51
|
Schramm S, Gunesch S, Lang F, Saedtler M, Meinel L, Högger P, Decker M. Investigations into neuroprotectivity, stability, and water solubility of 7-O
-cinnamoylsilibinin, its hemisuccinate and dehydro derivatives. Arch Pharm (Weinheim) 2018; 351:e1800206. [DOI: 10.1002/ardp.201800206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Simon Schramm
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Sandra Gunesch
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Florian Lang
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Marco Saedtler
- Pharmazeutische Technologie und Biopharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Lorenz Meinel
- Pharmazeutische Technologie und Biopharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Petra Högger
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| |
Collapse
|
52
|
Lee SR, Song JH, Song JH, Ko HJ, Baek JY, Trinh TA, Beemelmanns C, Yamabe N, Kim KH. Chemical Identification of Isoflavonoids from a Termite-Associated Streptomyces sp. RB1 and Their Neuroprotective Effects in Murine Hippocampal HT22 Cell Line. Int J Mol Sci 2018; 19:ijms19092640. [PMID: 30200599 PMCID: PMC6164413 DOI: 10.3390/ijms19092640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Insect-associated bacteria have been recognized as a very promising natural resource for discovering bioactive secondary metabolites with diverse pharmacological effects. One new isoflavonoid glycoside, termisoflavone D (1), together with seven known isoflavonoids (2–8), were identified from MeOH extracts of the fungus-growing termite-associated Streptomyces sp. RB1. The chemical structure of the new compound 1 was elucidated using comprehensive spectroscopic methods including 1D and 2D NMR, along with LC/MS analysis. The existence of two rhamnose moieties in 1 was determined with comparative NMR analysis, and the absolute configuration was elucidated using chemical reactions. The neuroprotective activities of compounds 1–8 were thoroughly investigated using the murine hippocampal HT22 cell line. Compound 5 prevented glutamate-induced HT22 cell death by blocking intracellular reactive oxygen species (ROS) accumulation. The present study provides the first experimental evidence for the potential use of isoflavonoids from termite-associated bacteria as lead compounds that can prevent neuronal damage induced by glutamate.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Ji Hoon Song
- College of Medicine, University of Ulsan, Seoul 05505, Korea.
| | - Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Tuy An Trinh
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
53
|
Neuroprotective effects of Magnoliae Flos extract in mouse hippocampal neuronal cells. Sci Rep 2018; 8:9693. [PMID: 29946137 PMCID: PMC6018738 DOI: 10.1038/s41598-018-28055-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/15/2018] [Indexed: 11/08/2022] Open
Abstract
Magnoliae Flos (MF) is a traditional medicinal herb used for managing rhinitis, sinusitis and headache. The purpose of the present study was to determine the neuroprotective effect of MF against glutamate-induced oxidative stress and to assess the underlying mechanism. Glutamate is a major endogenous excitatory neurotransmitter in the brain and contributes to the development of neurodegenerative diseases by excessive activation. MF extract was subjected to a neuroprotective effect assay in HT22 mouse hippocampal cells. The mechanism underlying the neuroprotective effect of MF extract was evaluated by assaying reactive oxygen species (ROS) levels, intracellular Ca2+ levels, mitochondrial membrane potential, glutathione level and antioxidant enzyme activity in HT22 cells. MF extract significantly decreased glutamate-induced death of HT22 cells (80.83 ± 7.34% relative neuroprotection). MF extract reduced the intracellular ROS and Ca2+ levels and increased the glutathione level and glutathione reductase and glutathione peroxide activities. Moreover, MF extract attenuated the mitochondrial membrane potential in HT22 cells. These results suggested that MF extract exerts a neuroprotective effect against oxidative stress HT22 cells, which was mediated by its antioxidant activity.
Collapse
|
54
|
Song JH, Lee C, Lee D, Kim S, Bang S, Shin MS, Lee J, Kang KS, Shim SH. Neuroprotective Compound from an Endophytic Fungus, Colletotrichum sp. JS-0367. JOURNAL OF NATURAL PRODUCTS 2018; 81:1411-1416. [PMID: 29790746 DOI: 10.1021/acs.jnatprod.8b00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Colletotrichum sp. JS-0367 was isolated from Morus alba (mulberry), identified, and cultured on a large scale for chemical investigation. One new anthraquinone (1) and three known anthraquinones (2-4) were isolated and identified using spectroscopic methods including 1D/2D-NMR and HRESIMS. Although the neuroprotective effects of some anthraquinones have been reported, the biological activities of the four anthraquinones isolated in this study have not been reported. Therefore, the neuroprotective effects of these compounds were determined against murine hippocampal HT22 cell death induced by glutamate. Compound 4, evariquinone, showed strong protective effects against HT22 cell death induced by glutamate by the inhibition of intracellular ROS accumulation and Ca2+ influx triggered by glutamate. Immunoblot analysis revealed that compound 4 reduced the phosphorylation of MAPKs (JNK, ERK1/2, and p38) induced by glutamate. Furthermore, compound 4 strongly attenuated glutamate-mediated apoptotic cell death.
Collapse
Affiliation(s)
- Ji Hoon Song
- Department of Medicine , University of Ulsan College of Medicine , Seoul 05505 , South Korea
| | - Changyeol Lee
- College of Pharmacy , Duksung Women's University , Seoul 01369 , South Korea
| | - Dahae Lee
- College of Korean Medicine , Gachon University , Seongnam 13120 , South Korea
| | - Soonok Kim
- National Institute of Biological Resources , Incheon 22689 , South Korea
| | - Sunghee Bang
- College of Pharmacy , Duksung Women's University , Seoul 01369 , South Korea
| | - Myoung-Sook Shin
- College of Korean Medicine , Gachon University , Seongnam 13120 , South Korea
| | - Jun Lee
- Herbal Medicine Research Division , Korea Institute of Oriental Medicine , Daejeon 34054 , Republic of Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul 02792 , South Korea
| | - Ki Sung Kang
- College of Korean Medicine , Gachon University , Seongnam 13120 , South Korea
| | - Sang Hee Shim
- College of Pharmacy , Duksung Women's University , Seoul 01369 , South Korea
| |
Collapse
|
55
|
Lewerenz J, Ates G, Methner A, Conrad M, Maher P. Oxytosis/Ferroptosis-(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System. Front Neurosci 2018; 12:214. [PMID: 29731704 PMCID: PMC5920049 DOI: 10.3389/fnins.2018.00214] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Although nerve cell death is the hallmark of many neurological diseases, the processes underlying this death are still poorly defined. However, there is a general consensus that neuronal cell death predominantly proceeds by regulated processes. Almost 30 years ago, a cell death pathway eventually named oxytosis was described in neuronal cells that involved glutathione depletion, reactive oxygen species production, lipoxygenase activation, and calcium influx. More recently, a cell death pathway that involved many of the same steps was described in tumor cells and termed ferroptosis due to a dependence on iron. Since then there has been a great deal of discussion in the literature about whether these are two distinct pathways or cell type- and insult-dependent variations on the same pathway. In this review, we compare and contrast in detail the commonalities and distinctions between the two pathways concluding that the molecular pathways involved in the regulation of ferroptosis and oxytosis are highly similar if not identical. Thus, we suggest that oxytosis and ferroptosis should be regarded as two names for the same cell death pathway. In addition, we describe the potential physiological relevance of oxytosis/ferroptosis in multiple neurological diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Gamze Ates
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Axel Methner
- Department of Neurology, University Medical Center and Focus Program Translational Neuroscience of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
56
|
Shen GN, Liu L, Feng L, Jin Y, Jin MH, Han YH, Jin CH, Jin YZ, Lee DS, Kwon TH, Cui YD, Sun HN. Knockdown of peroxiredoxin V increases glutamate‑induced apoptosis in HT22 hippocampal neuron cells. Mol Med Rep 2018; 17:7827-7834. [PMID: 29620243 DOI: 10.3892/mmr.2018.8826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/15/2018] [Indexed: 11/06/2022] Open
Abstract
High concentrations of glutamate may mediate neuronal cell apoptosis by increasing intracellular reactive oxygen species (ROS) levels. Peroxiredoxin V (Prx V), a member of the Prx family, serves crucial roles in protecting cells from oxidative stress. The present study investigated the regulatory effect of Prx V on glutamate‑induced effects on viability and apoptosis in HT22 cells. Western blotting was used for protein expression analysis and Annexin V/PI staining and flow cytometry for determination of apoptosis. The results demonstrated that glutamate may ROS‑dependently increase HT22 cell apoptosis and upregulate Prx V protein levels. Furthermore, knockdown of Prx V protein expression with a lentivirus significantly enhanced HT22 cell apoptosis mediated by glutamate, which was reversed by inhibition of ROS with N‑acetyl‑L‑cysteine. Inhibiting the extracellular signal‑regulated kinase (ERK) signaling pathway with PD98059, a specific inhibitor for ERK phosphorylation, markedly decreased glutamate‑induced HT22 cell apoptosis in Prx V knockdown cells, indicating the potential involvement of ERK signaling in glutamate‑induced HT22 cell apoptosis. In addition, an increase in nuclear apoptosis‑inducing factor was observed in Prx V knockdown HT22 cells following glutamate treatment, compared with mock cells, whereas no differences in B‑cell lymphoma‑2 and cleaved‑caspase‑3 protein expression levels were observed between mock and Prx V knockdown cells. The results of the present study indicated that Prx V may have potential as a therapeutic molecular target for glutamate‑induced neuronal cell death and provide novel insight into the role of Prx V in oxidative‑stress induced neuronal cell death.
Collapse
Affiliation(s)
- Gui-Nan Shen
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Lei Liu
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li Feng
- Pharmaron Beijing Co., Ltd., Beijing 100176, P.R. China
| | - Yu Jin
- Laboratory of Anatomy and Histology, Yanbian University Health Science Center, Yanji, Jilin 133000, P.R. China
| | - Mei-Hua Jin
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yong-Zhe Jin
- Laboratory of Anatomy and Histology, Yanbian University Health Science Center, Yanji, Jilin 133000, P.R. China
| | - Dong-Soek Lee
- Laboratory of Molecular Neurobiology, School of Life Sciences, KNU Creative Bio Research Group (BK21 Plus Project), Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tae Ho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Jeju 63243, Republic of Korea
| | - Yu-Dong Cui
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
57
|
Schramm S, Huang G, Gunesch S, Lang F, Roa J, Högger P, Sabaté R, Maher P, Decker M. Regioselective synthesis of 7-O-esters of the flavonolignan silibinin and SARs lead to compounds with overadditive neuroprotective effects. Eur J Med Chem 2018; 146:93-107. [PMID: 29407994 DOI: 10.1016/j.ejmech.2018.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
A series of neuroprotective hybrid compounds was synthesized by conjugation of the flavonolignan silibinin with natural phenolic acids, such as ferulic, cinnamic and syringic acid. Selective 7-O-esterfication without protection groups was achieved by applying the respective acyl chlorides. Sixteen compounds were obtained and SARs were established by evaluating antioxidative properties in the physicochemical FRAP assay, as well as in a cell-based neuroprotection assay using murine hippocampal HT-22 cells. Despite weak activities in the FRAP assay, esters of the α,β-unsaturated acids showed pronounced overadditive effects at low concentrations greatly exceeding the effects of equimolar mixtures of silibinin and the respective acids in the neuroprotection assay. Cinnamic and ferulic acid esters (5a and 6a) also showed overadditive effects regarding inhibition of microglial activation, PC12 cell differentiation, in vitro ischemia as well as anti-aggregating abilities against Aβ42 peptide and τ protein. Remarkably, the esters of ferulic acid with silybin A and silybin B (11a and 11b) showed a moderate but significant difference in both neuroprotection and in their anti-aggregating capacities. The results demonstrate that non-toxic natural antioxidants can be regioselectively connected as esters with medium-term stability exhibiting very pronounced overadditive effects in a portfolio of biological assays.
Collapse
Affiliation(s)
- Simon Schramm
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Guozheng Huang
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Florian Lang
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Judit Roa
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Petra Högger
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
58
|
Hien TTT, Quang TH, Tai BH, Nhiem NX, Yen PH, Yen DTH, Cuong LCV, Kim YC, Oh H, Van Minh C, Van Kiem P. Iridoid Glycosides and Phenolic Glycosides from Buddleja asiatica with Anti-inflammatory and Cytoprotective Activities. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chemical investigation of the methanol extract of the aerial parts of Buddleja asiatica resulted in the isolation of a new iridoid glycoside, buddlejasiaside A (1) and 11 known compounds: 6- O -[α-L-(4-isoferuloyl)-rhamnopyranosylcatalpol (2), specioside (3), verminoside (4), minecoside (5), 6- O -( p -hydroxybenzoyl)-ajugol (6), 6- O -caffeoyl ajugol (7), litanthosalin 8), eurostoside (9), 10- O -caffeoylaucubin (10), phlorizin (11), and garashangin (12). Their chemical structures were identified based on the MS and NMR spectroscopic analyses and comparing with the data reported in the literature. Compounds 1, 2, and 8-10 showed the modest inhibitory effects against nitrite production in LPS-stimulated BV2 microglia, with IC50 values ranging from 43.5-79.6 μM. Compounds 6, 7, and 11 protected HT22 hippocampal cells from glutamate-induced cell death, with EC50 values of 38.9, 14.8, and 27.1 μM, respectively.
Collapse
Affiliation(s)
- Truong Thi Thu Hien
- Vietnam Military Medical University 160 Phung Hung, Phuc La, Ha Dong, Hanoi, Vietnam
| | - Tran Hong Quang
- Institute of Marine of Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine of Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine of Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Hai Yen
- Institute of Marine of Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Duong Thi Hai Yen
- Institute of Marine of Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, 321 Huynh Thuc Khang Street, Hue city
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chau Van Minh
- Institute of Marine of Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine of Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
59
|
Song JH, Shin MS, Hwang GS, Oh ST, Hwang JJ, Kang KS. Chebulinic acid attenuates glutamate-induced HT22 cell death by inhibiting oxidative stress, calcium influx and MAPKs phosphorylation. Bioorg Med Chem Lett 2017; 28:249-253. [PMID: 29317168 DOI: 10.1016/j.bmcl.2017.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
Glutamate-induced excitotoxicity and oxidative stress is a major causative factor in neuronal cell death in acute brain injuries and chronic neurodegenerative diseases. The prevention of oxidative stress is a potential therapeutic strategy. Therefore, in the present study, we aimed to examine a potential therapeutic agent and its protective mechanism against glutamate-mediated cell death. We first found that chebulinic acid isolated from extracts of the fruit of Terminalia chebula prevented glutamate-induced HT22 cell death. Chebulinic acid significantly reduced intracellular reactive oxygen species (ROS) production and Ca2+ influx induced by glutamate. We further demonstrated that chebulinic acid significantly decreased the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, and p38, as well as inhibiting pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 protein expression. Moreover, we demonstrated that chebulinic acid significantly reduced the apoptosis induced by glutamate in HT22 cells. In conclusion, our results in this study suggest that chebulinic acid is a potent protectant against glutamate-induced neuronal cell death via inhibiting ROS production, Ca2+ influx, and phosphorylation of MAPKs, as well as reducing the ratio of Bax to Bcl-2, which contribute to oxidative stress-mediated neuronal cell death.
Collapse
Affiliation(s)
- Ji Hoon Song
- Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Taek Oh
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
60
|
Song JH, Kang KS, Choi YK. Protective effect of casuarinin against glutamate-induced apoptosis in HT22 cells through inhibition of oxidative stress-mediated MAPK phosphorylation. Bioorg Med Chem Lett 2017; 27:5109-5113. [PMID: 29122481 DOI: 10.1016/j.bmcl.2017.10.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji Hoon Song
- Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| | - You-Kyung Choi
- Department of Korean International Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
61
|
Prevention of oxytosis-induced c-Raf down-regulation by (arylthio)cyclopentenone prostaglandins is neuroprotective. Toxicology 2017; 390:83-87. [PMID: 28888848 DOI: 10.1016/j.tox.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022]
Abstract
Prolonged exposure to high concentrations of glutamate leads to cell type specific glutathione depletion and resulting oxidative stress, known as oxytosis. As a result of glutathione depletion, accumulation of reactive oxygen species and Ca2+ influx are increased; however, the specific target of oxytosis has yet to be identified. In the present study, we focused on the effect of glutamate-induced oxidative stress on the extracellular-regulated protein kinase (ERK) pathway using the murine hippocampal HT22 cell line. Although the contribution of the ERK pathway to glutamate-induced oxytosis in HT22 cells is controversial, Western blot analysis revealed that glutamate caused down-regulation of mitogen-activated protein kinase kinase kinase (c-Raf) and a resulting decrease in the phosphorylation of c-Raf, as well as of mitogen-activated protein kinase kinase1/2 (MEK1/2) and ERK1/2, downstream components of the c-Raf/MEK/ERK pathway. Furthermore, neuroprotective (arylthio)cyclopentenone prostaglandins prevented glutamate-induced c-Raf down-regulation and consequently maintained the basal activity of c-Raf and its downstream signaling components. A pull-down assay using biotin-labeled cyclopentenone prostaglandins revealed that they preferentially bound to c-Raf relative to other signaling molecules of the ERK pathway, including Ras, MEK1/2, and ERK. These results suggest that neuroprotective (arylthio)cyclopentenone prostaglandins directly bind to c-Raf protein and protect cells from down-regulation of the c-Raf protein itself, resulting in neuroprotection against oxidative stress.
Collapse
|
62
|
Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca 2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium 2017; 70:47-55. [PMID: 28545724 DOI: 10.1016/j.ceca.2017.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Ca2+ ions play a fundamental role in cell death mediated by oxidative glutamate toxicity or oxytosis, a form of programmed cell death similar and possibly identical to other forms of cell death like ferroptosis. Ca2+ influx from the extracellular space occurs late in a cascade characterized by depletion of the intracellular antioxidant glutathione, increases in cytosolic reactive oxygen species and mitochondrial dysfunction. Here, we aim to compare oxidative glutamate toxicity with ferroptosis, address the signaling pathways that culminate in Ca2+ influx and cell death and discuss the proteins that mediate this. Recent evidence hints toward a role of the machinery responsible for store-operated Ca2+ entry (SOCE), which refills the endoplasmic reticulum (ER) after receptor-mediated ER Ca2+ release or other forms of store depletion. Pharmacological inhibition of SOCE or transcriptional downregulation of proteins involved in SOCE like the ER Ca2+ sensor STIM1, the plasma membrane Ca2+ channels Orai1 and TRPC1 and the linking protein Homer protects against oxidative glutamate toxicity and direct oxidative stress caused by hydrogen peroxide or 1-methyl-4-phenylpyridinium (MPP+) injury, a cellular model of Parkinson's disease. This suggests that SOCE inhibition might have some potential therapeutic effects in human disease associated with oxidative stress like neurodegenerative disorders.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Partha Narayan Dey
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Birgit Honrath
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Axel Methner
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany.
| |
Collapse
|
63
|
Ma Y, McClatchy DB, Barkallah S, Wood WW, Yates JR. HILAQ: A Novel Strategy for Newly Synthesized Protein Quantification. J Proteome Res 2017; 16:2213-2220. [PMID: 28437088 DOI: 10.1021/acs.jproteome.7b00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we describe a new strategy, HILAQ (Heavy Isotope Labeled Azidohomoalanine Quantification), to rapidly quantify the molecular vulnerability profile to oxytosis, which is an oxidative stress-induced programed cell death pathway that has been reported to be involved in aging and neurodegenerative diseases. HILAQ was able to quantify 1962 newly synthesized proteins (NSPs) after 1 h of pulse labeling in HEK293T cell line, while 353 proteins were quantified using the previously published QuaNCAT protocol. HILAQ was successfully applied to the HT22 oxytosis model. 226 proteins were found to have a two-fold change in abundance, and 108 proteins were enriched in the cell death pathway, demonstrating the utility of HT22 cells as a tool to study the molecular details of cell death involved in neurodegenerative diseases. The HILAQ strategy simplifies the analysis of newly synthesized proteomes through the use of isobaric labels and achieves higher sensitivity than previously published methods.
Collapse
Affiliation(s)
- Yuanhui Ma
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Daniel B McClatchy
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Salim Barkallah
- Cambridge Isotope Laboratories, Inc. , 50 Frontage Road, Andover, Massachusetts 01810, United States
| | - William W Wood
- Cambridge Isotope Laboratories, Inc. , 50 Frontage Road, Andover, Massachusetts 01810, United States
| | - John R Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
64
|
Xia CL, Wang N, Guo QL, Liu ZQ, Wu JQ, Huang SL, Ou TM, Tan JH, Wang HG, Li D, Huang ZS. Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer's disease treatment. Eur J Med Chem 2017; 130:139-153. [PMID: 28242549 DOI: 10.1016/j.ejmech.2017.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
A series of 2-arylethenyl-N-methylquinolinium derivatives were designed and synthesized based on our previous research of 2-arylethenylquinoline analogues as multifunctional agents for the treatment of Alzheimer's disease (AD) (Eur. J. Med. Chem. 2015, 89, 349-361). The results of in vitro biological activity evaluation, including β-amyloid (Aβ) aggregation inhibition, cholinesterase inhibition, and antioxidant activity, showed that introduction of N-methyl in quinoline ring significantly improved the anti-AD potential of compounds. The optimal compound, compound a12, dramatically attenuated the cell death of glutamate-induced HT22 cells by preventing the generation of ROS and increasing the level of GSH. Most importantly, intragastric administration of a12•HAc was well tolerated at doses up to 2000 mg/kg and could traverse blood-brain barrier.
Collapse
Affiliation(s)
- Chun-Li Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ning Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhen-Quan Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jia-Qiang Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
65
|
Lee HY, Weon JB, Ryu G, Yang WS, Kim NY, Kim MK, Ma CJ. Neuroprotective effect of Aronia melanocarpa extract against glutamate-induced oxidative stress in HT22 cells. Altern Ther Health Med 2017; 17:207. [PMID: 28399910 PMCID: PMC5387295 DOI: 10.1186/s12906-017-1716-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/01/2017] [Indexed: 11/10/2022]
Abstract
Background Glutamate (an endogenous excitatory neurotransmitter) at high concentrations contributes to the development of neurodegenerative diseases. Aronia melanocarpa (A. melanocarpa) berries contain anthocyanins and have high antioxidant activities. In this study, we evaluated whether A. melanocarpa berries could protect neuronal cells against glutamate-induced oxidative stress. Method A. melanocarpa berries exerted a protective effect against cytotoxicity in HT22 mouse hippocampal cells by MTT assay. We evaluated oxidative stress parameters including ROS level, intracellular Ca2+ level, glutathione level and antioxidant enzyme activity in HT22 cells to elucidate the mechanism of its neuroprotective effect. Results A. melanocarpa berries decreased glutamate-induced death of HT22 cells. In addition, A. melanocarpa berries reduced ROS and intracellular Ca2+ levels. Glutathione level, antioxidant enzymes, glutathione reductase and glutathione peroxide activities and mitochondrial membrane potential were also increased in HT22 cells. Conclusion These results suggested that A. melanocarpa berries protected HT22 cells by exerting an antioxidant effect.
Collapse
|
66
|
Chwastek J, Jantas D, Lasoń W. The ATM kinase inhibitor KU-55933 provides neuroprotection against hydrogen peroxide-induced cell damage via a γH2AX/p-p53/caspase-3-independent mechanism: Inhibition of calpain and cathepsin D. Int J Biochem Cell Biol 2017; 87:38-53. [PMID: 28341201 DOI: 10.1016/j.biocel.2017.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The role of the kinase ataxia-telangiectasia mutated (ATM), a well-known protein engaged in DNA damage repair, in the regulation of neuronal responses to oxidative stress remains unexplored. Thus, the neuroprotective efficacy of KU-55933, a potent inhibitor of ATM, against cell damage evoked by oxidative stress (hydrogen peroxide, H2O2) has been studied in human neuroblastoma SH-SY5Y cells and compared with the efficacy of this agent in models of doxorubicin (Dox)- and staurosporine (St)-evoked cell death. KU-55933 inhibited the cell death induced by H2O2 or Dox but not by St in undifferentiated (UN-) and retinoic acid-differentiated (RA)-SH-SY5Y cells, with a more pronounced effect in the latter cell phenotype. Furthermore, this ATM inhibitor attenuated the Dox- but not H2O2-induced caspase-3 activity in both UN- and RA-SH-SY5Y cells. Although KU-55933 inhibited the H2O2- and Dox-induced activation of ATM, it attenuated the toxin-induced phosphorylation of the proteins H2AX and p53 only in the latter model of cell damage. Moreover, the ATM inhibitor prevented the H2O2-evoked increases in calpain and cathepsin D activity and attenuated cell damage to a similar degree as inhibitors of calpain (MDL28170) and cathepsin D (pepstatin A). Finally, we confirmed the neuroprotective potential of KU-55933 against the H2O2- and Dox-evoked cell damage in primary mouse cerebellar granule cells and in the mouse hippocampal HT-22 cell line. Altogether, our results extend the neuroprotective portfolio of KU-55933 to a model of oxidative stress, with this effect not involving inhibition of the γH2AX/p-p53/caspase-3 pathway and instead associated with the attenuation of calpain and cathepsin D activity.
Collapse
Affiliation(s)
- Jakub Chwastek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland.
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
67
|
Sun XZ, Liao Y, Li W, Guo LM. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Neural Regen Res 2017; 12:953-958. [PMID: 28761429 PMCID: PMC5514871 DOI: 10.4103/1673-5374.208590] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.
Collapse
Affiliation(s)
- Xin-Zhi Sun
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ying Liao
- Department of Public Security Technology, Railway Police College, Zhengzhou, Henan Province, China.,Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Wei Li
- Department of Public Security Technology, Railway Police College, Zhengzhou, Henan Province, China
| | - Li-Mei Guo
- Department of Pathology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
68
|
Long-term pre-treatment of antioxidant Ginkgo biloba extract EGb-761 attenuates cerebral-ischemia-induced neuronal damage in aged mice. Biomed Pharmacother 2016; 85:256-263. [PMID: 27863840 DOI: 10.1016/j.biopha.2016.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Abstract
Antioxidant activity has been attributed to the neuroprotective effects of Ginkgo biloba extract EGb-761 on brain disorders including ischemic stroke. It is suggested that oxidative stress implicates in neuron injuries during aging. However, whether or not EGb-761 could be used to treat age-related cerebral ischemia is unclear. In the present study, we directly studied the protective effects of EGb-761 in brain ischemia in the mice with different age. As expected, the recovery from brain damages was impaired in aged mice (24 months) in an animal model of middle cerebral artery occlusion (MCAO). Notably, a 12-month pretreatment of EGb-761 significantly ameliorated the ischemic injury of aged mice in a dose-dependent manner. The decreased stroke severity by EGb-761 was suggested by the reduced infarct volumes and brain edema, accompanied by alleviated oxidative stress. Additionally, we further explored the potential involvement of extra-cellular signal-regulated kinase (ERK) activation by MCAO in aged mice. ERK activation after MCAO was diminished by EGb-761, and this reduction may be mediated through an upregulation of phosphatase PP2A by EGb-761. These observations collectively support that natural antioxidant EGb-761 could be potentially exploited as an effective approach in treating neurological injury during aging.
Collapse
|
69
|
Protein disulfide isomerase mediates glutathione depletion-induced cytotoxicity. Biochem Biophys Res Commun 2016; 477:495-502. [DOI: 10.1016/j.bbrc.2016.06.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022]
|
70
|
Antipova TA, Nikolaev SV, Ostrovskaya PU, Gudasheva TA, Seredenin SB. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model. Bull Exp Biol Med 2016; 161:58-60. [PMID: 27265136 DOI: 10.1007/s10517-016-3344-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 11/26/2022]
Abstract
Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.
Collapse
Affiliation(s)
- T A Antipova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S V Nikolaev
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia.
| | - P U Ostrovskaya
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T A Gudasheva
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S B Seredenin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
71
|
Abstract
Ferroptosis is a non-apoptotic form of cell death that can be triggered by small molecules or conditions that inhibit glutathione biosynthesis or the glutathione-dependent antioxidant enzyme glutathione peroxidase 4 (GPX4). This lethal process is defined by the iron-dependent accumulation of lipid reactive oxygen species and depletion of plasma membrane polyunsaturated fatty acids. Cancer cells with high level RAS-RAF-MEK pathway activity or p53 expression may be sensitized to this process. Conversely, a number of small molecule inhibitors of ferroptosis have been identified, including ferrostatin-1 and liproxstatin-1, which can block pathological cell death events in brain, kidney and other tissues. Recent work has identified a number of genes required for ferroptosis, including those involved in lipid and amino acid metabolism. Outstanding questions include the relationship between ferroptosis and other forms of cell death, and whether activation or inhibition of ferroptosis can be exploited to achieve desirable therapeutic ends.
Collapse
Affiliation(s)
- Jennifer Yinuo Cao
- Department of Biology, Stanford University, 337 Campus Dr., Stanford, CA, 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, 337 Campus Dr., Stanford, CA, 94305, USA.
| |
Collapse
|
72
|
Gartanin Protects Neurons against Glutamate-Induced Cell Death in HT22 Cells: Independence of Nrf-2 but Involvement of HO-1 and AMPK. Neurochem Res 2016; 41:2267-77. [DOI: 10.1007/s11064-016-1941-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/18/2023]
|
73
|
Yun BR, Yang HJ, Weon JB, Lee J, Eom MR, Ma CJ. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells. Pharmacogn Mag 2016; 12:109-13. [PMID: 27076746 PMCID: PMC4809164 DOI: 10.4103/0973-1296.177905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. OBJECTIVE In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. MATERIALS AND METHODS New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. CONCLUSION In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
Collapse
Affiliation(s)
- Bo-Ra Yun
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Hye Jin Yang
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Jin Bae Weon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Jiwoo Lee
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Min Rye Eom
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea; Department of Medical Biomaterials Engineering, Research Institute of Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
74
|
Novel Selective Butyrylcholinesterase Inhibitors Incorporating Antioxidant Functionalities as Potential Bimodal Therapeutics for Alzheimer's Disease. Molecules 2016; 21:440. [PMID: 27534722 PMCID: PMC6273432 DOI: 10.3390/molecules21040440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/26/2023] Open
Abstract
Isosorbide-2-carbamates-5-aryl esters are highly potent and very selective butyrylcholinesterase inhibitors. The objective of the present work was to address the hypothesis that the isosorbide-aryl-5-ester group could be replaced with an antioxidant functionality while maintaining inhibitor effects and selectivity. We successfully incorporated ferulic acid or lipoic acid groups producing potent selective inhibitors of butyrylcholinesterase (BuChE). The hybrid compounds were non-toxic to the murine hippocampal cell line HT-22 and lipoate esters were neuroprotective at 10 and 25 µM when the cells were challenged with glutamate (5 mM) in a similar manner to the positive control quercetin. The benzyl carbamate 7a was a potent inhibitor of BuChE (IC50 150 nM) and it was effective in reducing glutamate toxicity to neuronal cells at >5 µM. Representative compounds exhibited an antioxidant effect in the oxygen radical absorbance capacity assay as the lipoate 7d was not active, whereas the ferulate 8a showed a weak, but significant, activity with 0.635 ± 0.020 Trolox Equivalent.
Collapse
|
75
|
Abstract
Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new therapy to manage cerebellar disorders associated with hyperexcitatory CNS disorders like ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107-2699, USA,
| |
Collapse
|
76
|
Sawatzky E, Wehle S, Kling B, Wendrich J, Bringmann G, Sotriffer CA, Heilmann J, Decker M. Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode. J Med Chem 2016; 59:2067-82. [DOI: 10.1021/acs.jmedchem.5b01674] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Edgar Sawatzky
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sarah Wehle
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Beata Kling
- Lehrstuhl
für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jan Wendrich
- Lehrstuhl
für Organische Chemie I, Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerhard Bringmann
- Lehrstuhl
für Organische Chemie I, Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christoph A. Sotriffer
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jörg Heilmann
- Lehrstuhl
für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Michael Decker
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
77
|
Burke WF, Warnecke A, Schöner-Heinisch A, Lesinski-Schiedat A, Maier H, Lenarz T. Prevalence and audiological profiles of GJB2 mutations in a large collective of hearing impaired patients. Hear Res 2016; 333:77-86. [PMID: 26778469 DOI: 10.1016/j.heares.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/28/2022]
Abstract
Mutations in the GJB2 gene are known to represent the commonest cause of hereditary and congenital hearing loss. In this study, a complete sequencing of the GJB2 gene in a cohort of 506 patients from a single, large cochlear implant program in Europe was performed. Audiological testing for those patients who could actively participate was performed using pure tone audiometry (PTA). Those unable to undergo PTA were measured using click-auditory brainstem response (ABR). Data analysis was performed to determine genotype-phenotype correlations of the mutational status vs. audiological profiles and vs. age at the time of presentation. An overall prevalence of biallelic mutations of 13.4% was found for the total collective. When subsets of younger patients were examined, the prevalence increased to 27% of those up to age 18 and 35% of those up to age 5 at the time of testing, respectively. This increase was found to be highly significant (p < 0.001). Analysis of the mean PTA thresholds revealed a strong correlation between allele combination status and mean PTA (p = 0.021). The prevalence of simple heterozygotes was found to be approximately 10.1%, which is around 3.3 times the value expected in the general population. As GJB2 follows a recessive pattern of inheritance, the question arises as to why such a large fraction of simple heterozygotes was observed among the hearing impaired patients included in this study.
Collapse
Affiliation(s)
- W F Burke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence, Hearing4All, Germany.
| | - A Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence, Hearing4All, Germany
| | - A Schöner-Heinisch
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - H Maier
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence, Hearing4All, Germany
| | - T Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence, Hearing4All, Germany
| |
Collapse
|
78
|
Arimoto-Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun 2016; 7:10252. [PMID: 26738979 PMCID: PMC4729832 DOI: 10.1038/ncomms10252] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/20/2015] [Indexed: 12/24/2022] Open
Abstract
Cytoplasmic stress granules (SGs) are multimolecular aggregates of stalled translation pre-initiation complexes that prevent the accumulation of misfolded proteins, and that are formed in response to certain types of stress including ER stress. SG formation contributes to cell survival not only by suppressing translation but also by sequestering some apoptosis regulatory factors. Because cells can be exposed to various stresses simultaneously in vivo, the regulation of SG assembly under multiple stress conditions is important but unknown. Here we report that reactive oxygen species (ROS) such as H2O2 oxidize the SG-nucleating protein TIA1, thereby inhibiting SG assembly. Thus, when cells are confronted with a SG-inducing stress such as ER stress caused by protein misfolding, together with ROS-induced oxidative stress, they cannot form SGs, resulting in the promotion of apoptosis. We demonstrate that the suppression of SG formation by oxidative stress may underlie the neuronal cell death seen in neurodegenerative diseases. Cytoplasmic stress granules (SG) are intracellular aggregates that suppress translation and sequester apoptosis regulatory factors. Here the authors show that reactive oxygen species oxidise the SG-nucleating protein TIA1, preventing SG formation and promoting apoptosis in the presence of additional stress.
Collapse
Affiliation(s)
- Kyoko Arimoto-Matsuzaki
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
79
|
Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: Involvement of anti-oxidant signaling. Geriatr Gerontol Int 2015; 17:338-345. [PMID: 26712031 DOI: 10.1111/ggi.12699] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao Dong
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Lei Zheng
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Shujing Lu
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| | - Yanbei Yang
- Liaocheng Third People's Hospital; Liaocheng Shandong China
| |
Collapse
|
80
|
Gudasheva TA, Povarnina PY, Antipova TA, Firsova YN, Konstantinopolsky MA, Seredenin SB. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci 2015; 22:106. [PMID: 26642930 PMCID: PMC4672491 DOI: 10.1186/s12929-015-0198-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/26/2015] [Indexed: 01/13/2023] Open
Abstract
Background This study aimed at developing nerve growth factor (NGF) mimetics that selectively activate specific biological signals and, as a result, lack the side effects of the full-length protein. Two dimeric dipeptides, bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide (GK-6) and bis(N-succinyl-L-glutamyl-L-lysine) hexamethylenediamide (GK-2), were designed based on the most exposed outside fragments of NGF, namely, the loop 1 and loop 4 β-turn sequences, respectively. These dipeptides exhibited neuroprotective activity in vitro at micro-nanomolar concentrations. Results Studies on the mechanism of action revealed that both compounds elevate the level of tyrosine kinase A (TrkA) receptor phosphorylation and that they each have different postreceptor signaling patterns. GK-6 increases the levels of extracellular signal-regulated kinase (ERK) and AKT kinase phosphorylation, whereas GK-2 only increases the level of AKT phosphorylation. Apart from the neuroprotective activity, GK-6 promoted differentiation in PC12 cells, whereas GK-2 did not. Furthermore, it was established that the neuroprotective activity of GK-2 was completely abolished by a selective inhibitor of phosphatidylinositol 3-kinase (LY294002) but not by a specific inhibitor of mitogen-activated protein kinases MEK1 and MEK2 (PD98059). In vivo experiments demonstrated that GK-2 did not induce hyperalgesia, which is one of the primary adverse effects of NGF. By contrast, GK-6 produced a significant decrease in the pain threshold of rats as determined by the tail flick test. Conclusion The data obtained suggest that dimeric dipeptide NGF mimetics are promising candidates in the development of pharmacological agents with NGF-like activity that are free of the main side effect of NGF.
Collapse
Affiliation(s)
- Tatyana A Gudasheva
- Department of Medicinal Chemistry, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Polina Yu Povarnina
- Department of Medicinal Chemistry, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Tatyana A Antipova
- Laboratory of Neuroprotective Pharmacology, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Yulia N Firsova
- Department of Medicinal Chemistry, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Mark A Konstantinopolsky
- Laboratory of Pharmacological Regulation of Alcohol and Drug Addiction, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| |
Collapse
|
81
|
Lee B, Weon JB, Eom MR, Jung YS, Ma CJ. Neuroprotective compounds of Tilia amurensis. Pharmacogn Mag 2015; 11:S303-7. [PMID: 26664019 PMCID: PMC4653341 DOI: 10.4103/0973-1296.166065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/27/2014] [Accepted: 09/24/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tilia amurensis (Tiliacese) has been used for anti-tumor and anti-inflammatory in Korea, China, and Japan. OBJECTIVE In this study, we isolated five compounds from T. amurensis and determined whether protected neuronal cells against glutamate-induced oxidative stress in HT22 cells. MATERIALS AND METHODS Compounds were isolated using chromatographic techniques including silica gel, Sephadex LH-20 open column and high performance liquid chromatography analysis, and evaluated neuroprotective effect in HT22 cells by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. RESULTS β-D-fructofuranosyl α-D-glucopyranoside (1), (-)-epicatechin (2), nudiposide (3), lyoniside (4), and scopoletin (5) were isolated by bioactivity-guided fractionation from the ethyl acetate fraction of T. amurensis. Among them, (-)-epicatechin, nudiposide, lyoniside, and scopoletin had significant neuroprotective activities against glutamate-injured neurotoxicity in HT22 cells. CONCLUSION These results demonstrated that compound two, three, four, and five have a pronounced protective effect against glutamate-induced neurotoxicity in HT22 cells.
Collapse
Affiliation(s)
- Bohyung Lee
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jin Bae Weon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Min Rye Eom
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Youn Sik Jung
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
82
|
Liu YW, Zhang L, Li Y, Cheng YQ, Zhu X, Zhang F, Yin XX. Activation of mTOR signaling mediates the increased expression of AChE in high glucose condition: in vitro and in vivo evidences. Mol Neurobiol 2015; 53:4972-80. [PMID: 26374551 DOI: 10.1007/s12035-015-9425-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022]
Abstract
Acetylcholinesterase (AChE) is impaired in brain of diabetic animals, which may be one of the reasons for diabetes-associated cognitive decline. However, the mechanism is still unknown. The present study was designed to investigate whether the increased expression of AChE in central neurons under high glucose (HG) condition was due to activation of mammalian target of rapamycin (mTOR) signaling. It was found that more production of reactive oxygen species, and higher levels of phospho-Akt, phospho-mTOR, phospho-p70S6K, and AChE were detected in HT-22 cells in HG group than normal glucose group after culture for 24 h, which were all attenuated by an antioxidant N-acetyl-L-cysteine. A PI3K inhibitor LY294002 significantly decreased the levels of phospho-Akt, phospho-mTOR, phospho-p70S6K, and AChE protein expression in HG-cultured HT-22 cells, and an mTOR inhibitor rapamycin markedly reduced the levels of phospho-mTOR, phospho-p70S6K, and AChE expression. Furthermore, compared with normal rats, diabetic rats showed remarkable increases in levels of AChE activity and expression, malondialdehyde, phospho-mTOR, phospho-p70S6K, and a significant decrease in total superoxide dismutase activity in both hippocampus and cerebral cortex. However, much lower levels of phospho-mTOR, phospho-p70S6K, and AChE expression occurred in both brain regions of diabetic rats treated with rapamycin when compared with untreated ones. These results indicated that mTOR signaling was activated through the activation of PI3K/Akt pathway mediated by oxidative stress in HG-cultured HT-22 cells and diabetic rat brains, which contributed to the elevated protein expression of AChE in central neurons under the condition of HG.
Collapse
Affiliation(s)
- Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Liang Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Department of Pharmacy, the People's Hospital of Hebi, Henan, China
| | - Yu Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ya-Qin Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
83
|
Ahn SM, Kim YR, Kim HN, Shin HK, Choi BT. Beneficial Effects of Polygonum multiflorum on Hippocampal Neuronal Cells and Mouse Focal Cerebral Ischemia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:637-51. [DOI: 10.1142/s0192415x15500391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Beneficial effects of the water extract of Polygonum multiflorum (WEPM) and their mechanisms were investigated in HT22 hippocampal cells and hippocampus of middle cerebral artery occlusion (MCAO) mice. In HT22 cells against glutamate-induced oxidative stress, pretreatment with WEPM resulted in significantly reduced apoptotic neuronal death. Pretreatment with WEPM resulted in the suppression of ROS accumulation in connection with cellular Ca 2+ level after exposure to glutamate. Treatment with glutamate alone led to suppressed protein level of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB); however, pretreatment with either WEPM or anti-oxidant N-acetyl-ʟ-cysteine (NAC) resulted in the significant enhancement of levels of these proteins. In addition, levels of mature BDNF expression and CREB phosphorylation were increased by combined treatment with WEPM, NAC, and intracellular Ca 2+ inhibitor BAPTA compared to other treatment groups. In MCAO mice, we confirmed the critical role of mature BDNF expression and CREB phosphorylation by WEPM in the neurons of the hippocampus. Our results suggest that WEPM mainly exerted beneficial effects on hippocampal neurons through the suppression of ROS accumulation and up-regulation of mature BDNF expression and CREB phosphorylation.
Collapse
Affiliation(s)
- Sung Min Ahn
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| |
Collapse
|
84
|
Ahn SM, Kim YR, Kim HN, Choi YW, Lee JW, Kim CM, Baek JU, Shin HK, Choi BT. Neuroprotection and spatial memory enhancement of four herbal mixture extract in HT22 hippocampal cells and a mouse model of focal cerebral ischemia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:202. [PMID: 26122524 PMCID: PMC4486694 DOI: 10.1186/s12906-015-0741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/23/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Four traditional Korean medicinal herbs which act in retarding the aging process, Polygonum multiflorum Thunb., Rehmannia glutinosa (Gaertn) Libosch., Polygala tenuifolia Willd., and Acorus gramineus Soland., were prepared by systematic investigation of Dongeuibogam (Treasured Mirror of Eastern Medicine), published in the early 17th century in Korea. This study was performed to evaluate beneficial effects of four herbal mixture extract (PMC-12) on hippocampal neuron and spatial memory. METHODS High performance liquid chromatography (HPLC) analysis was performed for standardization of PMC-12. Cell viability, lactate dehydrogenase, flow cytometry, reactive oxygen species (ROS), and Western blot assays were performed in HT22 hippocampal cells and immunohistochemistry and behavioral tests were performed in a mouse model of focal cerebral ischemia in order to observe alterations of hippocampal cell survival and subsequent memory function. RESULTS In the HPLC analysis, PMC-12 was standardized to contain 3.09% 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, 0.35% 3',6-disinapoyl sucrose, and 0.79% catalpol. In HT22 cells, pretreatment with PMC-12 resulted in significantly reduced glutamate-induced apoptotic cell death. Pretreatment with PMC-12 also resulted in suppression of ROS accumulation in connection with cellular Ca(2+) level after exposure to glutamate. Expression levels of phosphorylated p38 mitogen-activated protein kinases (MAPK) and dephosphorylated phosphatidylinositol-3 kinase (PI3K) by glutamate exposure were recovered by pretreatment with either PMC-12 or anti-oxidant N-acetyl-L-cysteine (NAC). Expression levels of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB) were significantly enhanced by treatment with either PMC-12 or NAC. Combination treatment with PMC-12, NAC, and intracellular Ca(2+) inhibitor BAPTA showed similar expression levels. In a mouse model of focal cerebral ischemia, we observed higher expression of mature BDNF and phosphorylation of CREB in the hippocampus and further confirmed improved spatial memory by treatment with PMC-12. CONCLUSIONS Our results suggest that PMC-12 mainly exerted protective effects on hippocampal neurons through suppression of Ca(2+)-related ROS accumulation and regulation of signaling pathways of p38 MAPK and PI3K associated with mature BDNF expression and CREB phosphorylation and subsequently enhanced spatial memory.
Collapse
|
85
|
Popovic A, Wiggins T, Davids LM. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:249-56. [PMID: 26114219 DOI: 10.1016/j.jphotobiol.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/02/2015] [Accepted: 06/13/2015] [Indexed: 01/24/2023]
Abstract
Skin cancer is the most common cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (p<0.05) increase in ROS, but no significant difference in ROS levels occurred in Mc or Kc. Furthermore, 64% (p<0.005) early apoptotic Fb and 20% (p<0.05) early apoptotic Mc were evident; using fluorescence activated cell sorting (FACS), 24h post 3μM HYP-PDT. These results depict a differential response to HYP-PDT by different human skin cells thus highlighting the efficacy and indeed, the potential bystander effect of if administered in vivo. This study contributes toward our knowledge of the cellular response of the epidermis to photodynamic therapies and will possibly enhance the efficacy of future photobiological treatments.
Collapse
Affiliation(s)
- A Popovic
- Redox Laboratory, Dept Human Biology, Rm 6.02.2, Level 6, Anatomy Bldg, University of Cape Town Medical School, Anzio Rd, Observatory 7925, Cape Town, South Africa
| | - T Wiggins
- Redox Laboratory, Dept Human Biology, Rm 6.02.2, Level 6, Anatomy Bldg, University of Cape Town Medical School, Anzio Rd, Observatory 7925, Cape Town, South Africa
| | - L M Davids
- Redox Laboratory, Dept Human Biology, Rm 6.02.2, Level 6, Anatomy Bldg, University of Cape Town Medical School, Anzio Rd, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
86
|
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015; 9:91. [PMID: 25852482 PMCID: PMC4362409 DOI: 10.3389/fncel.2015.00091] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.
Collapse
Affiliation(s)
- Aristeidis A Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Eleni G Stamoula
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Krystallenia A Paniskaki
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Theofanis D Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
87
|
Protective effects of black currant (Ribes nigrum L.) extract on hydrogen peroxide-induced damage in lung fibroblast MRC-5 cells in relation to the antioxidant activity. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
88
|
Darras FH, Kling B, Sawatzky E, Heilmann J, Decker M. Cyclic acyl guanidines bearing carbamate moieties allow potent and dirigible cholinesterase inhibition of either acetyl- or butyrylcholinesterase. Bioorg Med Chem 2014; 22:5020-34. [DOI: 10.1016/j.bmc.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/17/2014] [Accepted: 06/04/2014] [Indexed: 01/13/2023]
|
89
|
Ahn SM, Kim HN, Kim YR, Oh EY, Choi YW, Shin HK, Choi BT. Neuroprotective effect of 1-methoxyoctadecan-1-ol from Uncaria sinensis on glutamate-induced hippocampal neuronal cell death. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:293-299. [PMID: 24877848 DOI: 10.1016/j.jep.2014.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/19/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE We isolated a single compound, 1-methoxyoctadecan-1-ol (MOD), from dried hooks and stems of Uncaria sinensis, which is used in traditional Korean medicine to provide relief from various nervous related symptoms. MATERIALS AND METHODS Neuroprotective effects of MOD against glutamate-induced oxidative stress in HT22 cells were investigated by analyzing cell viability, lactate dehydrogenase, flow cytometry, reactive oxygen species (ROS) and Western blot assays. RESULTS Exposure to glutamate alone resulted in remarkable hippocampal neuronal cell death; however, pretreatment with MOD resulted in suppression of neuronal death and ROS accumulation in connection with cellular Ca2+ level after exposure to glutamate. Stimulation by glutamate also caused significant protein level of phosphorylated p38 mitogen-activated protein kinases (MAPK), and dephosphorylated phosphatidylinositol-3 kinase (PI3K), however, pretreatment with MOD resulted in inhibition of these changes in protein level. Treatment with glutamate alone led to suppressed protein level of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB); however, pretreatment with MOD resulted in significant enhancement of this level of protein. Anti-oxidant N-acetyl-L-cysteine and both Ca2+ inhibitors, BAPTA and EGTA, showed effects similar to those of MOD in all proteins examined, except mature BDNF. CONCLUSIONS Our results suggest that MOD mainly exerted neuroprotective effects in suppression of ROS accumulation and up-regulation of mature BDNF in association with p38 MAPK and PI3K signaling in hippocampal neuronal cells.
Collapse
Affiliation(s)
- Sung Min Ahn
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Eun Young Oh
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang 626-706, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea.
| |
Collapse
|
90
|
Chua A, Thomas P, Wijesundera C, Clifton P, Fenech M. Effect of docosahexaenoic acid and furan fatty acids on cytokinesis block micronucleus cytome assay biomarkers in astrocytoma cell lines under conditions of oxidative stress. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:573-590. [PMID: 24828973 DOI: 10.1002/em.21873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Fatty acids from fish such as docosahexaenoic acid (DHA) are associated with improved brain function, whereas furan fatty acids (FFAs) also found in fish oil at low levels (1%) are thought to have antioxidant properties. Understanding their effects in astrocytes is important as these cells are responsible for maintaining healthy neurons via lipid homeostasis and distribution within the brain, and their decline with aging is a possible cause of dementia. We investigated the cytotoxic and genotoxic effects of DHA and FFA using the cytokinesis-block micronucleus cytome assay in in vitro cultures of U87MG (APOE ɛ3/ɛ3) and U118MG (APOE ɛ2/ɛ4) astrocytoma cell lines with and without a hydrogen peroxide (H2O2, 100 µM) challenge. U118MG was found to be more sensitive to the cytostatic, cytotoxic (i.e., apoptosis), and DNA damaging effects [micronuclei (MNi), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs)] of H2O2 (P < 0.01 and P < 0.001) when compared with U87MG. DHA at 100 µg/mL significantly affected cytostasis (P < 0.05) and increased DNA damage in the form of NPBs and MNi (P < 0.05) in both cell lines, whereas it decreased necrosis (P = 0.0251) in U87MG. Significant DHA-H2O2 interactions were observed for decreased necrosis (P = 0.0033) and DNA damage biomarkers (P < 0.0001) in the U87MG cell line and increased cytostasis (P < 0.0001) in the U118MG cell line. The effects of FFA also varied between the cell lines, with significant effects observed in decreased cytostasis (P = 0.0022) in the U87MG cell line, whereas increasing cytostasis (P = 0.0144) in the U118MG cell line. Overall, FFA exerted minimal effects on DNA damage biomarkers.
Collapse
Affiliation(s)
- Ann Chua
- Department of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia; Nutrigenomics and Neurodegenerative Disease Prevention, Preventative Health Flagship, CSIRO, Animal, Food and Health Sciences, Adelaide, Australia
| | | | | | | | | |
Collapse
|
91
|
Weon JB, Yun BR, Lee J, Eom MR, Ko HJ, Lee HY, Park DS, Chung HC, Chung JY, Ma CJ. Neuroprotective Effect of Steamed and Fermented Codonopsis lanceolata. Biomol Ther (Seoul) 2014; 22:246-53. [PMID: 25009706 PMCID: PMC4060076 DOI: 10.4062/biomolther.2014.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 12/02/2022] Open
Abstract
Codonopsis lanceolata has been used as an herbal medicine for several lung inflammatory diseases, such as asthma, tonsillitis, and pharyngitis. Previously, we showed the neuroprotective effect of steamed and fermented C. lanceolata (SFC) in vitro and in vivo. In the current study, the treatment of HT22 cells with SFC decreased glutamate-induced cell death, suggesting that SFC protected HT22 cells from glutamate-induced cytotoxicity. Based on these, we sought to elucidate the mechanisms of the neuro-protective effect of SFC by measuring the oxidative stress parameters and the expression of Bax and caspase-3 in HT22 cells. SFC reduced contents of ROS, Ca2+ and NO. Moreover, SFC restored contents of glutathione and glutathione reductase as well as inhibited Bax and caspase-3 activity in HT22 cells. These results indicate that steamed and fermented C. lanceolata (SFC) extract protected HT22 cells by anti-oxidative effect and inhibition of the expression of Bax and caspase-3.
Collapse
Affiliation(s)
- Jin Bae Weon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Bo-Ra Yun
- Department of Medical Biomaterials Engineering, College of Biomedical Science, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Jiwoo Lee
- Department of Medical Biomaterials Engineering, College of Biomedical Science, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Min Rye Eom
- Department of Medical Biomaterials Engineering, College of Biomedical Science, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Hyeon Yong Lee
- Department of Teaics, Seowon University, Cheongju 361-742
| | - Dong-Sik Park
- Department of Agrofood Resources, Functional food & Nutrition Division, Suwon 441-853
| | - Hee-Chul Chung
- Newtree CO., LTD. 11F Tech Center, SKnTechno Park, 190-1, Sungnam 462-120, Republic of Korea
| | - Jae Youn Chung
- Newtree CO., LTD. 11F Tech Center, SKnTechno Park, 190-1, Sungnam 462-120, Republic of Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, College of Pharmacy, Kangwon National University, Chuncheon 200-701 ; Research Institute of Biotechnology, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| |
Collapse
|
92
|
Weon JB, Lee B, Yun BR, Lee J, Ma CJ. Neuroprotective effects of 4,5-dimethoxypyrocatechol isolated from Cynanchum paniculatum on HT22 cells. Pharmacogn Mag 2014; 10:161-4. [PMID: 24914282 PMCID: PMC4048563 DOI: 10.4103/0973-1296.131028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/11/2012] [Accepted: 04/17/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Cynanchum paniculatum, belongs to the family Asclepiadaceae and is used to treat various diseases, such as invigorate blood, alleviate edema and to relieve pain and toxicity for a long time. MATERIALS AND METHODS 4,5-Dimethoxypyrocatechol was isolated from the 80% methanol extract of C. paniculatum and its neuroprotective effect was evaluated by MTT assay. RESULTS 4,5-Dimethoxypyrocatechol had neuroprotective effect on the glutamate-induced cellular oxidative death in HT22 cells. CONCLUSION Furthermore, we found that reactive oxygen species (ROS) accumulation and calcium concentration by oxidative stress were reduced by 4,5-dimethoxypyrocatechol in HT22 cells.
Collapse
Affiliation(s)
- Jin Bae Weon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Bohyoung Lee
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Bo-Ra Yun
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Jiwoo Lee
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Korea ; Research Institute of Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
93
|
Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay. Fitoterapia 2014; 97:156-63. [PMID: 24910000 DOI: 10.1016/j.fitote.2014.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
Isorhynchophylline is one of the major alkaloids from the Uncaria hook possessing the effects of lowered blood pressure, vasodilatation and protection against ischemia-induced neuronal damage. However, the metabolic pathway of isorhynchophylline has not been fully reported yet. In this paper, the metabolism of isorhynchophylline was investigated in rats. Five metabolites were isolated by using solvent extraction and repeated chromatographic methods, and identified by spectroscopic methods including UV, MS, NMR and CD experiments. Three new compounds were identified as 5-oxoisorhynchophyllic acid-22-O-β-D-glucuronide (M1), 17-O-demethyl-16,17-dihydro isorhynchophylline (M2) and 5-oxoisorhynchophyllic acid (M4) together with two known compounds isorhynchophylline (M0) and rhynchophylline (M3). Possible metabolic pathways of isorhynchophylline are proposed. Furthermore, the activity assay for all the metabolites showed that isorhynchophylline (M0) exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, little or weak neuroprotective activities were observed for M1-M4. Our present study is important to further understand its metabolic fate and disposition in humans.
Collapse
|
94
|
Qi W, Yue SJ, Sun JH, Simpkins JW, Zhang L, Yuan D. Alkaloids from the hook-bearing branch of Uncariarhynchophylla and their neuroprotective effects against glutamate-induced HT22 cell death. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:876-83. [PMID: 24899363 PMCID: PMC4446702 DOI: 10.1080/10286020.2014.918109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
One new alkaloid, 4-geissoschizine N-oxide methyl ether (1), was isolated from the EtOH extract of the hook-bearing branch of Uncariarhynchophylla, together with 10 known alkaloids, 3-epi-geissoschizine methyl ether (2) isolated from U.rhynchophylla for the first time, geissoschizine methyl ether (3), 4-hirsuteine N-oxide (4), hirsuteine (5), hirsutine (6), 3α-dihydro-cadambine (7), 3β-isodihydro-cadambine (8), cadambine (9), strictosamide (10), and akuammigine (11). The structures were elucidated by spectroscopic methods including UV, ESI-QTOF MS, NMR, and circular dichroism experiments. Neuroprotective effects of 1-9 were investigated against 3 mM glutamate-induced HT22 cell death. The activity assay showed that 2, 3, 5, and 6 exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, only weak neuroprotective activities were observed for 1, 4, 7, 8, and 9.
Collapse
Affiliation(s)
- Wen Qi
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Si-Jia Yue
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia-Hong Sun
- Department of Physiology and Pharmacology, Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - James W. Simpkins
- Department of Physiology and Pharmacology, Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Lin Zhang
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Yuan
- Department of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
95
|
Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat Commun 2014; 5:3672. [PMID: 24739485 DOI: 10.1038/ncomms4672] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here, we identify small-molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons.
Collapse
|
96
|
The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014; 10:9-17. [PMID: 24346035 DOI: 10.1038/nchembio.1416] [Citation(s) in RCA: 1669] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
The transition metal iron is essential for life, yet potentially toxic iron-catalyzed reactive oxygen species (ROS) are unavoidable in an oxygen-rich environment. Iron and ROS are increasingly recognized as important initiators and mediators of cell death in a variety of organisms and pathological situations. Here, we review recent discoveries regarding the mechanism by which iron and ROS participate in cell death. We describe the different roles of iron in triggering cell death, targets of iron-dependent ROS that mediate cell death and a new form of iron-dependent cell death termed ferroptosis. Recent advances in understanding the role of iron and ROS in cell death offer unexpected surprises and suggest new therapeutic avenues to treat cancer, organ damage and degenerative disease.
Collapse
|
97
|
Neuroprotective effect of the fermented Gumiganghwal-tang. J Biosci Bioeng 2014; 118:235-8. [PMID: 24503423 DOI: 10.1016/j.jbiosc.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 02/08/2023]
Abstract
Gumiganghwal-tang (GT) is a traditional herbal prescription widely used to treat inflammatory diseases in Asia. In this study, we evaluated neuroprotective effect and acetylcholinesterase (AChE) inhibitory activity of GT and compared with fermented GT (FGT). In order to better understand the neuroprotective mechanism, intracellular reactive oxygen species (ROS) production was investigated and high-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis of contents of GT and FGT were conducted. As a result, FGT showed more potent protective effect against glutamate-induced HT22 cell death than GT and inhibited AChE activity. The neuroprotective effect of FGT is associated with inhibition of ROS production. The HPLC-DAD analytical results indicated that FGT contains higher content of bergapten and atractylenolide III than that of GT. In conclusion, FGT have neuroprotective effect and AChE inhibition, and may be useful source for treatment of neurodegenerative disease.
Collapse
|
98
|
Kim CR, Jeon HL, Shin SK, Kim HJ, Ahn CW, Jung SU, Park SH, Kim MR. Neuroprotective action of deer bone extract against glutamate or Aβ₁₋₄₂-induced oxidative stress in mouse hippocampal cells. J Med Food 2014; 17:226-35. [PMID: 24460377 DOI: 10.1089/jmf.2013.2951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Water extracts of deer bone, called nokgol in Korean, and deer antlers have been traditionally used as anti-aging medicines. Deer antler extract is known to possess various activities, including anti-aging or anti-amnesic activity. However, there are no reports about the neuroprotective effect of deer bone extract (DBE). The objective of this study was to examine the neuroprotective effect of DBE on glutamate-induced cell death of mouse hippocampal cells (HT-22 cells) and to elucidate the mode of neuroprotective action of DBE. In this study, HT-22 cells was pretreated with DBE before stimulation with glutamate, and then, the effects of DBE on cell viability, oxidative stress markers, and MAP kinases were determined. Separately, the effect of DBE on H₂O₂ or amyloid beta peptide (1-42) (Aβ₁₋₄₂)-induced cytotoxicity of HT-22 cells was evaluated. DBE protected HT-22 cells from glutamate-induced cell death and prevented the increase in lactate dehydrogenase leakage in HT-22 cells. DBE also prevented glutamate-induced oxidative stress, as indicated by increased reactive oxygen species and lipid peroxidation as well as by decreases in glutathione (GSH) levels and GSH peroxidase activity. In addition, DBE inhibited glutamate-induced activation of c-Jun N-terminal kinases (JNK), p38, and extracellular signal-regulated kinase, indicators of oxidative stress-induced cell death. Furthermore, DBE also protected against H₂O₂ and Aβ₁₋₄₂-induced cytotoxicity. These results suggest that DBE may be a useful functional agent for the prevention against neurodegenerative disorders involving oxidative stress.
Collapse
Affiliation(s)
- Cho Rong Kim
- 1 Department of Food and Nutrition, Chungnam National University , Daejon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Tchekalarova J, Ivanova N, Pechlivanova D, Ilieva K, Atanasova M. Strain-dependent effects of sub-chronically infused losartan against kainic acid-induced seizures, oxidative stress, and heat shock protein 72 expression. Cell Mol Neurobiol 2014; 34:133-42. [PMID: 24146309 PMCID: PMC11488924 DOI: 10.1007/s10571-013-9994-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/26/2013] [Indexed: 01/25/2023]
Abstract
We studied the involvement of angiotensin (Ang) II AT1 receptors in the pathophysiology of kainate (KA)-induced neurotoxicity, focusing on the regulation of the oxidative stress state and expression of HSP 72 in the frontal cortex and hippocampus in two strains, spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The KA injection was executed after the rats were infused subcutaneously via osmotic mini-pumps with losartan (10 mg/kg day) for 14 days. Losartan delayed the onset of KA-induced seizures in SHRs but not in Wistar rats without affecting the seizure intensity score. This selective AT1 receptor antagonist decreased the lipid peroxidation only in naive SHRs. However, it attenuated the KA-induced increase in lipid peroxidation in both SHRs and Wistar rats. The adaptive enhancement of cytosolic superoxide dismutase (SOD) activity in KA-treated SHRs was recovered to control level after sub-chronic losartan infusion while no change in mitochondrial SOD activity was detected in the two strains. Both losartan and KA produced a higher expression of HSP 72 in the hippocampus of the two strains compared to naive rats infused with vehicle. Taken together, our findings demonstrate that the efficacy of a sub-chronic systemic losartan infusion in preventing the KA-induced seizure activity and neurotoxicity is more pronounced in SHRs, considered as a model of essential hypertension, than in normotenisve Wistar rats. The results suggest that the blockade of AT1 receptors, commonly used as a strategy for prevention of high blood pressure, may be useful as an adjunctive treatment in status epilepticus to reduce oxidative stress and neurotoxicity.
Collapse
Affiliation(s)
- Jane Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, Sofia, 1113, Bulgaria,
| | | | | | | | | |
Collapse
|
100
|
Patten AR, Fontaine CJ, Christie BR. A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2014; 2:93. [PMID: 25232537 PMCID: PMC4153370 DOI: 10.3389/fped.2014.00093] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain structure and function. There are a number of animal models that are used to study the structural and functional deficits caused by PNEE, including, but not limited to invertebrates, fish, rodents, and non-human primates. Animal models enable a researcher to control important variables such as the route of ethanol administration, as well as the timing, frequency and amount of ethanol exposure. Each animal model and system of exposure has its place, depending on the research question being undertaken. In this review, we will examine the different routes of ethanol administration and the various animal models of fetal alcohol spectrum disorders (FASD) that are commonly used in research, emphasizing their strengths and limitations. We will also present an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on behavior across the lifespan, focusing on learning and memory, olfaction, social, executive, and motor functions. Special emphasis will be placed where the various animal models best represent deficits observed in the human condition and offer a viable test bed to examine potential therapeutics for human beings with FASD.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada
| | | | - Brian R Christie
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada ; Department of Biology, University of Victoria , Victoria, BC , Canada ; Program in Neuroscience, The Brain Research Centre, University of British Columbia , Vancouver, BC , Canada ; Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|