51
|
Han H, Suo B, Xie D, Lei Y, Wang Y, Wen Z. Electronic structure calculations of low-lying electronic states of O3. Phys Chem Chem Phys 2011; 13:2723-31. [DOI: 10.1039/c0cp01300e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Holka F, Szalay PG, Müller T, Tyuterev VG. Toward an Improved Ground State Potential Energy Surface of Ozone. J Phys Chem A 2010; 114:9927-35. [DOI: 10.1021/jp104182q] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filip Holka
- Faculty of Materials Science and Technology, Slovak University of Technology, Paulínska 16, 917 24 Trnava, Slovak Republic, Laboratory of Theoretical Chemistry, Institute of Chemistry,Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich GmbH D-52425 Jülich, Germany, and Groupe de Spectromé trie Moléculaire et Atmosphérique, Reims University, F-51687, Reims Cedex 2, France
| | - Péter G. Szalay
- Faculty of Materials Science and Technology, Slovak University of Technology, Paulínska 16, 917 24 Trnava, Slovak Republic, Laboratory of Theoretical Chemistry, Institute of Chemistry,Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich GmbH D-52425 Jülich, Germany, and Groupe de Spectromé trie Moléculaire et Atmosphérique, Reims University, F-51687, Reims Cedex 2, France
| | - Thomas Müller
- Faculty of Materials Science and Technology, Slovak University of Technology, Paulínska 16, 917 24 Trnava, Slovak Republic, Laboratory of Theoretical Chemistry, Institute of Chemistry,Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich GmbH D-52425 Jülich, Germany, and Groupe de Spectromé trie Moléculaire et Atmosphérique, Reims University, F-51687, Reims Cedex 2, France
| | - Vladimir G. Tyuterev
- Faculty of Materials Science and Technology, Slovak University of Technology, Paulínska 16, 917 24 Trnava, Slovak Republic, Laboratory of Theoretical Chemistry, Institute of Chemistry,Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich GmbH D-52425 Jülich, Germany, and Groupe de Spectromé trie Moléculaire et Atmosphérique, Reims University, F-51687, Reims Cedex 2, France
| |
Collapse
|
53
|
Turpin F, Halvick P, Stoecklin T. The interaction of MnH(X Σ7+) with He:Ab initiopotential energy surface and bound states. J Chem Phys 2010; 132:214305. [DOI: 10.1063/1.3432762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
54
|
Nguyen TL, Barker JR. Sums and Densities of Fully Coupled Anharmonic Vibrational States: A Comparison of Three Practical Methods. J Phys Chem A 2010; 114:3718-30. [DOI: 10.1021/jp100132s] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thanh Lam Nguyen
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143
| | - John R. Barker
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143
| |
Collapse
|
55
|
Ivanov M, Schinke R. Vibrational energy transfer in Ar–O3collisions: comparison of rotational sudden, breathing sphere, and classical calculations. Mol Phys 2010. [DOI: 10.1080/00268970903397256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
Schinke R, McBane GC. Photodissociation of ozone in the Hartley band: Potential energy surfaces, nonadiabatic couplings, and singlet/triplet branching ratio. J Chem Phys 2010; 132:044305. [DOI: 10.1063/1.3299249] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
57
|
Sun Z, Liu L, Lin SY, Schinke R, Guo H, Zhang DH. State-to-state quantum dynamics of O + O2 isotope exchange reactions reveals nonstatistical behavior at atmospheric conditions. Proc Natl Acad Sci U S A 2010; 107:555-8. [PMID: 20080718 PMCID: PMC2818940 DOI: 10.1073/pnas.0911356107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The O + O(2) exchange reaction is a prerequisite for the formation of ozone in Earth's atmosphere. We report here state-to-state differential and integral cross sections for several O + O(2) isotope-exchange reactions obtained by dynamically exact quantum scattering calculations at collision energies relevant to atmospheric conditions. These reactions are shown to be highly nonstatistical, evidenced by dominant forward scattering and deviation of the integral cross section from the statistical limit. Mechanistic analyses revealed that the nonstatistical channel is facilitated by short-lived osculating resonances. The theoretical results provided an in-depth interpretation of a recent molecular beam experiment of the exchange reaction and shed light on the initial step of ozone recombination.
Collapse
Affiliation(s)
- Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lan Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shi Ying Lin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131; and
| | - Reinhard Schinke
- Max–Planck–Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131; and
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
58
|
Kurosaki Y, Artamonov M, Ho TS, Rabitz H. Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel. J Chem Phys 2009; 131:044306. [DOI: 10.1063/1.3185565] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
59
|
Farantos SC, Schinke R, Guo H, Joyeux M. Energy Localization in Molecules, Bifurcation Phenomena, and Their Spectroscopic Signatures: The Global View. Chem Rev 2009; 109:4248-71. [DOI: 10.1021/cr900069m] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stavros C. Farantos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| | - Reinhard Schinke
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| | - Hua Guo
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| | - Marc Joyeux
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete, Greece, Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany, Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, and Laboratoire de Spectrométrie Physique, Université Joseph Fourier—Grenoble I, BP 87, F-38402, St. Martin d’Heres Cedex, France
| |
Collapse
|
60
|
Jiang L, Babikov D. A reduced dimensionality model of ozone: Semiclassical treatment of van der Waals states. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.04.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Ivanov MV, Grebenshchikov SY, Schinke R. Quantum mechanical study of vibrational energy transfer in Ar–O3 collisions: Influence of symmetry. J Chem Phys 2009; 130:174311. [DOI: 10.1063/1.3126247] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
62
|
Starikova E, Barbe A, De Backer-Barilly MR, Tyuterev V, Tashkun S, Kassi S, Campargue A. Isotopic shifts in vibration levels of ozone due to homogeneous substitution: Band centres of 18O3 derived from analysis of CW-CRDS spectra in the 5900–7000cm−1 range. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2008.12.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
|
64
|
De Vico L, Pegado L, Heimdal J, Söderhjelm P, Roos BO. The ozone ring closure as a test for multi-state multi-configurational second order perturbation theory (MS-CASPT2). Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.06.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Fu B, Xu X, Zhang DH. A hierarchical construction scheme for accurate potential energy surface generation: An application to the F+H2 reaction. J Chem Phys 2008; 129:011103. [DOI: 10.1063/1.2955729] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
66
|
|
67
|
Lin SY, Sun Z, Guo H, Zhang DH, Honvault P, Xie D, Lee SY. Fully Coriolis-Coupled Quantum Studies of the H + O2 (υi = 0−2, ji = 0,1) → OH + O Reaction on an Accurate Potential Energy Surface: Integral Cross Sections and Rate Constants. J Phys Chem A 2008; 112:602-11. [DOI: 10.1021/jp7098637] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi Ying Lin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Zhigang Sun
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Dong Hui Zhang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Pascal Honvault
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Daiqian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Soo-Y. Lee
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| |
Collapse
|
68
|
Campargue A, Barbe A, De Backer-Barilly MR, Tyuterev VG, Kassi S. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm−1: new observations and exhaustive review. Phys Chem Chem Phys 2008; 10:2925-46. [DOI: 10.1039/b719773j] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Vetoshkin E, Babikov D. Semiclassical wave packet study of anomalous isotope effect in ozone formation. J Chem Phys 2007; 127:154312. [DOI: 10.1063/1.2778432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
70
|
Brouard M, Goman A, Horrocks SJ, Johnsen AJ, Quadrini F, Yuen WH. The photodissociation dynamics of ozone at 226 and 248nm: O(PJ3) atomic angular momentum polarization. J Chem Phys 2007; 127:144304. [DOI: 10.1063/1.2790890] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
71
|
Zúñiga J, Picón JAG, Bastida A, Requena A. Optimal internal coordinates, vibrational spectrum, and effective Hamiltonian for ozone. J Chem Phys 2007; 126:244305. [PMID: 17614547 DOI: 10.1063/1.2743441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this paper the authors use the optimal internal vibrational coordinates previously determined for the electronic ground state of the ozone molecule to study the vibrational spectrum of the molecule employing the second empirical potential energy surface calculated by Tyuterev et al. [Chem. Phys. Lett. 316, 271 (2000)]. First, the authors compute variationally all the bound vibrational energy levels of the molecule up to the dissociation limit and state the usefulness of the optimal coordinates in this respect, which allows us to converge all the bound levels using relatively small anharmonic basis sets. By analyzing the expansion coefficients of the wave functions, they show then that a large portion of the vibrational spectrum of O3 can be structured in nearly separable polyadic groups characterized by the polyad quantum number N=n1+n2+n(theta) corresponding to the optimal internal coordinates. Accordingly, they determine an internal effective vibrational Hamiltonian for O3 by fitting the effective Hamiltonian parameters to the experimental vibrational frequencies, using as input parameters in the fit those extracted from an analytical second-order Van Vleck perturbation theory calculation. It is finally shown that the internal effective Hamiltonian thus obtained accurately describes the vibrational spectrum of ozone in the low and medium energy regimes.
Collapse
Affiliation(s)
- José Zúñiga
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain.
| | | | | | | |
Collapse
|
72
|
Bersuker I. The Jahn–Teller effect as a general tool for solving molecular and solid state problems: Novel findings. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.12.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
73
|
Ivanov MV, Schinke R, Mcbane GC. Theoretical investigation of vibrational relaxation of NO(2Π), O ), and N ) in collisions with O(3P). Mol Phys 2007. [DOI: 10.1080/00268970701288087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
74
|
Recursive Solutions to Large Eigenproblems in Molecular Spectroscopy and Reaction Dynamics. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470189078.ch7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
75
|
Ivanov MV, Zhu H, Schinke R. Theoretical investigation of exchange and recombination reactions in O(P3)+NO(Π2) collisions. J Chem Phys 2007; 126:054304. [PMID: 17302474 DOI: 10.1063/1.2430715] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a detailed dynamical study of the kinetics of O(3P)+NO(2Pi) collisions including O atom exchange reactions and the recombination of NO2. The classical trajectory calculations are performed on the lowest 2A' and 2A" potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, kex, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2kex, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, kr, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, kr proportional, T-1.5, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, DeltaZPE, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO2, which is in accord with the overall T-1.4 dependence of the measured recombination rate even in the low temperature range.
Collapse
Affiliation(s)
- M V Ivanov
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany.
| | | | | |
Collapse
|
76
|
Grebenshchikov SY, Qu ZW, Zhu H, Schinke R. New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands. Phys Chem Chem Phys 2007; 9:2044-64. [PMID: 17464386 DOI: 10.1039/b701020f] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review recent theoretical studies of the photodissociation of ozone in the wavelength region from 200 nm to 1100 nm comprising four major absorption bands: Hartley and Huggins (near ultraviolet), Chappuis (visible), and Wulf (near infrared). The quantum mechanical dynamics calculations use global potential energy surfaces obtained from new high-level electronic structure calculations. Altogether nine electronic states are taken into account in the theoretical descriptions: four 1A', two 1A'', one 3A' and two 3A'' states. Of particular interest is the analysis of diffuse vibrational structures, which are prominent in all absorption bands, and their dynamical origin and assignment. Another focus is the effect of non-adiabatic coupling on lifetimes in the excited states and on the population of the specific electronic product channels.
Collapse
Affiliation(s)
- S Yu Grebenshchikov
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073, Göttingen, Germany.
| | | | | | | |
Collapse
|
77
|
Peterson KA, Lyons JR, Francisco JS. An ab initio study of the low-lying electronic states of S3. J Chem Phys 2006; 125:084314. [PMID: 16965019 DOI: 10.1063/1.2222367] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate calculations of the low-lying singlet and triplet electronic states of thiozone, S(3), have been carried out using large multireference configuration interaction wave functions. Cuts of the full potential energy surfaces along the stretching and bending coordinates have been presented, together with the vertical excitation spectra. The strong experimentally observed absorption around 395 nm is assigned to the 1 (1)B(2) state, which correlates to ground state products. Absorption at wavelengths shorter than 260 nm is predicted to lead to singlet excited state products, S(2) (a (1)Delta(g))+S((1)D). The spectroscopic properties of the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) electronic states of the S(2) radical have also been accurately characterized in this work. The investigations of the low-lying electronic states were accompanied by accurate ground state coupled cluster calculations of the thermochemistry of both S(2) and S(3) using large correlation consistent basis sets with corrections for core-valence correlation, scalar relativity, and atomic spin-orbit effects. Resulting values for D(0)(S(2)+S) and SigmaD(0) for S(3) are predicted to be 61.3 and 162.7 kcal/mol, respectively, with conservative uncertainties of +/-1 kcal/mol. Analogous calculations predict the C(2v)-D(3h) (open-cyclic) isomerization energy of S(3) to be 4.4+/-0.5 kcal/mol.
Collapse
Affiliation(s)
- Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA.
| | | | | |
Collapse
|
78
|
Grebenshchikov SY, Qu ZW, Zhu H, Schinke R. Spin-orbit mechanism of predissociation in the Wulf band of ozone. J Chem Phys 2006; 125:21102. [PMID: 16848567 DOI: 10.1063/1.2219444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previously calculated resonance widths of the ground vibrational levels in the electronic states 1 (3)A" ((3)A(2)) and 1 (3)A' ((3)B(2)), which belong to the Wulf band system of ozone, are significantly smaller than observed experimentally. We demonstrate that predissociation is drastically enhanced by spin-orbit coupling between 1 (3)A"/X (1)A' and 1 (3)A'/1 (3)A". Multistate quantum mechanical calculations using ab initio spin-orbit coupling matrix elements give linewidths of optically bright components of the right order of magnitude.
Collapse
Affiliation(s)
- S Yu Grebenshchikov
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
79
|
Vetoshkin E, Babikov D. Semiclassical wave packet study of ozone forming reaction. J Chem Phys 2006; 125:24302. [PMID: 16848579 DOI: 10.1063/1.2213252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have applied the semiclassical wave packet method (SWP) to calculate energies and lifetimes of the metastable states (scattering resonances) in a simplified model of the ozone forming reaction. All values of the total angular momentum up to J=50 were analyzed. The results are compared with numerically exact quantum mechanical wave packet propagation and with results of the time-independent WKB method. The wave functions for the metastable states in the region over the well are reproduced very accurately by the SWP; in the classically forbidden region and outside of the centrifugal barrier, the SWP wave functions are qualitatively correct. Prony's method was used to extract energies and lifetimes from the autocorrelation functions. Energies of the metastable states obtained using the SWP method are accurate to within 0.1 and 2 cm(-1) for under-the-barrier and over-the-barrier states, respectively. The SWP lifetimes in the range of 0.5<tau(n)<100 ps are accurate to within 10%. A three-level model was used to investigate accuracies of different approximations for the reaction rate constant. It was shown that the majority of the metastable states in this system are either long lived (narrow resonances) which can be treated as stable, or short lived (broad resonances) which can be treated without the knowledge of their lifetimes. Only a few metastable states fall into the intermediate range where both energies and lifetimes are needed to model the kinetics. The recombination rate constant calculated with the SWP method at room temperature and pressure is in good agreement with available experimental data.
Collapse
Affiliation(s)
- Evgeny Vetoshkin
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, WI 53201-1881, USA
| | | |
Collapse
|
80
|
Lee HS, Light JC. Vibrational energy levels of ozone up to dissociation revisited. J Chem Phys 2006; 120:5859-62. [PMID: 15267465 DOI: 10.1063/1.1691403] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two recent papers presented calculations of the highly excited vibrational states of ozone. The nature and energies of these states may hold the key to the anomalous isotopic distribution of ozone in the atmosphere. Even though the same potential energy surface of Babikov et al. was used in both calculations, the number of bound van der Waals states reported below dissociation differed significantly. In order to resolve the issue we present here the results of an independent computation of all the bound vibrational states of (16)O(16)O(16)O and (16)O(16)O(18)O up to dissociation. Our methods differ from both earlier calculations since we use hyperspherical coordinates and a direct product discrete variable representation of the Hamiltonian. The results of present work support the existence of several van der Waals states for J=0 on this potential energy surface.
Collapse
Affiliation(s)
- Hee-Seung Lee
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
81
|
Grebenshchikov SY, Schinke R, Qu ZW, Zhu H. Absorption spectrum and assignment of the Chappuis band of ozone. J Chem Phys 2006; 124:204313. [PMID: 16774338 DOI: 10.1063/1.2196881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New global diabatic potential energy surfaces of the electronic states 1B1 and 1A2 of ozone and the non-adiabatic coupling surface between them are constructed from electronic structure calculations. These surfaces are used to study the visible photodissociation in the Chappuis band by means of quantum mechanical calculations. The calculated absorption spectrum and its absolute intensity are in good agreement with the experimental results. A vibrational assignment of the diffuse structures in the Chappuis band system is proposed on the basis of the nodal structures of the underlying resonance states.
Collapse
Affiliation(s)
- S Yu Grebenshchikov
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
82
|
Cassam-Chenaï P, Liévin J. The VMFCI method: a flexible tool for solving the molecular vibration problem. J Comput Chem 2006; 27:627-40. [PMID: 16470836 DOI: 10.1002/jcc.20374] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present article introduces a general variational scheme to find approximate solutions of the spectral problem for the molecular vibration Hamiltonian. It is called the "vibrational mean field configuration interaction" (VMFCI) method, and consists in performing vibrational configuration interactions (VCI) for selected modes in the mean field of the others. The same partition of modes can be iterated until self-consistency, generalizing the vibrational self-consistent field (VSCF) method. As in contracted-mode methods, a hierarchy of partitions can be built to ultimately contract all the modes together. So, the VMFCI method extends the traditional variational approaches and can be included in existing vibrational codes based on the latter approaches. The flexibility and efficiency of this new method are demonstrated on several molecules of atmospheric interest.
Collapse
Affiliation(s)
- P Cassam-Chenaï
- Laboratoire J. A. Dieudonné, CNRS UMR-6621, Université de Nice-Sophia-Antipolis, Faculté des Sciences, Parc Valrose, Nice 06100, France.
| | | |
Collapse
|
83
|
Charlo D, Clary DC. Quantum-mechanical calculations on pressure and temperature dependence of three-body recombination reactions: application to ozone formation rates. J Chem Phys 2006; 120:2700-7. [PMID: 15268414 DOI: 10.1063/1.1635361] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A quantum-mechanical model is designed for the calculation of termolecular association reaction rate coefficients in the low-pressure fall-off regime. The dynamics is set up within the energy transfer mechanism and the kinetic scheme is the steady-state approximation. We applied this model to the formation of ozone O + O2 + M --> O3 + M for M = Ar, making use of semiquantitative potential energy surfaces. The stabilization process is treated by means of the vibrational close-coupling infinite order sudden scattering theory. Major approximations include the neglect of the O3 vibrational bending mode and rovibrational couplings. We calculated individual isotope-specific rate constants and rate constant ratios over the temperature range 10-1000 K and the pressure fall-off region 10(-7)-10(2) bar. The present results show a qualitative and semiquantitative agreement with available experiments, particularly in the temperature region of atmospheric interest.
Collapse
Affiliation(s)
- David Charlo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | | |
Collapse
|
84
|
Schinke R, Grebenshchikov SY, Ivanov MV, Fleurat-Lessard P. DYNAMICAL STUDIES OF THE OZONE ISOTOPE EFFECT: A Status Report. Annu Rev Phys Chem 2006; 57:625-61. [PMID: 16599823 DOI: 10.1146/annurev.physchem.57.032905.104542] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
▪ Abstract Dynamical studies of the recombination of O and O2 to form ozone are reviewed. The focus is the intriguing isotope dependence of the recombination rate coefficient as observed by Mauersberger and coworkers in the last decade. The key quantity for understanding of this dependence appears to be the difference of zero-point energies of the two fragmentation channels to which excited ozone can dissociate, i.e., X + YZ ← XYZ* → XY + Z, where X, Y, and Z stand for the three isotopes of oxygen. Besides the isotope dependence, the variation of the recombination rate coefficient with pressure and temperature is also addressed. Despite the numerous approaches of recent years, the recombination of ozone is far from being satisfactorily explained; there are still several essential questions to be solved by detailed theoretical analysis. We mainly discuss—and critically assess—the results of our own investigations of the ozone kinetics. The work of other research groups is also evaluated.
Collapse
Affiliation(s)
- R Schinke
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
85
|
Garcia-Fernandez P, Bersuker IB, Boggs JE. Lost topological (Berry) phase factor in electronic structure calculations. Example: the ozone molecule. PHYSICAL REVIEW LETTERS 2006; 96:163005. [PMID: 16712225 DOI: 10.1103/physrevlett.96.163005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Indexed: 05/09/2023]
Abstract
It is shown that standard computations of electronic structures of polyatomic systems that yield the global minimum configuration and vibrational frequencies may be faulty if the symmetry of this configuration is lower than the highest possible one and the origin of this distortion, which is always due to the Jahn-Teller effect, is neglected; this may lead, in particular, to the loss of the Berry phase factor that changes the vibronic energy level spectrum and which we show to be present even when there are no apparent conical intersections. The general case and the ozone molecule are analyzed.
Collapse
Affiliation(s)
- Pablo Garcia-Fernandez
- Institute for Theoretical Chemistry, Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | |
Collapse
|
86
|
Abstract
The recombination of ozone via the chaperon mechanism, i.e., ArO+O2 --> Ar+O3 and ArO2+O --> Ar+O3, is studied by means of classical trajectories and a pairwise additive Ar-O3 potential energy surface. The recombination rate coefficient has a strong temperature dependence, which approximately can be described by T(-n) with n approximately 3. It is negligible for temperatures above 700 K or so, but it becomes important for low temperatures. The calculations unambiguously affirm the conclusions of Hippler et al. [J. Chem. Phys. 93, 6560 (1990)] and Luther et al. [Phys. Chem. Chem. Phys. 7, 2764 (2005)] that the chaperon mechanism makes a sizable contribution to the recombination of O3 at room temperature and below. The dependence of the chaperon recombination rate coefficient on the isotopomer, studied for two different isotope combinations, is only in rough qualitative agreement with the experimental data. The oxygen atom isotope exchange reaction involving ArO and ArO2 van der Waals complexes is also investigated; the weak binding of O or O2 to Ar has only a small effect.
Collapse
Affiliation(s)
- Mikhail V Ivanov
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany.
| | | |
Collapse
|
87
|
Artamonov M, Ho TS, Rabitz H. Quantum optimal control of molecular isomerization in the presence of a competing dissociation channel. J Chem Phys 2006; 124:64306. [PMID: 16483206 DOI: 10.1063/1.2165201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quantum optimal control of isomerization in the presence of a competing dissociation channel is simulated on a two-dimensional model. The control of isomerization of a hydrogen atom is achieved through vibrational transitions on the ground-state surface as well as with the aid of an excited-state surface. The effects of different competing dissociation channel configurations on the isomerization control are explored. Suppression of the competing dissociation dynamics during the isomerization control on the ground-state surface becomes easier with an increase in the spatial separation between the isomerization and dissociation regions and with a decrease in the dissociation channel width. Isomerization control first involving transfer of amplitude to an excited-state surface is less influenced by the dissociation channel configuration on the ground-state surface, even in cases where the excited-state surface allows for a moderate spreading of the excited wave packet.
Collapse
Affiliation(s)
- Maxim Artamonov
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
88
|
Lin SY, Guo H. Quantum Statistical Study of O + O2 Isotopic Exchange Reactions: Cross Sections and Rate Constants. J Phys Chem A 2005; 110:5305-11. [PMID: 16623456 DOI: 10.1021/jp0556299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a wave packet based statistical model, we compute cross sections and thermal rate constants for various isotopic variants of the O + O2 exchange reaction on a recently modified ab initio potential energy surface. The calculation predicts a highly excited rotational distribution and relatively cold vibrational distribution for the diatomic product. A small but important threshold effect was identified for the (16)O + 18O2 reaction, which is suggested to contribute to the experimentally observed negative temperature dependence of the rate ratio, k(18O + 16O2)/k(16O + 18O2). Despite reasonable agreement with quasiclassical trajectory results, however, the calculated thermal rate constants are smaller than experimental measurements by a factor from 2 to 5. The experimentally observed negative temperature dependence of the rate constants is not reproduced. Possible reasons for the theory-experiment discrepancies are discussed.
Collapse
Affiliation(s)
- Shi Ying Lin
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
89
|
Qu ZW, Zhu H, Schinke R. Infrared spectrum of cyclic ozone: A theoretical investigation. J Chem Phys 2005; 123:204324. [PMID: 16351273 DOI: 10.1063/1.2130709] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The infrared absorption spectrum of cyclic ozone is calculated by means of a new ab initio potential energy surface, the dipole moment function, and exact quantum mechanical dynamics calculations. Five different isotopomers are considered. The absorption line for excitation of the bending fundamental near 800 cm(-1) is by far the strongest band; all other bands are more than one order of magnitude less intense. This spectral pattern as well as the isotope shifts for the various isotopomers are important for identifying cyclic ozone. Several possibilities for accessing the ring minimum of cyclic ozone are also discussed on the basis of recent electronic structure calculations.
Collapse
Affiliation(s)
- Z-W Qu
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
90
|
Kozin IN, Sadovskií DA, Zhilinskií BI. Assigning vibrational polyads using relative equilibria: application to ozone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 61:2867-85. [PMID: 16165026 DOI: 10.1016/j.saa.2004.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 09/30/2004] [Accepted: 10/28/2004] [Indexed: 05/04/2023]
Abstract
We demonstrate how relative equilibria of a vibrating molecule, which are families of principal periodic orbits otherwise known as nonlinear normal modes, can be used to describe the global polyad structure of vibrational energy levels. The classical action integral n(E) computed along these orbits at different energies E corresponds to the polyad quantum number n so that the energy En of different relative equilibria describes the splitting of n-polyads. Further information on the internal polyad structure can be driven from the stability analysis of relative equilibria. We use the ozone molecule as a concrete example where n-polyads or "hyperpolyads" should be distinguished from the well-known polyads of the 1:1 stretching mode resonance; the stretching polyads are structural elements of hyperpolyads. We give dynamical interpretation of the relation between relative equilibria and n-polyads based on the normal form reduction in the limit of small vibrations near the equilibrium.
Collapse
Affiliation(s)
- I N Kozin
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
91
|
Qu ZW, Zhu H, Grebenshchikov SY, Schinke R. The photodissociation of ozone in the Hartley band: A theoretical analysis. J Chem Phys 2005; 123:074305. [PMID: 16229568 DOI: 10.1063/1.2001650] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional diabatic potential energy surfaces for the lowest four electronic states of ozone with 1A' symmetry-termed X, A, B, and R-are constructed from electronic structure calculations. The diabatization is performed by reassigning corresponding energy points. Although approximate, these diabatic potential energy surfaces allow one to study the uv photodissociation of ozone on a level of theory not possible before. In the present work photoexcitation in the Hartley band and subsequent dissociation into the singlet channel, O3X+hnu-->O(1D)+O2(a 1Deltag), are investigated by means of quantum mechanical and classical trajectory calculations using the diabatic potential energy surface of the B state. The calculated low-resolution absorption spectrum as well as the vibrational and rotational state distributions of O2(a 1Deltag) are in good agreement with available experimental results.
Collapse
Affiliation(s)
- Z-W Qu
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
92
|
Baloïtcha E, Balint-Kurti GG. Theory of the photodissociation of ozone in the Hartley continuum: Potential energy surfaces, conical intersections, and photodissociation dynamics. J Chem Phys 2005; 123:014306. [PMID: 16035834 DOI: 10.1063/1.1903947] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ab initio potential energy and transition dipole moment surfaces are presented for the five lowest singlet even symmetry electronic states of ozone. The surfaces are calculated using the complete active space self consistent field method followed by contracted multireference configuration interaction (MRCI) calculations. A slightly reduced augmented correlation consistent valence triple-zeta orbital basis set is used. The ground and excited state energies of the molecule have been computed at 9282 separate nuclear geometries. Cuts through the potential energy surfaces, which pass through the geometry of the minimum of the ground electronic state, show several closely avoided crossings. Close examination, and higher level calculations, very strongly suggests that some of these seemingly avoided crossings are in fact associated with non-symmetry related conical intersections. Diabatic potential energy and transition dipole moment surfaces are created from the computed ab initio adiabatic MRCI energies and transition dipole moments. The transition dipole moment connecting the ground electronic state to the diabatic B state surface is by far the strongest. Vibrational-rotational wavefunctions and energies are computed using the ground electronic state. The energy level separations compare well with experimentally determined values. The ground vibrational state wavefunction is then used, together with the diabatic B<--X transition dipole moment surface, to form an initial wavepacket. The analysis of the time-dependent quantum dynamics of this wavepacket provides the total and partial photodissociation cross sections for the system. Both the total absorption cross section and the predicted product quantum state distributions compare well with experimental observations. A discussion is also given as to how the observed alternation in product diatom rotational state populations might be explained.
Collapse
Affiliation(s)
- Ezinvi Baloïtcha
- Center for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
| | | |
Collapse
|
93
|
Ivanov MV, Schinke R. Temperature dependent energy transfer in Ar–O3 collisions. J Chem Phys 2005; 122:234318. [PMID: 16008452 DOI: 10.1063/1.1927526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The energy transfer between argon atoms and ozone complexes O3*, excited in the region of the dissociation threshold, is calculated for fixed temperatures (100 K< or =T < or =2500 K) using classical trajectories. The internal energy of ozone is resolved in terms of vibrational and rotational energies. For all temperatures, energy flows from O3* to Ar. The vibrational energy transfer, relative to k(B)T, is very small below 500 K, but gradually increases towards high temperatures. The relative rotational energy transfer, on the other hand, monotonously decreases with T; around 1100 K it falls below the relative vibrational energy transfer. Thermally averaged cross sections for vibrational and rotational energy transfers are also calculated. The implications for the stabilization of ozone complexes in the energy transfer model are discussed.
Collapse
Affiliation(s)
- Mikhail V Ivanov
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany.
| | | |
Collapse
|
94
|
Luther K, Oum K, Troe J. The role of the radical-complex mechanism in the ozone recombination/dissociation reaction. Phys Chem Chem Phys 2005; 7:2764-70. [PMID: 16189591 DOI: 10.1039/b504178c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The data bases for low-pressure rate coefficients of the dissociation of O3 and the reverse recombination of O with O2 in the bath gases M=He, Ar, N2, CO2 and SF6 are carefully analyzed. At very high temperatures, the rate constants have to correspond solely to the energy transfer (ET) mechanism. On condition that this holds for Ar and N2 near 800 K, average energies transferred per collision of -DeltaE/hc=18 and 25 cm-1 are derived, respectively. Assuming an only weak temperature dependence of DeltaE as known in similar systems, rate coefficients for the ET-mechanism are extrapolated to lower temperatures and compared with the experiments. The difference between measured and extrapolated rate coefficients is attributed to the radical complex (RC) mechanism. The derived rate coefficients for the RC-mechanism are rationalized in terms of equilibrium constants for equilibria of van der Waals complexes of O (or O2) with the bath gases and with rate coefficients for oxygen abstraction from these complexes. The latter are of similar magnitude as rate coefficients for oxygen isotope exchange which provides support for the present interpretation of the reaction in terms of a superposition of RC- and ET-mechanisms. We obtained rate coefficients for the ET-mechanism of k/[Ar]=2.3x10(-34) (T/300)(-1.5) and k/[N2]=3.5x10(-34) (T/300)(-1.5) cm6 molecule-2 s-1 and rate coefficients for the RC-mechanism of k/[Ar]=1.7x10(-34) (T/300)(-3.2) and k/[N2]=2.5x10(-34) (T/300)(-3.3) cm6 molecule-2 s-1. The data bases for M=He, CO2 and SF6 are less complete and only approximate separations of RC- and ET-mechanism were possible. The consequences of the present analysis for an analysis of isotope effects in ozone recombination are emphasized.
Collapse
Affiliation(s)
- Klaus Luther
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, D-37077, Göttingen, Germany
| | | | | |
Collapse
|
95
|
Zúñiga J, Picón JAG, Bastida A, Requena A. On the use of optimal internal vibrational coordinates for symmetrical bent triatomic molecules. J Chem Phys 2005; 122:224319. [PMID: 15974680 DOI: 10.1063/1.1929738] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of generalized internal coordinates for the variational calculation of excited vibrational states of symmetrical bent triatomic molecules is considered with applications to the SO2, O3, NO2, and H2O molecules. These coordinates depend on two external parameters which can be properly optimized. We propose a simple analytical method to determine the optimal internal coordinates for this kind of molecules based on the minimization with respect to the external parameters of the zero-point energy, assuming only quadratic terms in the Hamiltonian and no quadratic coupling between the optimal coordinates. The optimal values of the parameters thus obtained are shown to agree quite well with those that minimize the sum of a number of unconverged energies of the lowest vibrational states, computed variationally using a small basis function set. The unconverged variational calculation uses a basis set consisting of the eigenfunctions of the uncoupled anharmonic internal coordinate Hamiltonian. Variational calculations of the excited vibrational states for the four molecules considered carried out with an increasing number of basis functions, also evidence the excellent convergence properties of the optimal internal coordinates versus those provided by other normal and local coordinate systems.
Collapse
Affiliation(s)
- José Zúñiga
- Departmento de Química Física, Universidad de Murcia, 30100 Murcia, Spain.
| | | | | | | |
Collapse
|
96
|
Schinke R, Fleurat-Lessard P. The effect of zero-point energy differences on the isotope dependence of the formation of ozone: A classical trajectory study. J Chem Phys 2005; 122:094317. [PMID: 15836138 DOI: 10.1063/1.1860011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of zero-point energy differences (DeltaZPE) between the possible fragmentation channels of highly excited O(3) complexes on the isotope dependence of the formation of ozone is investigated by means of classical trajectory calculations and a strong-collision model. DeltaZPE is incorporated in the calculations in a phenomenological way by adjusting the potential energy surface in the product channels so that the correct exothermicities and endothermicities are matched. The model contains two parameters, the frequency of stabilizing collisions omega and an energy dependent parameter Delta(damp), which favors the lower energies in the Maxwell-Boltzmann distribution. The stabilization frequency is used to adjust the pressure dependence of the absolute formation rate while Delta(damp) is utilized to control its isotope dependence. The calculations for several isotope combinations of oxygen atoms show a clear dependence of relative formation rates on DeltaZPE. The results are similar to those of Gao and Marcus [J. Chem. Phys. 116, 137 (2002)] obtained within a statistical model. In particular, like in the statistical approach an ad hoc parameter eta approximately 1.14, which effectively reduces the formation rates of the symmetric ABA ozone molecules, has to be introduced in order to obtain good agreement with the measured relative rates of Janssen et al. [Phys. Chem. Chem. Phys. 3, 4718 (2001)]. The temperature dependence of the recombination rate is also addressed.
Collapse
Affiliation(s)
- Reinhard Schinke
- Max-Planck-Institut für Dynamik und. Selbstorganisation, D-37073 Göttingen, Germany.
| | | |
Collapse
|
97
|
Zhu H, Qu ZW, Grebenshchikov SY, Schinke R, Malicet J, Brion J, Daumont D. The Huggins band of ozone: Assignment of hot bands. J Chem Phys 2005; 122:024310. [PMID: 15638589 DOI: 10.1063/1.1825380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The "hot bands" of the Huggins band of ozone are assigned, in both the 218 K and the 295 K spectrum. The assignment is based on intensities calculated with three-dimensional vibrational wave functions for the electronic ground state (X) and the excited state (B). The hot-band structures in the 218 K spectrum all can be assigned to transitions starting from vibrational states with one quantum of stretching excitation in the ground electronic state. The 295 K spectrum shows new structures, which are due to transitions originating from vibrational states in the X state with two quanta of excitation of the stretching modes--despite very small Boltzmann factors. All structures in the low-energy range of the 295 K spectrum, even the very weak ones, thus can be uniquely interpreted. The significance of hot bands results from the strong increase of Franck-Condon factors with excitation of the stretching modes in both the lower and/or the upper electronic states, whose equilibrium bond lengths differ significantly.
Collapse
Affiliation(s)
- H Zhu
- Max-Planck-Institut für Strömungsforschung, D-37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
98
|
Willitsch S, Innocenti F, Dyke JM, Merkt F. High-resolution pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopic study of the two lowest electronic states of the ozone cation O3+. J Chem Phys 2005; 122:024311. [PMID: 15638590 DOI: 10.1063/1.1829974] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectrum of jet-cooled O3 has been recorded in the range 101,000-104,000 cm(-1). The origins of the X 1A1-->X+ 2A1 and X 1A1-->A+ 2B2 transitions could be determined from the rotational structure of the bands, the photoionization selection rules, the photoionization efficiency curve, and comparison with ab initio calculations. The first adiabatic ionization energy of O3 was measured to be 101,020.5(5) cm(-1) [12.524 95(6) eV] and the energy difference between the X+ 2A1 (0,0,0) and A+ 2B2 (0,0,0) states was determined to be DeltaT0=1089.7(4) cm(-1). Whereas the X-->X+ band consists of an intense and regular progression in the bending (nu2) mode observed up to v2+=4, only the origin of the X-->A+ band was observed. The analysis of the rotational structure in each band led to the derivation of the r0 structure of O3+ in the X+ [C2v,r0=1.25(2) A,alpha0=131.5(9) degrees ] and A+[C2v,r0=1.37(5) A,alpha0=111.3(38) degrees ] states. The appearance of the spectrum, which is regular up to 102,300 cm(-1), changes abruptly at approximately 102,500 cm(-1), a position above which the spectral density increases markedly and the rotational structure of the bands collapses. On the basis of ab initio calculations, this behavior is attributed to the onset of large-amplitude motions spreading through several local minima all the way to large internuclear distances. The ab initio calculations are consistent with earlier results in predicting a seam of conical intersections between the X+ and A+ states approximately 2600 cm(-1) above the cationic ground state and demonstrate the existence of potential minima at large internuclear distances that are connected to the main minima of the X+ and A+ states through low-lying barriers.
Collapse
Affiliation(s)
- S Willitsch
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
99
|
Baloïtcha E, Balint-Kurti GG. Theory of the photodissociation of ozone in the Hartley continuum; effect of vibrational excitation and O(1D) atom velocity distribution. Phys Chem Chem Phys 2005; 7:3829-33. [PMID: 16358032 DOI: 10.1039/b511640f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of vibrational excitation on the photodissociation cross section of ozone in the Hartley continuum is examined. The calculations make use of newly computed potential energy and transition dipole moment surfaces. The initial vibrational states of the ozone are computed using grid based techniques and the first few ab initio computed vibrational energy level spacings agree to within 10 cm(-1) with experimental values. The computed total absorption cross sections arising from different initial vibrational states of ozone are discussed in the light of the nature of the transition dipole moment surface. The computed cross section for excitation from the ground vibrational-rotational state is in good agreement with the experimentally measured cross section. Excitation of the asymmetric stretching vibration of ozone has a marked effect on both the form and magnitude of the photodissociation cross section. The velocity distributions of highly reactive O(1D) atoms arising from the photodissociation process in different wavelength ranges is also presented. The results show that the O(1D) atoms travel with a most probable translational velocity of 2.030 km s(-1) corresponding to a translational energy of 0.342 eV or 33.0 kJ mol(-1).
Collapse
Affiliation(s)
- Ezinvi Baloïtcha
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK BS8 1TS.
| | | |
Collapse
|
100
|
Qu ZW, Zhu H, Grebenshchikov SY, Schinke R, Farantos SC. The Huggins band of ozone: A theoretical analysis. J Chem Phys 2004; 121:11731-45. [PMID: 15634138 DOI: 10.1063/1.1814098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Huggins band of ozone is investigated by means of dynamics calculations using a new (diabatic) potential energy surface for the 3 (1)A'(1B2) state. The good overall agreement of the calculated spectrum of vibrational energies and intensities with the experimental spectrum, especially at low to intermediate excitation energies, is considered as evidence that the Huggins band is due to the two C(s) potential wells of the 1B2 state rather than the single C2v well of the 2 (1)A'(1A1) state. The vibrational assignment of the "cold bands," based on the nodal structure of wave functions, on the whole supports the most recent experimental assignment [J. Chem. Phys. 115, 9311 (2001)]. The quantum mechanical spectrum is analyzed in terms of classical periodic orbits and the structure of the classical phase space.
Collapse
Affiliation(s)
- Zheng-Wang Qu
- Max-Planck-Institut für Strömungsforschung, D-37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|