times.
Collapse
Affiliation(s)
- D DeWayne Shoemaker
- Department of Biological Sciences, 3149 Wood Hall, 1903 West Michigan Avenue, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Sasaki T, Kubo T, Ishikawa H. Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male killing in Ephestia kuehniella. Genetics 2002; 162:1313-9. [PMID: 12454075 PMCID: PMC1462327 DOI: 10.1093/genetics/162.3.1313] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Wolbachia is known as the causative agent of various reproductive alterations in arthropods. The almond moth Cadra cautella is doubly infected with A- and B-group Wolbachia and expresses complete cytoplasmic incompatibility (CI). The Mediterranean flour moth Ephestia kuehniella carries A-group Wolbachia and expresses partial CI. In the present study, the Wolbachia in C. cautella was transferred to E. kuehniella from which the original Wolbachia had been removed. We obtained transfected lines of three different infection states: single infection with A, single infection with B, and double infection with A and B. The doubly transfected lines and those transfected with only A produced exclusively female progeny. Two lines of evidence suggested that the sex ratio distortion was due to male killing. First, reduced egg hatch rate was observed. Second, removal of the Wolbachia from the transfected lines resulted in the recovery of a normal sex ratio of approximately 1:1. The occurrence of male killing following transfection showed that host factors influence the determination of the reproductive phenotype caused by Wolbachia. The transfected E. kuehniella males carrying exclusively B-group Wolbachia expressed partial incompatibility when crossed with the uninfected females. In addition, the transfected lines were bidirectionally incompatible with the naturally infected strain, which was the first demonstration of bidirectional CI in a lepidopteran.
Collapse
Affiliation(s)
- Tetsuhiko Sasaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Japan.
| | | | | |
Collapse
|
77
|
Jiggins FM, Bentley JK, Majerus MEN, Hurst GDD. Recent changes in phenotype and patterns of host specialization in Wolbachia bacteria. Mol Ecol 2002; 11:1275-83. [PMID: 12144650 DOI: 10.1046/j.1365-294x.2002.01532.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolbachia are a genus of bacterial symbionts that are known to manipulate the reproduction of their arthropod hosts, both by distorting the host sex ratio and by inducing cytoplasmic incompatibility. Previous work has suggested that some Wolbachia clades specialize in particular host taxa, but others are diverse. Furthermore, the frequency with which related strains change in phenotype is unknown. We have examined these issues for Wolbachia bacteria from Acraea butterflies, where different interactions are known in different host species. We found that bacteria from Acraea butterflies mostly cluster together in several different clades on the bacterial phylogeny, implying specialization of particular strains on these host taxa. We also observed that bacterial strains with different phenotypic effects on their hosts commonly shared identical gene sequences at two different loci. This suggests both that the phenotypes of the strains have changed recently between sex ratio distortion and cytoplasmic incompatibility, and that host specialization is not related to the bacterial phenotype, as suggested from previous data. We also analysed published data from other arthropod taxa, and found that the Wolbachia infections of the majority of arthropod genera tend to cluster together on the bacterial phylogeny. Therefore, we conclude that Wolbachia is most likely to move horizontally between closely related hosts, perhaps because of a combination of shared vectors for transmission and physiological specialization of the bacteria on those hosts.
Collapse
Affiliation(s)
- Francis M Jiggins
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, Department of Biology, University College London, 4 Stephenson Way, London, NW1 2HE, UK.
| | | | | | | |
Collapse
|
78
|
Ricci I, Cancrini G, Gabrielli S, D'Amelio S, Favi G. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. JOURNAL OF MEDICAL ENTOMOLOGY 2002; 39:562-567. [PMID: 12144285 DOI: 10.1603/0022-2585-39.4.562] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bacteria of the genus Wolbachia constitute a group of intracellular and maternally inherited micro-organisms that are widespread in arthropods, inducing several reproductive disorders such as cytoplasmic incompatibility in their hosts. Considering relevant biological implications related to the presence of Wolbachia in several insect orders, for example its potential role as mechanism for rapid speciation and as vehicle to drive genetic markers in wild populations of vectors of medical and veterinary interest, we carried out an extensive polymerase chain reaction survey to detect Wolbachia in several species of mosquito belonging to genera involved in the transmission of pathogens. Five species out of 26 tested have shown to be infected; for four of them this is the first evidence of the Wolbachia infection. A phylogenetic analysis was also performed, positioning the five Wolbachia strains in the phyletic subdivision B.
Collapse
Affiliation(s)
- Irene Ricci
- Dipartimento di Scienze di Sanita' Pubblica, Università di Roma La Sapienza, Italy
| | | | | | | | | |
Collapse
|
79
|
Kageyama D, Nishimura G, Hoshizaki S, Ishikawa Y. Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity (Edinb) 2002; 88:444-9. [PMID: 12180086 DOI: 10.1038/sj.hdy.6800077] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Wolbachia, which forms a group of maternally inherited bacteria in arthropods, often cause reproduction alterations in their hosts, such as cytoplasmic incompatibility, parthenogenesis, male-killing, hybrid breakdown and feminization. To date, Wolbachia-induced feminization has been reported only in isopods. Here we report that a Wolbachia strain feminizes an insect host, Ostrinia furnacalis. Among 79 wild females of O. furnacalis examined, Wolbachia infection was detected in 13 females. Twelve of the 13 infected females produced all-female progenies, and this trait was maternally inherited. Tetracycline treatment of thelygenic matrilines resulted in the production of all-male progenies. The present findings indicate that the Wolbachia infection induces feminization of genetic males in O. furnacalis. Differences in the Wolbachia-induced feminization in O. furnacalis and that in isopods are discussed along with the differences in sex determination mechanisms between insects and isopods. Phylogenetic analysis of the wsp gene sequence of Wolbachia suggests independent evolutionary origins for the Wolbachia-induced feminizations in O. furnacalis and in isopods. Our findings over 5 years suggest that the infection has been maintained at a low prevalence in the O. furnacalis population.
Collapse
Affiliation(s)
- D Kageyama
- Laboratory of Applied Entomology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
80
|
Vavre F, Fleury F, Varaldi J, Fouillet P, Boulétreau M. Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity (Edinb) 2002; 88:361-5. [PMID: 11986872 DOI: 10.1038/sj.hdy.6800063] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2001] [Accepted: 01/15/2002] [Indexed: 11/08/2022] Open
Abstract
Most cases of Wolbachia infection so far documented in haplodiploid Hymenoptera are associated with parthenogenesis induction. Only three examples of Wolbachia-mediated cytoplasmic incompatibility (CI) have been reported, resulting either in haploidisation of fertilised eggs, which develop into viable males, or in their death. To better document this variability, we studied two new Wolbachia-wasp associations involving Drosophila parasitoids. In Trichopria cf. drosophilae, individuals are infected by two different Wolbachia variants, populations are nearly totally infected, and Wolbachia induces incomplete CI resulting in death of the fertilised eggs. On the other hand, Pachycrepoideus dubius harbours only one bacterial variant, populations are polymorphic for infection, and Wolbachia has no detectable effect. These two cases show that the range of variation in Wolbachia's effects in Hymenoptera is as wide as in diploids, extending from complete CI to an undetectable effect. Cases so far studied show some parallel between the strength of incompatibility, the number of Wolbachia variants infecting each wasp, and the natural infection frequency. These empirical data support theoretical models predicting evolution of CI towards lower levels, resulting in the decline and ultimate loss of infection, and place multiple infections as being an important factor in the evolution of host-Wolbachia associations.
Collapse
Affiliation(s)
- F Vavre
- UMR CNRS 5558, Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| | | | | | | | | |
Collapse
|
81
|
Abstract
Wolbachia is a maternally inherited bacterium that may manipulate the reproduction of its arthropod hosts. In insects, it is known to lead to inviable matings, cause asexual reproduction or kill male offspring, all to its own benefit, but to the detriment of its host. In social Hymenoptera, Wolbachia occurs widely, but little is known about its fitness effects. We report on a Wolbachia infection in the wood ant Formica truncorum, and evaluate whether it influences reproductive patterns. All 33 colonies of the study population were infected, suggesting that Wolbachia infection is at, or close to, fixation. Interestingly, in colonies with fewer infected workers, significantly more sexuals are produced, indicating that Wolbachia has deleterious effects in this species. In addition, adult workers are shown to have significantly lower infection rates (45%) than worker pupae (87%) or virgin queens (94%), suggesting that workers lose their infection over life. Clearance of Wolbachia infection has, to our knowledge, never been shown in any other natural system, but we argue that it may, in this case, represent an adaptive strategy to reduce colony load. The cause of fixation requires further study, but our data strongly suggest that Wolbachia has no influence on the sex ratio in this species.
Collapse
Affiliation(s)
- T Wenseleers
- Zoological Institute, University of Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
82
|
Kondo N, Ijichi N, Shimada M, Fukatsu T. Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Mol Ecol 2002; 11:167-80. [PMID: 11856419 DOI: 10.1046/j.0962-1083.2001.01432.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prevailing triple infection with three distinct Wolbachia strains was identified in Japanese populations of the adzuki bean beetle, Callosobruchus chinensis. When a polymerase chain reaction (PCR) assay was conducted using universal primers for ftsZ and wsp, Wolbachia was detected in all the individuals examined, 288 males and 334 females from nine Japanese populations. PCR-restriction fragment length polymorphism (RFLP) analysis of cloned wsp gene fragments from single insects revealed that three types of wsp sequences coexist in the insects. Molecular phylogenetic analysis of the wsp sequences unequivocally demonstrated that C. chinensis harbours three phylogenetically distinct Wolbachia, tentatively designated as wBruCon, wBruOri and wBruAus, respectively. Diagnostic PCR analysis using specific primers demonstrated that, of 175 males and 235 females from nine local populations, infection frequencies with wBruCon, wBruOri and wBruAus were 100%, 96.3% and 97.0%, respectively. As for the infection status of individuals, triple infection (93.7%) dominated over double infection (6.1%) and single infection (0.2%). The amounts of wBruCon, wBruOri and wBruAus in field-collected adult insects were analysed by using a quantitative PCR technique in terms of wsp gene copies per individual insect. Irrespective of original populations, wBruCon and wBruOri (107 -108 wsp copies/insect) were consistently greater in amount than wBruAus (106 -107 wsp copies/insect), suggesting that the population sizes of the three Wolbachia strains are controlled, although the mechanism is unknown. Mating experiments suggested that the three Wolbachia cause cytoplasmic incompatibility at different levels of intensity.
Collapse
Affiliation(s)
- Natsuko Kondo
- Department of Systems Sciences (Biology), University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
83
|
Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci U S A 2001; 98:12555-60. [PMID: 11592990 PMCID: PMC60092 DOI: 10.1073/pnas.221467498] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiotic bacterium Wolbachia pipientis has been considered unique in its ability to cause multiple reproductive anomalies in its arthropod hosts. Here we report that an undescribed bacterium is vertically transmitted and associated with thelytokous parthenogenetic reproduction in Encarsia, a genus of parasitoid wasps. Although Wolbachia was found in only one of seven parthenogenetic Encarsia populations examined, the "Encarsia bacterium" (EB) was found in the other six. Among seven sexually reproducing populations screened, EB was present in one, and none harbored Wolbachia. Antibiotic treatment did not induce male production in Encarsia pergandiella but changed the oviposition behavior of females. Cured females accepted one host type at the same rate as control females but parasitized significantly fewer of the other host type. Phylogenetic analysis based on the 16S rDNA gene sequence places the EB in a unique clade within the Cytophaga-Flexibacter-Bacteroid group and shows EB is unrelated to the Proteobacteria, where Wolbachia and most other insect symbionts are found. These results imply evolution of the induction of parthenogenesis in a lineage other than Wolbachia. Importantly, these results also suggest that EB may modify the behavior of its wasp carrier in a way that enhances its transmission.
Collapse
Affiliation(s)
- E Zchori-Fein
- Department of Plant Sciences, 303 Forbes Building, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Noda H, Miyoshi T, Zhang Q, Watanabe K, Deng K, Hoshizaki S. Wolbachia infection shared among planthoppers (Homoptera: Delphacidae) and their endoparasite (Strepsiptera: Elenchidae): a probable case of interspecies transmission. Mol Ecol 2001; 10:2101-6. [PMID: 11555254 DOI: 10.1046/j.0962-1083.2001.01334.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolbachia, a group of parasitic bacteria of arthropods, are believed to be horizontally transmitted among arthropod taxa. We present a new probable example of interspecies horizontal transmission of Wolbachia by way of an endoparasite based on the conformity of Wolbachia gene sequences. Field samples of two rice planthoppers, Laodelphax striatellus and Sogatella furcifera possessed identical Wolbachia. Among three major endoparasites of planthoppers, a strepsipteran, Elenchus japonicus, harboured the identical Wolbachia strain, suggesting strepsipteran transmission of Wolbachia from one planthopper to the other. No Wolbachia was detected in a mermithid nematode Agamermis unka, and dryinid wasps possessed different types of Wolbachia.
Collapse
Affiliation(s)
- H Noda
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | |
Collapse
|
85
|
Bandi C, Trees AJ, Brattig NW. Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 2001; 98:215-38. [PMID: 11516587 DOI: 10.1016/s0304-4017(01)00432-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The presence of intracellular bacteria in the body of various species of filarial nematodes, including important parasites such as Brugia malayi, Dirofilaria immitis, and Onchocerca volvulus, was observed as early as the mid-1970s. These bacteria were shown to be transovarially transmitted (from the female worm to the offspring) and to be present in significant amounts in the body of the nematode. As highlighted by their discoverers, the potential importance of these bacteria is fairly obvious: (1) bacteria-derived molecules should be considered as having an immunological and pathological role in filarial diseases; (2) the interaction between the bacteria and the filarial host deserves investigation, in view of the possibility that the bacteria are needed by the host nematode and could thus represent a target for therapy. Other authors, independently from the discovery of these intracellular bacteria, showed that the antibiotic tetracycline (which is well known for its efficacy on intracellular bacteria) had detrimental effects on two species of filarial nematodes (Brugia pahangi and Litomosoides sigmodontis). It is therefore surprising that for more than 20 years, no further investigations focused on the bacteria of filarial nematodes, nor on the anti-filarial properties of tetracycline. Recently, the bacteria of filarial nematodes have been independently "rediscovered" by research groups from the schools of Hamburg, Liverpool and Milan. These bacteria are now classified as Wolbachia, and the basic aspects of their phylogenetic history and relationship with the Wolbachia of arthropods have been reconstructed. In addition, their implications for the pathogenesis and treatment of filarial diseases have started to be uncovered. This paper, which is authored by representatives of the three European schools who reopened this research area, reviews our present knowledge of these fascinating microorganisms, highlighting the complexity of a symbiotic system which involves, in addition to the nematode and its bacterium, the vertebrate host.
Collapse
Affiliation(s)
- C Bandi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia, Generale e Parassitologia, Università di Milano, 20133 Milan, Italy
| | | | | |
Collapse
|
86
|
Masui S, Kuroiwa H, Sasaki T, Inui M, Kuroiwa T, Ishikawa H. Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 2001; 283:1099-104. [PMID: 11355885 DOI: 10.1006/bbrc.2001.4906] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wolbachia are intracellular symbionts mainly found in arthropods, causing various sexual alterations on their hosts by unknown mechanisms. Here we report the results that strongly suggest that Wolbachia have virus-like particles of phage WO, which was previously identified as a prophage-like element in the Wolbachia genome. Wolbachia (strain wTai) infection in an insect was detected with the antibody against Wsp, an outer surface protein of Wolbachia, by fluorescence microscopy and immunoelectron-microscopy for the first time. Virus-like particles in Wolbachia were observed by electron-microscopy. The 0.22-microm filtrate of insect ovary contained DAPI-positive particles, and PCR analysis demonstrated that a phage WO DNA passed through the filter while Wolbachia DNA were eliminated, suggesting that the DAPI-positive particles were phage WO.
Collapse
Affiliation(s)
- S Masui
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
87
|
Noda H, Koizumi Y, Zhang Q, Deng K. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:727-737. [PMID: 11267910 DOI: 10.1016/s0965-1748(00)00180-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wolbachia, a bacterial endosymbiote of arthropods, causes cytoplasmic incompatibility (CI) in many insect species. CI traits were studied in two planthopper species, Laodelphax striatellus and Sogatella furcifera, and Wolbachia densities in these planthopper species were calculated by quantitative PCR methods. The CI level of L. striatellus was quite high and even aged males strongly caused CI. In contrast, S. furcifera showed partial CI, and males lost their ability to cause CI with age. Wolbachia infecting these two planthopper species were the same with respect to the nucleotide sequences of Wolbachia genes, 16S rDNA, ftsZ gene, groE genes, and wsp gene. Two methods for quantitative PCR, one using a DNA sequencer and the other a real-time sequence detection system, were established to calculate the amount of Wolbachia in the planthoppers. The density of Wolbachia in S. furcifera males was quite low. The difference in CI levels between the two planthopper species seems to be due to different amounts of Wolbachia infecting males.
Collapse
Affiliation(s)
- H Noda
- National Institute of Sericultural and Entomological Science, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | |
Collapse
|
88
|
Fujii Y, Kageyama D, Hoshizaki S, Ishikawa H, Sasaki T. Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella. Proc Biol Sci 2001; 268:855-9. [PMID: 11345332 PMCID: PMC1088680 DOI: 10.1098/rspb.2001.1593] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two species of Lepidoptera, Ostrinia scapulalis and Ephestia kuehniella, harbour Wolbachia, which are maternally transmitted intracellular bacteria that often cause reproductive abnormalities in arthropods. While the infection in O. scapulalis causes conversion of genetic males into functional females (feminization), that in E. kuehniella induces cytoplasmic incompatibility. In the present study, we investigated the relative importance of host and Wolbachia factors in the differential expression of reproductive alterations in these insects. We transferred the Wolbachia harboured by O. scapulalis to E. kuehniella in which the original infection had been cured by tetracycline treatment. The transfected strain of E. kuehniella expressed a maternally inherited, female-biased sex ratio. Unexpectedly, two lines of evidence suggested that the sex ratio distortion was due to male killing. First, higher mortality of young larvae was observed. Second, the removal of the transferred Wolbachia resulted in the recovery of a 1:1 sex ratio, whereas the removal of a feminizer should result in a male-biased sex ratio among offspring. To the authors' knowledge, this is the first report that a single Wolbachia strain can cause two distinct sexual abnormalities in different hosts. Our observations highlighted the importance of host-Wolbachia interactions in determining the phenotype of reproductive alterations.
Collapse
Affiliation(s)
- Y Fujii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Japan
| | | | | | | | | |
Collapse
|
89
|
Abstract
Wolbachia are widely distributed intracellular bacteria that cause a number of reproductive alterations in their eukaryotic hosts. Such alterations include the induction of parthenogenesis, feminization, cytoplasmic incompatibility, and male killing [1-11]. These important bacteria may play a role in rapid speciation in insects [12-14], and there is growing interest in their potential uses as tools for biological control and genetic manipulation of pests and disease vectors [15-16]. Here, we show recombination in the Wolbachia outer surface protein gene (wsp) between strains of Wolbachia. In addition, we find a possible ecological context for this recombination. Evidence indicates either genetic exchange between Wolbachia in a parasitoid wasp and in the fly that it parasitizes or horizontal transfer of Wolbachia between the parasitoid and the fly, followed by a recombination event. Results have important implications for the evolution of these bacteria and the potential use of Wolbachia in biological control.
Collapse
Affiliation(s)
- J H Werren
- Biology Department, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
90
|
Moret Y, Juchault P, Rigaud T. Wolbachia endosymbiont responsible for cytoplasmic incompatibility in a terrestrial crustacean: effects in natural and foreign hosts. Heredity (Edinb) 2001; 86:325-32. [PMID: 11488969 DOI: 10.1046/j.1365-2540.2001.00831.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia bacteria are vertically transmitted endosymbionts that disturb the reproduction of many arthropods thereby enhancing their spread in host populations. Wolbachia are often responsible for changes of sex ratios in terrestrial isopods, a result of the feminization of genotypic males. Here we found that the Wolbachia hosted by Cylisticus convexus (wCc) caused unidirectional cytoplasmic incompatibility (CI), an effect commonly found in insects. To understand the diversity of Wolbachia-induced effects in isopods, wCc were experimentally transferred in a novel isopod host, Armadillidium vulgare. wCc conserved the ability to induce CI. However, Wolbachia were not transmitted to the eggs, so the capacity to restore the compatibility in crosses involving two transinfected individuals was lost. The feminizing Wolbachia hosted by A. vulgare was unable to rescue CI induced by wCc. These results showed that Wolbachia in isopods did not evolved broadly to induce feminization, and that CI and the feminizing effect are probably due to different mechanisms. In addition, wCc reduces the mating capacity of infected C. convexus males, suggesting that the bacteria might alter reproductive behaviour. The maintenance of wCc in host populations is discussed.
Collapse
Affiliation(s)
- Y Moret
- Université de Poitiers, Laboratoire de Génétique et Biologie des Populations de Crustacés, UMR CNRS 6556, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
| | | | | |
Collapse
|
91
|
Hunter MS, Woolley JB. Evolution and behavioral ecology of heteronomous aphelinid parasitoids. ANNUAL REVIEW OF ENTOMOLOGY 2001; 46:251-290. [PMID: 11112170 DOI: 10.1146/annurev.ento.46.1.251] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In almost all species of parasitic wasps in the Coccophaginae, a subfamily of Aphelinidae, males have host relationships different from females. In these "heteronomous" species, females are generally endoparasitoids of sternorrhynchous Hemiptera, such as scale insects, mealybugs, and whiteflies. In contrast, males may be hyperparasitoids, developing in or on conspecific females or other primary parasitoids. In other species, females are endoparasitoids of whiteflies, and males are primary endoparasitoids of eggs of Lepidoptera. Males and females may both be primary parasitoids on the same species of scale insect hosts, but females develop as endoparasitoids, whereas males are ectoparasitoids. Here we review these life histories, focusing on examples of sexually dimorphic host relationships, development, and morphology. Coccophagine species may be sexual or parthenogenetic; we discuss reproductive modes and the interaction of sex ratio distorters with sex-specific host relationships. Sex allocation in the species in which males are hyperparasitoids involves choices of not what sex egg to lay, but whether to accept or reject a host of a given type; study in this area is reviewed as well as research in kin discrimination and ovicide. Last, we present the current understanding of phylogenetic relationships within this lineage and discuss hypotheses for the evolutionary origin of heteronomy in the Aphelinidae.
Collapse
Affiliation(s)
- M S Hunter
- Department of Entomology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
92
|
|
93
|
Shoemaker DD, Ross KG, Keller L, Vargo EL, Werren JH. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). INSECT MOLECULAR BIOLOGY 2000; 9:661-673. [PMID: 11122476 DOI: 10.1046/j.1365-2583.2000.00233.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wolbachia are cytoplasmically inherited bacteria that induce a variety of effects with fitness consequences on host arthropods, including cytoplasmic incompatibility, parthenogenesis, male-killing and feminization. We report here the presence of Wolbachia in native South American populations of the fire ant Solenopsis invicta, but the apparent absence of the bacteria in introduced populations of this pest species in the USA. The Wolbachia strains in native S. invicta are of two divergent types (A and B), and the frequency of infection varies dramatically between geographical regions and social forms of this host. Survey data reveal that Wolbachia also are found in other native fire ant species within the Solenopsis saevissima species complex from South America, including S. richteri. This latter species also has been introduced in the USA, where it lacks Wolbachia. Sequence data reveal complete phylogenetic concordance between mtDNA haplotype in S. invicta and Wolbachia infection type (A or B). In addition, the mtDNA and associated group A Wolbachia strain in S. invicta are more closely related to the mtDNA and Wolbachia strain found in S. richteri than they are to the mtDNA and associated group B Wolbachia in S. invicta. These data are consistent with historical introgression of S. richteri cytoplasmic elements into S. invicta populations, resulting in enhanced infection and mtDNA polymorphisms in S. invicta. Wolbachia may have significant fitness effects on these hosts (either directly or by cytoplasmic incompatibility) and therefore these microbes potentially could be used in biological control programmes to suppress introduced fire ant populations.
Collapse
Affiliation(s)
- D D Shoemaker
- Department of Biological Sciences, 3149 Wood Hall, 1903 West Michigan Avenue, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| | | | | | | | | |
Collapse
|
94
|
Oh HW, Kim MG, Shin SW, Bae KS, Ahn YJ, Park HY. Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. INSECT MOLECULAR BIOLOGY 2000; 9:539-543. [PMID: 11029673 DOI: 10.1046/j.1365-2583.2000.00218.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wolbachia-like bacteria were observed in the egg cells of golden orb-weaving spider, Nephila clavata, by means of transmission electron microscopy. The bacteria exhibited the typical morphology of Wolbachia, including three enveloping membranes. Based on the amplification and sequencing of partial 16S rDNA and ftsZ gene, the bacteria were identified as Wolbachia, intracellular, transovarially inherited alpha-proteobacteria in invertebrates. Phylogenetic analysis based on 16S rDNA and ftsZ gene sequences invariably indicated that the intracellular bacteria from N. clavata belonged to group A Wolbachia, which were found only from insects. Clustering of Wolbachia from N. clavata with group A Wolbachia indicates that the bacteria were probably transferred horizontally between insects and the spider.
Collapse
Affiliation(s)
- H W Oh
- Insect Resources Laboratory, Korean Collection for Type Cultures, KoreaResearch Institute of Bioscience and Biotechnology, Yusong, Taejon, Korea
| | | | | | | | | | | |
Collapse
|
95
|
Kamoda S, Masui S, Ishikawa H, Sasaki T. Wolbachia infection and cytoplasmic incompatibility in the cricket Teleogryllus taiwanemma. J Exp Biol 2000; 203:2503-9. [PMID: 10903165 DOI: 10.1242/jeb.203.16.2503] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolbachia are cytoplasmically inherited bacteria found in many arthropods. They induce various reproductive alterations in their hosts, including cytoplasmic incompatibility, thelytokous parthenogenesis, feminization and male-killing. In this study, we examined Wolbachia infection and its effects on the host cricket Teleogryllus taiwanemma. In a phylogenetic study based on the wsp gene coding for a Wolbachia surface protein, the Wolbachia strain harboured by T. taiwanemma was clustered together with those harboured by Laodelphax striatellus, Tribolium confusum, Acraea encedon, Trichogramma deion and Adalia bipunctata. Crossing experiments using the Wolbachia-infected and uninfected strains of cricket showed that the infection is associated with the expression of unidirectional cytoplasmic incompatibility: the egg hatch rate in the incompatible cross between the infected males and uninfected females was 20.3 %. We also examined the distribution of Wolbachia within the host using polymerase chain reaction assays; they were detected in the antennae, heads, forewings, hindwings, testes, ovaries, Malpighian tubules, foot muscles and fat bodies. Quantitative polymerase chain reaction assays showed that the bacterial density was highest in the fat bodies, followed by the ovaries and testes. Wolbachia were not detected in the haemolymph or in mature spermatozoa. The spermatozoa of the infected male may be modified by the presence of Wolbachia during its development. To examine this possibility, we compared the profiles of sperm proteins between the infected and uninfected males using two-dimensional gel electrophoresis. However, no differences in the protein profiles were observed.
Collapse
Affiliation(s)
- S Kamoda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
96
|
Jeyaprakash A, Hoy MA. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. INSECT MOLECULAR BIOLOGY 2000; 9:393-405. [PMID: 10971717 DOI: 10.1046/j.1365-2583.2000.00203.x] [Citation(s) in RCA: 472] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacteria belonging to the genus Wolbachia are associated with a variety of reproductive anomalies in arthropods. Allele-specific polymerase chain reaction (= Standard PCR) routinely has been used to amplify Wolbachia DNA from arthropods. While testing the two-spotted spider mite Tetranychus urticae and other arthropods known to be infected with Wolbachia, Standard PCR frequently produced false negatives, perhaps because the DNA from the arthropod host interfered with amplification by Taq DNA polymerase. Long PCR, which uses two enzymes (Taq and Pwo), consistently amplified Wolbachia DNA and a sensitivity analysis indicated that Long PCR was approximately six orders of magnitude more sensitive than Standard PCR in amplifying plasmid DNA spiked into insect genomic DNA. A survey indicated that 76% of sixty-two arthropod species and two subspecies in thirteen orders tested positive for the Wolbachia wsp sequence by Long PCR, which is considerably higher than the rate of 16.9% obtained previously for the ftsZ sequence using Standard PCR (Werren, J.H., Windsor, D. and Gao, L. (1995a) Proc R Soc Lond B 262: 197-204). A subsample of Long PCR products from fourteen arthropod species and two subspecies were sequenced, both directly and after cloning. Two A- and eleven B-Wolbachia strains were detected and their wsp sequences displayed a maximum of 23.7% sequence divergence at this locus. Two new groups (named Fus and Ten) were identified in addition to nineteen reported earlier (Zhou, W., Rousset, F. and O'Neill, S.L. (1998) Proc R Soc Lond B 265: 1-7; van Meer, M.M.M., Witteveldt, J. and Stouthamer, R. (1999) Insect Mol Biol 8: 399-408), because they displayed more than 2.5% sequence divergence from other Wolbachia wsp sequences. PCR products from seventeen of twenty-nine (59%) arthropod species analysed could not be sequenced directly due to apparent infection by multiple Wolbachia strains. The wsp sequences cloned from two such species (Plutella xylostella and Trichoplusia ni) indicated both A- and B-Wolbachia were present in a single individual. Hence, superinfection also may be more widespread than the 1.2% incidence previously estimated.
Collapse
Affiliation(s)
- A Jeyaprakash
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
97
|
Schulenburg JH, Hurst GD, Huigens TM, van Meer MM, Jiggins FM, Majerus ME. Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Mol Biol Evol 2000; 17:584-600. [PMID: 10742050 DOI: 10.1093/oxfordjournals.molbev.a026338] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A detailed assessment of the evolution and phylogenetic utility of two genes, ftsZ and wsp, was used to investigate the origin of male-killing Wolbachia, previously isolated from the ladybird Adalia bipunctata and the butterfly Acraea encedon. The analysis included almost all available sequences of B-group Wolbachia and two outgroup taxa and showed that (1) the two gene regions differ in phylogenetic utility, (2) sequence variation is here correlated with phylogenetic information content, (3) both genes show significant rate heterogeneity between lineages, (4) increased substitution rates are associated with homoplasy in the data, (5) wsp sequences of some taxa appear to be subject to positive selection, and (6) only a limited number of clades can be inferred with confidence due to either lack of phylogenetic information or the presence of homoplasy. With respect to the evolution of male-killing, the two genes nevertheless seemed to provide unbiased information. However, they consistently produce contradictory results. Current data therefore do not permit clarification of the origin of this behavior. In addition, A. bipunctata was found to be a host to two recently diverged strains of male-killing Wolbachia that showed increased substitution rates for both genes. Moreover, the wsp gene, which codes for an outer membrane protein, was found to be subject to positive selection in these taxa. These findings were postulated to be the product of high selection pressures due to antagonistic host-symbiont interactions in this ladybird species. In conclusion, our study demonstrates that the results of a detailed phylogenetic analysis, including characterization of the limitations of such an approach, can serve as a valuable basis for an understanding of the evolution of Wolbachia bacteria. Moreover, particular features of gene evolution, such as elevated substitution rates or the presence of positive selection, may provide information about the dynamics of Wolbachia-host associations.
Collapse
Affiliation(s)
- J H Schulenburg
- Department of Genetics, University of Cambridge, Cambridge, England
| | | | | | | | | | | |
Collapse
|