51
|
Saleh A, Lumbreras V, Lopez C, Dominguez-Puigjaner E, Kizis D, Pagès M. Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:747-57. [PMID: 16709191 DOI: 10.1111/j.1365-313x.2006.02742.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The maize dehydration-responsive element (DRE)-binding factor, DBF1, is a member of the Apetala 2/Ethylene Response Factor transcription factors family and is involved in the regulation of the ABA-responsive gene rab17 through the DRE in an ABA-dependent pathway. In this study we analysed the functionality of DBF1 in abiotic stress responses and found that Arabidopsis plants over-expressing DBF1 were more tolerant to osmotic stress than control plants. In yeast two-hybrid analyses, DBF1 interacted with DBF1-interactor protein 1 (DIP1), a protein containing a conserved R3H single-strand DNA-binding domain. Subcellular localization of DIP1 showed that the protein fusion DIP1-Red Flourescent Protein (RFP) was mainly localized in the cytoplasm. However, after co-transformation of DBF1-GFP and DIP1-RFP, both proteins co-localized in the nucleus. Interestingly, when the N-terminal DBF1-GFP was co-expressed with DIP1-RFP, both proteins co-localized predominantly in the cytoplasmic speckles observed for N-terminal DBF1-GFP fusion protein. These results clearly show in vivo interaction of DBF1 with DIP1 in the cell and that this interaction is necessary for the nuclear localization of DIP1 protein. Analysis of the regulatory effect of the DBF1 and DIP1 interaction on the maize rab17 promoter activity indicated that co-transfection of DBF1 with DIP1 enhances promoter activity in the absence of ABA treatment. We suggest that the regulated association of DBF1 and DIP1 may control the levels of target gene expression during stress conditions.
Collapse
Affiliation(s)
- Abdelaty Saleh
- Departamento de Genética Molecular, Instituto de Biología Molecular de Barcelona, IBMB, Consejo Superior de Investigaciones Científicas, CSIC, 18-26 Jordi Girona, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
52
|
Irar S, Oliveira E, Pagès M, Goday A. Towards the identification of late-embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS. Proteomics 2006; 6 Suppl 1:S175-85. [PMID: 16511814 DOI: 10.1002/pmic.200500387] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Late-embryogenesis-abundant (LEA) proteins accumulate as plant seeds desiccate and also in vegetative organs during periods of stress. They are predicted to play a role in plant stress tolerance. In the present study, we have initiated the characterization of phosphorylated LEA proteins present in the Arabidopsis seed, using a strategy that combines the thermostability (solubility upon heating) of many LEA-type proteins with the use of phosphoaffinity chromatography to obtain an enriched subpopulation of phosphoproteins. The specificity and efficiency of the procedure was assessed by alkaline phosphatase treatment and by a specific stain for phosphoproteins, in addition to the immunodetection of AtRab18, a phosphorylated LEA protein present in the mature dry seed. The phosphoproteins were identified by MS either by PMF using MALDI-TOF MS after 2-DE separation, or by peptide sequencing using both capillary LC MS/MS (LC muESI-ITMS/MS) and nanoLC coupled to nanoESI-MS/MS (LC-nanoESI-Q-TOF-MS/MS). Several LEA-type and storage-like proteins were identified as components of the phosphoproteome of the Arabidopsis seed.
Collapse
Affiliation(s)
- Sami Irar
- Laboratori de Genètica Molecular Vegetal, Institut de Biología Molecular de Barcelona, Consorci CSIC-IRTA, Barcelona, Spain
| | | | | | | |
Collapse
|
53
|
Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:237-49. [PMID: 16367967 DOI: 10.1111/j.1365-313x.2005.02603.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We isolated a dehydrin-like (DHN-like) gene fragment, PpDHNA, from the moss Physcomitrella patens by PCR amplification using degenerate primers directed against conserved amino acid segments of DHNs of higher plants. The full-length cDNA was found to encode a 59.2-kDa glycine-rich protein, DHNA, with typical characteristics of DHNs, including the presence of several Y repeats and one conserved K segment. DHNA had a high sequence similarity with a protein from Tortula ruralis, Tr288, which is thought to be involved in cellular dehydration tolerance/repair in this moss. Northern and Western analysis showed that PpDHNA is upregulated upon treatment of plants with abscisic acid, NaCl or mannitol, indicating a similar expression pattern to DHNs from higher plants. To analyze the contribution of DHNA to osmotic stress tolerance, we generated a knockout mutant (dhnA) by disruption of the gene using homologous recombination. Growth and stress response studies of the mutant showed that dhnA was severely impaired in its capacity to resume growth after salt and osmotic-stress treatments. We provide direct genetic evidence in any plant species for a DHN exerting a protective role during cellular dehydration allowing recovery when returned to optimal growth conditions.
Collapse
Affiliation(s)
- Laura Saavedra
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
54
|
Fan Z, Wang X. Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris. Mol Biol 2006. [DOI: 10.1134/s0026893306010080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Deng Z, Pang Y, Kong W, Chen Z, Wang X, Liu X, Pi Y, Sun X, Tang K. A novel ABA-dependent dehydrin ERD10 gene from Brassica napus. ACTA ACUST UNITED AC 2005; 16:28-35. [PMID: 16040344 DOI: 10.1080/10425170500040180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new dehydrin ERD10 gene was cloned and characterized from Brassica napus (designated as Bndhn ERD10). The full-length cDNA of Bndhn ERD10 was 1114 bp and contained an open reading frame of 816 bp encoding a protein of 271 amino acid residues. The deduced Bndhn ERD10 protein contained an 8-serine residue domain and two conserved repeats of the characterized lysine-rich-K-segment (KIKEKLPG). Analysis of full-length cDNA and genomic DNA indicated that there were no introns in Bndhn ERD10 gene. The promoter of Bndhn ERD10 was further obtained by genomic walking technology, and analysis of the promoter indicated that the regulation of Bndhn ERD10 was ABA-dependent. Semi-quantitative RT-PCR of different tissues in unstressed B. napus plants indicated that the transcript of Bndhn ERD10 was more abundant in leaf than in stem and root. The expression profiles of Bndhn ERD10 in B. napus seedlings under various stress conditions including cold, salt and ABA were also investigated. Upon cold, salt and ABA stresses, increased transcript accumulations of the Bndhn ERD10 mRNAs were detected in young leaves 8 h after treatment.
Collapse
Affiliation(s)
- Zhongxiang Deng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai, 200433, P.R.China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Jiang X, Wang Y. Beta-elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry 2005; 43:15567-76. [PMID: 15581369 DOI: 10.1021/bi0483965] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dehydrins are a group of proteins that are accumulated during environmental stress such as drought and low temperature or during late embryogenesis. In the present study, we isolated dehydrin DHN1, also known as Rab17 protein, from maize kernel by an acid extraction method, removed the phosphoric acid groups from phosphorylated residues by beta-elimination via treating the protein with barium hydroxide, and identified the sites of phosphorylation by tandem mass spectrometry. Our results showed that each of the seven contiguous serine residues (Ser78-Ser84) in the serine tract could be phosphorylated. The beta-elimination procedure was shown to be essential for the detection and subsequent site mapping of the heavily phosphorylated peptide by mass spectrometry. We also found that protein kinase CK2 could catalyze the phosphorylation of the DHN1 protein in vitro and the level of phosphorylation was comparable to that of the DHN1 isolated from maize seeds. Moreover, the in vitro phosphorylation also occurred on the serine residues in the serine tract region, suggesting that CK2 might be involved in the phosphorylation of the serine track region in maize kernel in vivo.
Collapse
Affiliation(s)
- Xinzhao Jiang
- Department of Chemistry, Mail Drop 027, University of California, Riverside, California 92521-0403, USA
| | | |
Collapse
|
57
|
Riccardi F, Gazeau P, Jacquemot MP, Vincent D, Zivy M. Deciphering genetic variations of proteome responses to water deficit in maize leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:1003-11. [PMID: 15707837 DOI: 10.1016/j.plaphy.2004.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 09/29/2004] [Indexed: 05/20/2023]
Abstract
The proteome of the basal part of growing Zea mays leaves was analyzed from 4 to 14 d after stopping watering and in well watered controls. The relative quantity of 46 proteins was found to increase in leaves of plants submitted to water deficit. Different types of responses were observed, some proteins showing a constant increase during water deficit, while others showed stabilization after a first increase or a transient increase. Isoforms encoded by the same gene showed different responses. The response to water deficit showed genetic variation. Some increased proteins were induced specifically in one of the two studied genotypes (e.g. ASR1) while others were significantly induced in both genotypes but to a different level or with different kinetics. Analyses of relations between protein quantities, relative water content (RWC) and abscisic acid (ABA) concentration allowed us to show that the quantitative variation of some proteins (e.g. ABA45 and OSR40 proteins) was linked to differences in ABA accumulation between the genotypes. Other proteins showed genetic variations that were not related to differences in water status or ABA concentration (e.g. a cystatin). Data obtained from these experiments, together with data from other experiments, contribute to the characterization of maize proteome response to drought in different conditions and in different genotypes. This characterization allows the search for candidate proteins, i.e. for protein whose genetic variation of expression could be partly responsible for the variability of plant responses to drought.
Collapse
Affiliation(s)
- Frédérique Riccardi
- UMR de Génétique Végétale du Moulon, Inra/CNRS/UPS/INAPG, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
58
|
Riera M, Figueras M, López C, Goday A, Pagès M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci U S A 2004; 101:9879-84. [PMID: 15159549 PMCID: PMC470767 DOI: 10.1073/pnas.0306154101] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maize abscisic acid responsive protein Rab17 is a highly phosphorylated late embryogenesis abundant protein involved in plant responses to stress. In this study, we provide evidence of the importance of Rab17 phosphorylation by protein kinase CK2 in growth-related processes under stress conditions. We show the specific interaction of Rab17 with the CK2 regulatory subunits CK2 beta-1 and CK2 beta-3, and that these interactions do not depend on the phosphorylation state of Rab17. Live-cell fluorescence imaging of both CK2 and Rab17 indicates that the intracellular dynamics of Rab17 are regulated by CK2 phosphorylation. We found both CK2 beta subunits and Rab17 distributed over the cytoplasm and nucleus. By contrast, catalytic CK2 alpha subunits and a Rab17 mutant protein (mRab17) that is not a substrate for CK2 phosphorylation remain accumulated in the nucleoli. A dual-color image shows that the CK2 holoenzyme accumulates mainly in the nucleus. The importance of Rab17 phosphorylation in vivo was assessed in transgenic plants. The overexpression of Rab17, but not mRab17, arrests the process of seed germination under osmotic stress conditions. Thus, the role of Rab17 in growth processes is mediated through its phosphorylation by protein kinase CK2.
Collapse
Affiliation(s)
- Marta Riera
- Departament de Genètica Molecular, Institut de Biologia Molecular de Barcelona, Consell Superior d' Investigacions Científiques, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
59
|
Alsheikh MK, Heyen BJ, Randall SK. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 2003; 278:40882-9. [PMID: 12917402 DOI: 10.1074/jbc.m307151200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ERD14 protein (early response to dehydration) is a member of the dehydrin family of proteins which accumulate in response to dehydration-related environmental stresses. Here we show the Arabidopsis dehydrin, ERD14, possesses ion binding properties. ERD14 is an in vitro substrate of casein kinase II; the phosphorylation resulting both in a shift in apparent molecular mass on SDS-PAGE gels and increased calcium binding activity. The phosphorylated protein bound significantly more calcium than the nonphosphorylated protein, with a dissociation constant of 120 microm and 2.86 mol of calcium bound per mol of protein. ERD14 is phosphorylated by extracts of cold-treated tissues, suggesting that the phosphorylation status of this protein might be modulated by cold-regulated kinases or phosphatases. Calcium binding properties of ERD14 purified from Arabidopsis extracts were comparable with phosphorylated Escherichia coli-expressed ERD14. Approximately 2 mol of phosphate were incorporated per mol of ERD14, indicating a minimum of two phosphorylation sites. Western blot analyses confirmed that threonine and serine are possible phosphorylation sites on ERD14. Utilizing matrix assisted laser desorption ionization-time of flight/mass spectrometry we identified five phosphorylated peptides that were present in both in vivo and in vitro phosphorylated ERD14. Our results suggest that the polyserine (S) domain is most likely the site of phosphorylation in ERD14 responsible for the activation of calcium binding.
Collapse
Affiliation(s)
- Muath K Alsheikh
- Department of Biology, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana 46202-5132, USA
| | | | | |
Collapse
|
60
|
Geisinger A, Dos Santos A, Benavente R, Wettstein R. Identification and characterization of SRSP1, a rat gene differentially expressed during spermatogenesis and coding for a serine stretch-containing protein. Cytogenet Genome Res 2003; 98:249-54. [PMID: 12826748 DOI: 10.1159/000071043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 01/22/2003] [Indexed: 11/19/2022] Open
Abstract
By means of mRNA differential display and cDNA library screening we have characterized a novel gene of the rat that is differentially expressed during spermatogenesis. Northern blot analyses showed that its mRNA reaches the highest level during the first meiotic prophase. The transcript appears to be testis-specific as it was not detectable in any of the nine other tissues tested. The full length ORF encodes a putative phosphoprotein containing a serine stretch and a bipartite nuclear localization signal, which we call Srsp1 ("serin-rich spermatogenic protein 1"). Comparison of the cDNA from SRSP1 with genomic sequences in databases allowed us to determine the number of introns; some putative regulatory sequences are proposed. This is the first report of a gene differentially expressed during spermatogenesis that codes for a protein containing a serine stretch.
Collapse
Affiliation(s)
- A Geisinger
- Facultad de Ciencias, Departamento de Biología Molecular, Unidad Asociada Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600 Montevideo, Uruguay.
| | | | | | | |
Collapse
|
61
|
Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. PLANT PHYSIOLOGY 2002; 130:675-87. [PMID: 12376635 PMCID: PMC166597 DOI: 10.1104/pp.002550] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2002] [Revised: 02/28/2002] [Accepted: 06/11/2002] [Indexed: 05/18/2023]
Abstract
A vacuole membrane-associated calcium-binding protein with an apparent mass of 45 kD was purified from celery (Apium graveolens). This protein, VCaB45, is enriched in highly vacuolate tissues and is located within the lumen of vacuoles. Antigenically related proteins are present in many dicotyledonous plants. VCaB45 contains significant amino acid identity with the dehydrin family signature motif, is antigenically related to dehydrins, and has a variety of biochemical properties similar to dehydrins. VCaB45 migrates anomalously in sodium dodecyl sulfate-polyacrylamide gel electrophoresis having an apparent molecular mass of 45 kD. The true mass as determined by matrix-assisted laser-desorption ionization time of flight was 16.45 kD. VCaB45 has two characteristic dissociation constants for calcium of 0.22 +/- 0.142 mM and 0.64 +/- 0.08 mM, and has an estimated 24.7 +/- 11.7 calcium-binding sites per protein. The calcium-binding properties of VCaB45 are modulated by phosphorylation; the phosphorylated protein binds up to 100-fold more calcium than the dephosphorylated protein. VCaB45 is an "in vitro" substrate of casein kinase II (a ubiquitous eukaryotic kinase), the phosphorylation resulting in a partial activation of calcium-binding activity. The vacuole localization, calcium binding, and phosphorylation of VCaB45 suggest potential functions.
Collapse
Affiliation(s)
- Bruce J Heyen
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA
| | | | | | | | | | | |
Collapse
|
62
|
Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC, Sopory SK. A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3193-204. [PMID: 12084059 DOI: 10.1046/j.1432-1033.2002.02994.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An immuno-homologue of maize Ca2+/calmodulin (CaM)-dependent protein kinase with a molecular mass of 72 kDa was identified in pea. The pea kinase (PsCCaMK) was upregulated in roots in response to low temperature and increased salinity. Exogenous Ca2+ application increased the kinase level and the response was faster than that obtained following stress application. Low temperature-mediated, but not salinity-mediated stress kinase increase was inhibited by the application of EGTA and W7, a CaM inhibitor. The purification of PsCCaMK using immuno-affinity chromatography resulted in coelution of the kinase with another polypeptide of molecular mass 40 kDa (p40). Western blot revealed the presence of PsCCaMK in nuclear protein extracts and was found to phosphorylate p40 in vitro. Gel mobility shift and South-Western analysis showed that p40 is a DNA-binding protein and it interacted specifically with one of the cis acting elements of the Arabidopsis CaM5 gene (AtCaM5) promoter. The binding of p40 to the specific elements in the AtCaM5 promoter was dependent of its dephosphorylated state. Our results suggest that p40 could be an upstream signal component of the stress responses.
Collapse
Affiliation(s)
- Sona Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | | | | | |
Collapse
|
63
|
Svensson J, Ismail AM, Tapio Palva E, Close TJ. Dehydrins. CELL AND MOLECULAR RESPONSE TO STRESS 2002. [DOI: 10.1016/s1568-1254(02)80013-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Svensson J, Palva ET, Welin B. Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif 2000; 20:169-78. [PMID: 11049741 DOI: 10.1006/prep.2000.1297] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we describe a novel method for purification of Arabidopsis thaliana dehydrins overproduced in Escherichia coli. The cDNAs corresponding to the four dehydrin genes RAB18, LTI29, LTI30, and COR47 were inserted into a bacterial expression vector under an isopropyl beta-d-thiogalactopyranoside (IPTG) inducible bacterial promoter. After IPTG induction all four proteins accumulated in high amounts. The recombinant proteins were efficiently purified to over 95% purity with a three-step purification scheme: heat fractionation, immobilized metal ion affinity chromatography (IMAC), and ion exchange chromatography. In this study we introduce the novel use of IMAC as an efficient purification method for native dehydrins. Characterization of the purified proteins was done by Edman degradation, mass spectrometry, reverse-phase chromatography, and analytical gel filtration under native and denaturing conditions. Yields of purified proteins were between 2.8 and 12.5 mg per liter of bacterial culture, sufficient for further biochemical studies.
Collapse
Affiliation(s)
- J Svensson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, S-750 07, Sweden.
| | | | | |
Collapse
|
65
|
Stacey MG, Kopp OR, Kim TH, von Arnim AG. Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in planta. PLANT PHYSIOLOGY 2000; 124:979-90. [PMID: 11080276 PMCID: PMC59198 DOI: 10.1104/pp.124.3.979] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 06/08/2000] [Indexed: 05/21/2023]
Abstract
The Arabidopsis COP1 protein functions as a developmental regulator, in part by repressing photomorphogenesis in darkness. Using complementation of a cop1 loss-of-function allele with transgenes expressing fusions of cop1 mutant proteins and beta-glucuronidase, it was confirmed that COP1 consists of two modules, an amino terminal module conferring a basal function during development and a carboxyl terminal module conferring repression of photomorphogenesis. The amino-terminal zinc-binding domain of COP1 was indispensable for COP1 function. In contrast, the debilitating effects of site-directed mutations in the single nuclear localization signal of COP1 were partially compensated by high-level transgene expression. The carboxyl-terminal module of COP1, though unable to substantially ameliorate a cop1 loss-of-function allele on its own, was sufficient for conferring a light-quality-dependent hyperetiolation phenotype in the presence of wild-type COP1. Moreover, partial COP1 activity could be reconstituted in vivo from two non-covalently linked, complementary polypeptides that represent the two functional modules of COP1. Evidence is presented for efficient association of the two sub-fragments of the split COP1 protein in Arabidopsis and in a yeast two-hybrid assay.
Collapse
Affiliation(s)
- M G Stacey
- Department of Botany, The University of Tennessee, Knoxville, Tennessee 37996-1100, USA
| | | | | | | |
Collapse
|
66
|
Abstract
Light exerts a great influence on gene expression, physiology and development pattern in higher plants. Protein factors involved in these processes, such as the photoreceptor, phytochrome B, a key regulatory protein, COP1, and some bZIP transcription factors have been identified and their light-regulated movement between the cytoplasm and the nucleus has been demonstrated. These findings imply that nucleocytoplasmic transport plays a crucial role in light regulation in higher plants. This review summarizes recent investigations into plant nuclear transport systems and specific cases where nucleocytoplasmic transport is subject to light regulation.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | | |
Collapse
|
67
|
Ismail AM, Hall AE, Close TJ. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. PLANT PHYSIOLOGY 1999; 120:237-44. [PMID: 10318701 PMCID: PMC59256 DOI: 10.1104/pp.120.1.237] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 01/15/1999] [Indexed: 05/18/2023]
Abstract
Dehydrins are a family of proteins (LEA [late-embryogenesis abundant] D11) commonly induced by environmental stresses associated with low temperature or dehydration and during seed maturation drying. Our previous genetic studies suggested an association of an approximately 35-kD protein (by immunological evidence a dehydrin) with chilling tolerance during emergence of seedlings of cowpea (Vigna unguiculata) line 1393-2-11. In the present study we found that the accumulation of this protein in developing cowpea seeds is coordinated with the start of the dehydration phase of embryo development. We purified this protein from dry seeds of cowpea line 1393-2-11 by using the characteristic high-temperature solubility of dehydrins as an initial enrichment step, which was followed by three chromatography steps involving cation exchange, hydrophobic interaction, and anion exchange. Various characteristics of this protein confirmed that indeed it is a dehydrin, including total amino acid composition, partial amino acid sequencing, and the adoption of alpha-helical structure in the presence of sodium dodecyl sulfate. The propensity of dehydrins to adopt alpha-helical structure in the presence of sodium dodecyl sulfate, together with the apparent polypeptide adhesion property of this cowpea dehydrin, suggests a role in stabilizing other proteins or membranes. Taken together, the genetic, physiological, and physicochemical data are at this stage consistent with a cause-and-effect relationship between the presence in mature seeds of the approximately 35-kD dehydrin, which is the product of a single member of a multigene family, and an increment of chilling tolerance during emergence of cowpea seedlings.
Collapse
Affiliation(s)
- A M Ismail
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA
| | | | | |
Collapse
|