Dietz UH, Ziegelmeier G, Bittner K, Bruckner P, Balling R. Spatio-temporal distribution of chondromodulin-I mRNA in the chicken embryo: expression during cartilage development and formation of the heart and eye.
Dev Dyn 1999;
216:233-43. [PMID:
10590475 DOI:
10.1002/(sici)1097-0177(199911)216:3<233::aid-dvdy2>3.0.co;2-g]
[Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To define genes specifically expressed in cartilage and during chondrogenesis, we compared by differential display-polymerase chain reaction (DD-PCR) the mRNA populations of differentiated sternal chondrocytes from chicken embryos with mRNA species modulated in vitro by retinoic acid (RA). Chondrocyte-specific gene expression is downregulated by RA, and PCR-amplified cDNAs from both untreated and RA-modulated cells were differentially displayed. Amplification products only from RNA of untreated chondrocytes were further analyzed, and a cDNA-fragment of the chondromodulin-I (ChM-I) mRNA was isolated. After obtaining full length cDNA clones, we have analyzed the mRNA expression patterns at different developmental stages by RNase protection assay and in situ hybridization. Analysis of different tissues and cartilage from 17-day-old chicken embryos showed ChM-I mRNA only in chondrocytes. During somitogenesis of the chicken embryo, ChM-I transcripts were detected in the notochord, the floor and the roof plate of the neural tube, and in cartilage precursor tissues such as the sclerotomes of the somites, the developing limbs, the pharyngeal arches, the otic vesicle, and the sclera. ChM-I continued to be expressed in differentiated cartilages derived from these tissues and also in noncartilaginous domains of the developing heart and retina. Thus, in the chicken, the expression of ChM-I is not restricted to mature cartilage but is already present during early development in precartilaginous tissues as well as in heart and eye.
Collapse