51
|
Schmidt T, Wälti MA, Baber JL, Hustedt EJ, Clore GM. Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609617] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics; National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda MD 20892-0520 USA
| | - Marielle A. Wälti
- Laboratory of Chemical Physics; National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda MD 20892-0520 USA
| | - James L. Baber
- Laboratory of Chemical Physics; National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda MD 20892-0520 USA
| | - Eric J. Hustedt
- Department of Molecular Physiology and Biophysics; Vanderbilt University; Nashville TN 37232 USA
| | - G. Marius Clore
- Laboratory of Chemical Physics; National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda MD 20892-0520 USA
| |
Collapse
|
52
|
Schmidt T, Wälti MA, Baber JL, Hustedt EJ, Clore GM. Long Distance Measurements up to 160 Å in the GroEL Tetradecamer Using Q-Band DEER EPR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:15905-15909. [PMID: 27860003 DOI: 10.1002/anie.201609617] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 11/06/2022]
Abstract
Current distance measurements between spin-labels on multimeric protonated proteins using double electron-electron resonance (DEER) EPR spectroscopy are generally limited to the 15-60 Å range. Here we show how DEER experiments can be extended to dipolar evolution times of ca. 80 μs, permitting distances up to 170 Å to be accessed in multimeric proteins. The method relies on sparse spin-labeling, supplemented by deuteration of protein and solvent, to minimize the deleterious impact of multispin effects and substantially increase the apparent spin-label phase memory relaxation time, complemented by high sensitivity afforded by measurements at Q-band. We demonstrate the approach using the tetradecameric molecular machine GroEL as an example. Two engineered surface-exposed mutants, R268C and E315C, are used to measure pairwise distance distributions with mean values ranging from 20 to 100 Å and from 30 to 160 Å, respectively, both within and between the two heptameric rings of GroEL. The measured distance distributions are consistent with the known crystal structure of apo GroEL. The methodology presented here should significantly expand the use of DEER for the structural characterization of conformational changes in higher order oligomers.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Marielle A Wälti
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - James L Baber
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| |
Collapse
|
53
|
Grytz CM, Marko A, Cekan P, Sigurdsson ST, Prisner TF. Flexibility and conformation of the cocaine aptamer studied by PELDOR. Phys Chem Chem Phys 2016; 18:2993-3002. [PMID: 26740459 DOI: 10.1039/c5cp06158j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cocaine aptamer is a DNA three-way junction that binds cocaine at its helical junction. We studied the global conformation and overall flexibility of the aptamer in the absence and presence of cocaine by pulsed electron-electron double resonance (PELDOR) spectroscopy, also called double electron-electron resonance (DEER). The rigid nitroxide spin label Ç was incorporated pairwise into two helices of the aptamer. Multi-frequency 2D PELDOR experiments allow the determination of the mutual orientation and the distances between two Çs. Since Ç is rigidly attached to double-stranded DNA, it directly reports on the aptamer dynamics. The cocaine-bound and the non-bound states could be differentiated by their conformational flexibility, which decreases upon binding to cocaine. We observed a small change in the width and mean value of the distance distribution between the two spin labels upon cocaine binding. Further structural insights were obtained by investigating the relative orientation between the two spin-labeled stems of the aptamer. We determined the bend angle between this two stems. By combining the orientation information with a priori knowledge about the secondary structure of the aptamer, we obtained a molecular model describing the global folding and flexibility of the cocaine aptamer.
Collapse
Affiliation(s)
- C M Grytz
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| | - P Cekan
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - S Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| |
Collapse
|
54
|
Schmidt T, Ghirlando R, Baber J, Clore GM. Quantitative Resolution of Monomer-Dimer Populations by Inversion Modulated DEER EPR Spectroscopy. Chemphyschem 2016; 17:2987-2991. [PMID: 27442455 PMCID: PMC5590656 DOI: 10.1002/cphc.201600726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/13/2022]
Abstract
A simple method, based on inversion modulated double electron-electron resonance electron paramagnetic resonance (DEER EPR) spectroscopy, is presented for determining populations of monomer and dimer in proteins (as well as any other biological macromolecules). The method is based on analysis of modulation depth versus electron double resonance (ELDOR) pulse flip angle. High accuracy is achieved by complete deuteration, extensive sampling of a large number of ELDOR pulse flip angle values, and combined analysis of differently labeled spin samples. We demonstrate the method using two different proteins: an obligate monomer exemplified by the small immunoglobulin binding B domain of protein A, and the p66 subunit of HIV-1 reverse transcriptase which exists as an equilibrium mixture of monomer and dimer species whose relative populations are affected by glycerol content. This information is crucial for quantitative analysis of distance distributions involving proteins that may exist as mixtures of monomer, dimer and high order multimers under the conditions of the DEER EPR experiment.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Rodolfo Ghirlando
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - James Baber
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
55
|
Edwards TH, Stoll S. A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:87-97. [PMID: 27414762 PMCID: PMC4996738 DOI: 10.1016/j.jmr.2016.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 05/05/2023]
Abstract
Double Electron-Electron Resonance (DEER) spectroscopy is a solid-state pulse Electron Paramagnetic Resonance (EPR) experiment that measures distances between unpaired electrons, most commonly between protein-bound spin labels separated by 1.5-8nm. From the experimental data, a distance distribution P(r) is extracted using Tikhonov regularization. The disadvantage of this method is that it does not directly provide error bars for the resulting P(r), rendering correct interpretation difficult. Here we introduce a Bayesian statistical approach that quantifies uncertainty in P(r) arising from noise and numerical regularization. This method provides credible intervals (error bars) of P(r) at each r. This allows practitioners to answer whether or not small features are significant, whether or not apparent shoulders are significant, and whether or not two distance distributions are significantly different from each other. In addition, the method quantifies uncertainty in the regularization parameter.
Collapse
Affiliation(s)
- Thomas H Edwards
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States.
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98103, United States.
| |
Collapse
|
56
|
Schöps P, Plackmeyer J, Marko A. Separation of intra- and intermolecular contributions to the PELDOR signal. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:70-77. [PMID: 27243966 DOI: 10.1016/j.jmr.2016.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Pulsed Electron-electron Double Resonance (PELDOR) is commonly used to measure distances between native paramagnetic centers or spin labels attached to complex biological macromolecules. In PELDOR the energies of electron magnetic dipolar interactions are measured by analyzing the oscillation frequencies of the recorded time resolved signal. Since PELDOR is an ensemble method, the detected signal contains contributions from intramolecular, as well as intermolecular electron spin interactions. The intramolecular part of the signal contains the information about the structure of the studied molecules, thus it is very important to accurately separate intra- and intermolecular contributions to the total signal. This separation can become ambiguous, when the length of the PELDOR signal is not much longer than twice the oscillation period of the signal. In this work we suggest a modulation depth scaling method, which can use short PELDOR signals in order to extract the intermolecular contribution. Using synthetic data we demonstrate the advantages of the new approach and analyze its stability with regard to signal noise. The method was also successfully tested on experimental data of three systems measured at Q-Band frequencies, two model compounds in deuterated and protonated solvents and one biological sample, namely BetP. The application of the new method with an assigned value of the signal modulation depth enables us to determine the interspin distances in all cases. This is especially interesting for the model compound with an interspin distance of 5.2nm in the protonated solvent and the biological sample, since an accurate separation of the intra- and intermolecular PELDOR signal contributions would be difficult with the standard approach in those cases.
Collapse
Affiliation(s)
- Philipp Schöps
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Jörn Plackmeyer
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Andriy Marko
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
57
|
Kuzhelev AA, Strizhakov RK, Krumkacheva OA, Polienko YF, Morozov DA, Shevelev GY, Pyshnyi DV, Kirilyuk IA, Fedin MV, Bagryanskaya EG. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 266:1-7. [PMID: 26987109 DOI: 10.1016/j.jmr.2016.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/04/2016] [Accepted: 02/29/2016] [Indexed: 05/24/2023]
Abstract
Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T=80-300K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180K) becomes negligible at 300K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Rodion K Strizhakov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Denis A Morozov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Georgiy Yu Shevelev
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave. 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
58
|
Doll A, Jeschke G. EPR-correlated dipolar spectroscopy by Q-band chirp SIFTER. Phys Chem Chem Phys 2016; 18:23111-20. [DOI: 10.1039/c6cp03067j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frequency-swept chirp pulses uniformly excite the nitroxide spectrum at Q-band frequencies, which allows for acquisition of two-dimensional spectra correlating the dipolar spectrum to the EPR spectrum.
Collapse
Affiliation(s)
- Andrin Doll
- Laboratory of Physical Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
59
|
Akhmetzyanov D, Ching HYV, Denysenkov V, Demay-Drouhard P, Bertrand HC, Tabares LC, Policar C, Prisner TF, Un S. RIDME spectroscopy on high-spin Mn2+ centers. Phys Chem Chem Phys 2016; 18:30857-30866. [DOI: 10.1039/c6cp05239h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A bis-MnDOTA complex was investigated by EPR dipolar spectroscopy. RIDME experiment revealed higher modulation depth compared to PELDOR and featured harmonics of the dipolar coupling frequency.
Collapse
Affiliation(s)
- D. Akhmetzyanov
- Goethe-University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - H. Y. V. Ching
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology, Université Paris-Saclay
- CEA
- CNRS UMR 9198
| | - V. Denysenkov
- Goethe-University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - P. Demay-Drouhard
- Département de Chimie
- Ecole Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
| | - H. C. Bertrand
- Département de Chimie
- Ecole Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
| | - L. C. Tabares
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology, Université Paris-Saclay
- CEA
- CNRS UMR 9198
| | - C. Policar
- Département de Chimie
- Ecole Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
| | - T. F. Prisner
- Goethe-University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - S. Un
- Institute for Integrative Biology of the Cell (I2BC)
- Department of Biochemistry
- Biophysics and Structural Biology, Université Paris-Saclay
- CEA
- CNRS UMR 9198
| |
Collapse
|
60
|
Bowen AM, Jones MW, Lovett JE, Gaule TG, McPherson MJ, Dilworth JR, Timmel CR, Harmer JR. Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(ii) centres. Phys Chem Chem Phys 2016; 18:5981-94. [DOI: 10.1039/c5cp06096f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of orientation-selective DEER measurements using Cu(ii) centres in a series of molecules demonstrates its limits and capabilities in structure elucidation.
Collapse
Affiliation(s)
- Alice M. Bowen
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
- Institute of Physical and Theoretical Chemistry
| | - Michael W. Jones
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
| | - Janet E. Lovett
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
- SUPA
| | - Thembanikosi G. Gaule
- Astbury Centre for Structural Molecular Biology
- Institute of Molecular and Cellular Biology
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
| | - Michael J. McPherson
- Astbury Centre for Structural Molecular Biology
- Institute of Molecular and Cellular Biology
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
| | | | | | - Jeffrey R. Harmer
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
- Centre for Advanced Imaging
| |
Collapse
|
61
|
Spindler PE, Waclawska I, Endeward B, Plackmeyer J, Ziegler C, Prisner TF. Carr-Purcell Pulsed Electron Double Resonance with Shaped Inversion Pulses. J Phys Chem Lett 2015; 6:4331-5. [PMID: 26538047 DOI: 10.1021/acs.jpclett.5b01933] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) spectroscopy allows the determination of distances, in the range of 1.5-8 nm, between two spin-labels attached to macromolecules containing protons. Unfortunately, for hydrophobic lipid-bound or detergent-solubilized membrane proteins, the maximum distance accessible is much lower, because of a strongly reduced coherence time of the electron spins. Here we introduce a pulse sequence, based on a Carr-Purcell decoupling scheme on the observer spin, where each π-pulse is accompanied by a shaped sech/tanh inversion pulse applied to the second spin, to overcome this limitation. This pump/probe excitation scheme efficiently recouples the dipolar interaction, allowing a substantially longer observation time window to be achieved. This increases the upper limit and accuracy of distances that can be determined in membrane protein complexes. We validated the method on a bis-nitroxide model compound and applied this technique to the trimeric betaine transporter BetP. Interprotomer distances as long as 6 nm could be reliably determined, which is impossible with the existing methods.
Collapse
Affiliation(s)
- Philipp E Spindler
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University Frankfurt , 60323 Frankfurt, Germany
| | | | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University Frankfurt , 60323 Frankfurt, Germany
| | - Jörn Plackmeyer
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University Frankfurt , 60323 Frankfurt, Germany
| | - Christine Ziegler
- Max-Planck Institute for Biophysics , 60438 Frankfurt, Germany
- Institute of Biophysics and Physical Biochemistry, University of Regensburg , 93053 Regensburg, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University Frankfurt , 60323 Frankfurt, Germany
| |
Collapse
|
62
|
Akhmetzyanov D, Schöps P, Marko A, Kunjir NC, Sigurdsson ST, Prisner TF. Pulsed EPR dipolar spectroscopy at Q- and G-band on a trityl biradical. Phys Chem Chem Phys 2015; 17:24446-51. [PMID: 26339694 DOI: 10.1039/c5cp03671b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulsed electron paramagnetic resonance (EPR) spectroscopy is a valuable technique for the precise determination of distances between paramagnetic spin labels that are covalently attached to macromolecules. Nitroxides have commonly been utilised as paramagnetic tags for biomolecules, but trityl radicals have recently been developed as alternative spin labels. Trityls exhibit longer electron spin relaxation times and higher stability than nitroxides under in vivo conditions. So far, trityl radicals have only been used in pulsed EPR dipolar spectroscopy (PDS) at X-band (9.5 GHz), Ku-band (17.2 GHz) and Q-band (34 GHz) frequencies. In this study we investigated a trityl biradical by PDS at Q-band (34 GHz) and G-band (180 GHz) frequencies. Due to the small spectral width of the trityl (30 MHz) at Q-band frequencies, single frequency PDS techniques, like double-quantum coherence (DQC) and single frequency technique for refocusing dipolar couplings (SIFTER), work very efficiently. Hence, Q-band DQC and SIFTER experiments were performed and the results were compared; yielding a signal to noise ratio for SIFTER four times higher than that for DQC. At G-band frequencies the resolved axially symmetric g-tensor anisotropy of the trityl exhibited a spectral width of 130 MHz. Thus, pulsed electron electron double resonance (PELDOR/DEER) obtained at different pump-probe positions across the spectrum was used to reveal distances. Such a multi-frequency approach should also be applicable to determine structural information on biological macromolecules tagged with trityl spin labels.
Collapse
Affiliation(s)
- D Akhmetzyanov
- Goethe-University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
63
|
Endeward B, Marko A, Denysenkov VP, Sigurdsson ST, Prisner TF. Advanced EPR Methods for Studying Conformational Dynamics of Nucleic Acids. Methods Enzymol 2015; 564:403-25. [PMID: 26477259 DOI: 10.1016/bs.mie.2015.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) spectroscopy has become an important tool for structural characterization of biomolecules allowing measurement of the distances between two paramagnetic spin labels attached to a biomolecule in the 2-8 nm range. In this chapter, we will focus on applications of this approach to investigate tertiary structure elements as well as conformational dynamics of nucleic acid molecules. Both aspects take advantage of using specific spin labels that are rigidly attached to the nucleobases, as they allow obtaining not only the distance but also the relative orientation between both nitroxide moieties with high accuracy. Thus, not only the distance but additionally the three Euler angles between both the nitroxide axis systems and the two polar angles of the interconnecting vector with respect to the nitroxide axis systems can be extracted from a single pair of spin labels. To extract all these parameters independently and unambiguously, a set of multifrequency/multifield pulsed EPR experiments have to be performed. We will describe the experimental procedure as well as newly developed spin labels, which are helpful to disentangle all these parameters, and tools which we have developed to analyze such data sets. The procedures and analyses will be illustrated by examples from our laboratory.
Collapse
Affiliation(s)
- B Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - V P Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - S Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Reykjavık, Iceland
| | - T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
64
|
Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Trukhin DV, Rogozhnikova OY, Tormyshev VM, Pyshnyi DV, Fedin MV, Bagryanskaya EG. Triarylmethyl Labels: Toward Improving the Accuracy of EPR Nanoscale Distance Measurements in DNAs. J Phys Chem B 2015; 119:13641-8. [PMID: 26011022 DOI: 10.1021/acs.jpcb.5b03026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triarylmethyl (trityl, TAM) based spin labels represent a promising alternative to nitroxides for EPR distance measurements in biomolecules. Herewith, we report synthesis and comparative study of series of model DNA duplexes, 5'-spin-labeled with TAMs and nitroxides. We have found that the accuracy (width) of distance distributions obtained by double electron-electron resonance (DEER/PELDOR) strongly depends on the type of radical. Replacement of both nitroxides by TAMs in the same spin-labeled duplex allows narrowing of the distance distributions by a factor of 3. Replacement of one nitroxide by TAM (orthogonal labeling) leads to a less pronounced narrowing but at the same time gains sensitivity in DEER experiment due to efficient pumping on the narrow EPR line of TAM. Distance distributions in nitroxide/nitroxide pairs are influenced by the structure of the linker: the use of a short amine-based linker improves the accuracy by a factor of 2. At the same time, a negligible dependence on the linker length is found for the distribution width in TAM/TAM pairs. Molecular dynamics calculations indicate greater conformational disorder of nitroxide labels compared to TAM ones, thus rationalizing the experimentally observed trends. Thereby, we conclude that double spin-labeling using TAMs allows obtaining narrower spin-spin distance distributions and potentially more precise distances between labeling sites compared to traditional nitroxides.
Collapse
Affiliation(s)
- Georgiy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Dmitry V Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Olga Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|
65
|
Meir A, Natan A, Moskovitz Y, Ruthstein S. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Metallomics 2015; 7:1163-72. [PMID: 25940871 DOI: 10.1039/c5mt00053j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper plays a key role in all living organisms by serving as a cofactor for a large variety of proteins and enzymes involved in electron transfer, oxidase and oxygenase activities, and the detoxification of oxygen radicals. Due to its toxicity, a conserved homeostasis mechanism is required. In E. coli, the CusCFBA efflux system is a copper-regulating system and is responsible for transferring Cu(I) and Ag(I) out of the periplasm domain into the extracellular domain. Two of the components of this efflux system, the CusF metallochaperone and the N-terminal domain of CusB, have been thought to play significant roles in the function of this efflux system. Resolving the metal ion transport mechanism through this efflux system is vital for understanding metal- and multidrug-resistant microorganisms. This work explores one aspect of the E. coli resistance mechanism by observing the interaction between the N-terminal domain of CusB and the CusF protein, using electron paramagnetic resonance (EPR) spectroscopy, circular dichroism (CD), and chemical cross-linking. The data summarized here show that M36 and M38 of CusB are important residues for both the Cu(I) coordination to the CusB N-terminal domain and the interaction with CusF, and K32 is essential for the interaction with CusF. In contrast, the K29 residue is less consequential for the interaction with CusF, whereas M21 is mostly important for the proper interaction with CusF.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | | | | | | |
Collapse
|
66
|
Baber JL, Louis JM, Clore GM. Dependence of distance distributions derived from double electron-electron resonance pulsed EPR spectroscopy on pulse-sequence time. Angew Chem Int Ed Engl 2015; 54:5336-9. [PMID: 25757985 PMCID: PMC4412742 DOI: 10.1002/anie.201500640] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/10/2015] [Indexed: 11/06/2022]
Abstract
Pulsed double electron-electron resonance (DEER) provides pairwise P(r) distance distributions in doubly spin labeled proteins. We report that in protonated proteins, P(r) is dependent on the length of the second echo period T owing to local environmental effects on the spin-label phase memory relaxation time Tm . For the protein ABD, this effect results in a 1.4 Å increase in the P(r) maximum from T=6 to 20 μs. Protein A has a bimodal P(r) distribution, and the relative height of the shorter distance peak at T=10 μs, the shortest value required to obtain a reliable P(r), is reduced by 40 % relative to that found by extrapolation to T=0. Our results indicate that data at a series of T values are essential for quantitative interpretation of DEER to determine the extent of the T dependence and to extrapolate the results to T=0. Complete deuteration (99 %) of the protein was accompanied by a significant increase in Tm and effectively abolished the P(r) dependence on T.
Collapse
Affiliation(s)
- James L. Baber
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - John M. Louis
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - G. Marius Clore
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| |
Collapse
|
67
|
Baber JL, Louis JM, Clore GM. Dependence of Distance Distributions Derived from Double Electron-Electron Resonance Pulsed EPR Spectroscopy on Pulse-Sequence Time. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Prisner TF, Marko A, Sigurdsson ST. Conformational dynamics of nucleic acid molecules studied by PELDOR spectroscopy with rigid spin labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:187-98. [PMID: 25701439 DOI: 10.1016/j.jmr.2014.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 05/22/2023]
Abstract
Nucleic acid molecules can adopt a variety of structures and exhibit a large degree of conformational flexibility to fulfill their various functions in cells. Here we describe the use of Pulsed Electron-Electron Double Resonance (PELDOR or DEER) to investigate nucleic acid molecules where two cytosine analogs have been incorporated as spin probes. Because these new types of spin labels are rigid and incorporated into double stranded DNA and RNA molecules, there is no additional flexibility of the spin label itself present. Therefore the magnetic dipole-dipole interaction between both spin labels encodes for the distance as well as for the mutual orientation between the spin labels. All of this information can be extracted by multi-frequency/multi-field PELDOR experiments, which gives very precise and valuable information about the structure and conformational flexibility of the nucleic acid molecules. We describe in detail our procedure to obtain the conformational ensembles and show the accuracy and limitations with test examples and application to double-stranded DNA.
Collapse
Affiliation(s)
- T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany.
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany
| | - S Th Sigurdsson
- Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
69
|
The guanine nucleotide exchange factor Ric-8A induces domain separation and Ras domain plasticity in Gαi1. Proc Natl Acad Sci U S A 2015; 112:1404-9. [PMID: 25605908 DOI: 10.1073/pnas.1423878112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heterotrimeric G proteins are activated by exchange of GDP for GTP at the G protein alpha subunit (Gα), most notably by G protein-coupled transmembrane receptors. Ric-8A is a soluble cytoplasmic protein essential for embryonic development that acts as both a guanine nucleotide exchange factor (GEF) and a chaperone for Gα subunits of the i, q, and 12/13 classes. Previous studies demonstrated that Ric-8A stabilizes a dynamically disordered state of nucleotide-free Gα as the catalytic intermediate for nucleotide exchange, but no information was obtained on the structures involved or the magnitude of the structural fluctuations. In the present study, site-directed spin labeling (SDSL) together with double electron-electron resonance (DEER) spectroscopy is used to provide global distance constraints that identify discrete members of a conformational ensemble in the Gαi1:Ric-8A complex and the magnitude of structural differences between them. In the complex, the helical and Ras-like nucleotide-binding domains of Gαi1 pivot apart to occupy multiple resolved states with displacements as large as 25 Å. The domain displacement appears to be distinct from that observed in Gαs upon binding of Gs to the β2 adrenergic receptor. Moreover, the Ras-like domain exhibits structural plasticity within and around the nucleotide-binding cavity, and the switch I and switch II regions, which are known to adopt different conformations in the GDP- and GTP-bound states of Gα, undergo structural rearrangements. Collectively, the data show that Ric-8A induces a conformationally heterogeneous state of Gαi and provide insight into the mechanism of action of a nonreceptor Gα GEF.
Collapse
|
70
|
Valera S, Bode BE. Strategies for the synthesis of yardsticks and abaci for nanometre distance measurements by pulsed EPR. Molecules 2014; 19:20227-56. [PMID: 25479188 PMCID: PMC6271543 DOI: 10.3390/molecules191220227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/19/2014] [Accepted: 11/27/2014] [Indexed: 01/18/2023] Open
Abstract
Pulsed electron paramagnetic resonance (EPR) techniques have been found to be efficient tools for the elucidation of structure in complex biological systems as they give access to distances in the nanometre range. These measurements can provide additional structural information such as relative orientations, structural flexibility or aggregation states. A wide variety of model systems for calibration and optimisation of pulsed experiments has been synthesised. Their design is based on mimicking biological systems or materials in specific properties such as the distances themselves and the distance distributions. Here, we review selected approaches to the synthesis of chemical systems bearing two or more spin centres, such as nitroxide or trityl radicals, metal ions or combinations thereof and outline their application in pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Silvia Valera
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK.
| |
Collapse
|
71
|
Razzaghi S, Qi M, Nalepa AI, Godt A, Jeschke G, Savitsky A, Yulikov M. RIDME Spectroscopy with Gd(III) Centers. J Phys Chem Lett 2014; 5:3970-5. [PMID: 26276479 DOI: 10.1021/jz502129t] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The relaxation induced dipolar modulation enhancement (RIDME) technique is applied at W-band microwave frequencies around 94 GHz to a pair of Gd(III) complexes that are connected by a rodlike spacer, and the extraction of the interspin distance distribution is discussed. A dipolar pattern derived from RIDME experimental data is a superposition of Pake-like dipolar patterns corresponding to the fundamental dipolar interaction and higher harmonics thereof. Intriguingly, the relative weights of the stretched patterns do not depend significantly on mixing time. As much larger modulation depths can be achieved than in double electron-electron resonance distance measurements at the same frequency, Gd(III)-Gd(III) RIDME may become attractive for structural characterization of biomacromolecules and biomolecular complexes.
Collapse
Affiliation(s)
- Sahand Razzaghi
- †Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Mian Qi
- ‡Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Anna I Nalepa
- §Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Adelheid Godt
- ‡Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Gunnar Jeschke
- †Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Anton Savitsky
- §Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Maxim Yulikov
- †Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
72
|
Perras FA, Bryce DL. Direct Characterization of Metal-Metal Bonds between Nuclei with Strong Quadrupolar Interactions via NMR Spectroscopy. J Phys Chem Lett 2014; 5:4049-4054. [PMID: 26276493 DOI: 10.1021/jz5023448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metal-metal bonds can be difficult to characterize directly. We demonstrate that J couplings between metal nuclei experiencing strong quadrupolar interactions can be easily measured from well-defined splittings in NMR spectra of powdered samples. Using (69/71)Ga NMR, it is shown that homonuclear J coupling, which is four orders of magnitude smaller than the quadrupolar coupling in a series of compounds featuring gallium-gallium bonds, can be extracted with a 2-D NMR experiment. The dependence of the multiplets on crystal symmetry reveals information on the structures of two Ga-Ga-bonded compounds for which diffraction data are unavailable. Interpretation of the data in a molecular orbital framework provides insight into the nature of the metal-metal bond.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry and CCRI, University of Ottawa, 10 Marie Curie Pvt. D'Iorio Hall, Ottawa, Ontario K1N6N5, Canada
| | - David L Bryce
- Department of Chemistry and CCRI, University of Ottawa, 10 Marie Curie Pvt. D'Iorio Hall, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
73
|
New developments in spin labels for pulsed dipolar EPR. Molecules 2014; 19:16998-7025. [PMID: 25342554 PMCID: PMC6271499 DOI: 10.3390/molecules191016998] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.
Collapse
|
74
|
Serbyn M, Knap M, Gopalakrishnan S, Papić Z, Yao NY, Laumann CR, Abanin DA, Lukin MD, Demler EA. Interferometric probes of many-body localization. PHYSICAL REVIEW LETTERS 2014; 113:147204. [PMID: 25325656 DOI: 10.1103/physrevlett.113.147204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 06/04/2023]
Abstract
We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems.
Collapse
Affiliation(s)
- M Serbyn
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - M Knap
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
| | - S Gopalakrishnan
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Z Papić
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada and Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
| | - N Y Yao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - C R Laumann
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - D A Abanin
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada and Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada
| | - M D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - E A Demler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
75
|
Grinolds MS, Warner M, De Greve K, Dovzhenko Y, Thiel L, Walsworth RL, Hong S, Maletinsky P, Yacoby A. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. NATURE NANOTECHNOLOGY 2014; 9:279-284. [PMID: 24658168 DOI: 10.1038/nnano.2014.30] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of micrometres, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous 'dark' spins, which constitute nearly all spin targets of interest. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of electronic spins at the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover electronic spins on the diamond surface that can potentially be used as resources for improved magnetic imaging. This NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of spin-based quantum bits, and determining the location of spin labels in biological systems.
Collapse
Affiliation(s)
- M S Grinolds
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - M Warner
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - K De Greve
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Y Dovzhenko
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - L Thiel
- 1] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland
| | - R L Walsworth
- 1] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - S Hong
- Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - P Maletinsky
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland
| | - A Yacoby
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
76
|
Ji M, Ruthstein S, Saxena S. Paramagnetic metal ions in pulsed ESR distance distribution measurements. Acc Chem Res 2014; 47:688-95. [PMID: 24289139 DOI: 10.1021/ar400245z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of pulsed electron spin resonance (ESR) to measure interspin distance distributions has advanced biophysical research. The three major techniques that use pulsed ESR are relaxation rate based distance measurements, double quantum coherence (DQC), and double electron electron resonance (DEER). Among these methods, the DEER technique has become particularly popular largely because it is easy to implement on commercial instruments and because programs are available to analyze experimental data. Researchers have widely used DEER to measure the structure and conformational dynamics of molecules labeled with the methanethiosulfonate spin label (MTSSL). Recently, researchers have exploited endogenously bound paramagnetic metal ions as spin probes as a way to determine structural constraints in metalloproteins. In this context Cu(2+) has served as a useful paramagnetic metal probe at X-band for DEER based distance measurements. Sample preparation is simple, and a coordinated-Cu(2+) ion offers limited spatial flexibility, making it an attractive probe for DEER experiments. On the other hand, Cu(2+) has a broad absorption ESR spectrum at low temperature, which leads to two potential complications. First, the Cu(2+)-based DEER time domain data has lower signal to noise ratio compared with MTSSL. Second, accurate distance distribution analysis often requires high-quality experimental data at different external magnetic fields or with different frequency offsets. In this Account, we summarize characteristics of Cu(2+)-based DEER distance distribution measurements and data analysis methods. We highlight a novel application of such measurements in a protein-DNA complex to identify the metal ion binding site and to elucidate its chemical mechanism of function. We also survey the progress of research on other metal ions in high frequency DEER experiments.
Collapse
Affiliation(s)
- Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
77
|
Goldfarb D. Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy. Phys Chem Chem Phys 2014; 16:9685-99. [DOI: 10.1039/c3cp53822b] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
78
|
Kattnig DR, Reichenwallner J, Hinderberger D. Modeling Excluded Volume Effects for the Faithful Description of the Background Signal in Double Electron–Electron Resonance. J Phys Chem B 2013; 117:16542-57. [DOI: 10.1021/jp408338q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jörg Reichenwallner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| |
Collapse
|
79
|
Möbius K, Lubitz W, Savitsky A. High-field EPR on membrane proteins - crossing the gap to NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:1-49. [PMID: 24160760 DOI: 10.1016/j.pnmrs.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented.
Collapse
Affiliation(s)
- Klaus Möbius
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany; Department of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
80
|
Tsvetkov YD. Nitroxyls and PELDOR: Nitroxyl radicals in pulsed electron-electron double resonance spectroscopy. J STRUCT CHEM+ 2013. [DOI: 10.1134/s0022476613070044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Milov AD, Tsvetkov YD, De Zotti M, Prinzivalli C, Biondi B, Formaggio F, Toniolo C, Gobbo M. Aggregation modes of the spin mono-labeled tylopeptin B and heptaibin peptaibiotics in frozen solutions of weak polarity as studied by PELDOR spectroscopy. J STRUCT CHEM+ 2013. [DOI: 10.1134/s0022476613070056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
82
|
Giannoulis A, Ward R, Branigan E, Naismith JH, Bode BE. PELDOR in rotationally symmetric homo-oligomers. Mol Phys 2013; 111:2845-2854. [PMID: 24954956 PMCID: PMC4056887 DOI: 10.1080/00268976.2013.798697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/12/2013] [Indexed: 12/24/2022]
Abstract
Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Richard Ward
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Emma Branigan
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| |
Collapse
|
83
|
Myers WK, Xu X, Li C, Lagerstedt JO, Budamagunta MS, Voss JC, Britt RD, Ames JB. Double electron-electron resonance probes Ca²⁺-induced conformational changes and dimerization of recoverin. Biochemistry 2013; 52:5800-8. [PMID: 23906368 DOI: 10.1021/bi400538w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, is expressed in retinal photoreceptor cells and serves as a calcium sensor in vision. Ca²⁺-induced conformational changes in recoverin cause extrusion of its covalently attached myristate (termed Ca²⁺-myristoyl switch) that promotes translocation of recoverin to disk membranes during phototransduction in retinal rod cells. Here we report double electron-electron resonance (DEER) experiments on recoverin that probe Ca²⁺-induced changes in distance as measured by the dipolar coupling between spin-labels strategically positioned at engineered cysteine residues on the protein surface. The DEER distance between nitroxide spin-labels attached at C39 and N120C is 2.5 ± 0.1 nm for Ca²⁺-free recoverin and 3.7 ± 0.1 nm for Ca²⁺-bound recoverin. An additional DEER distance (5-6 nm) observed for Ca²⁺-bound recoverin may represent an intermolecular distance between C39 and N120. ¹⁵N NMR relaxation analysis and CW-EPR experiments both confirm that Ca²⁺-bound recoverin forms a dimer at protein concentrations above 100 μM, whereas Ca²⁺-free recoverin is monomeric. We propose that Ca²⁺-induced dimerization of recoverin at the disk membrane surface may play a role in regulating Ca²⁺-dependent phosphorylation of dimeric rhodopsin. The DEER approach will be useful for elucidating dimeric structures of NCS proteins in general for which Ca²⁺-induced dimerization is functionally important but not well understood.
Collapse
Affiliation(s)
- William K Myers
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Doll A, Pribitzer S, Tschaggelar R, Jeschke G. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:27-39. [PMID: 23434533 DOI: 10.1016/j.jmr.2013.01.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 05/12/2023]
Abstract
We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small.
Collapse
Affiliation(s)
- Andrin Doll
- ETH Zurich, Laboratory of Physical Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
85
|
Spindler PE, Glaser SJ, Skinner TE, Prisner TF. Broadband Inversion PELDOR Spectroscopy with Partially Adiabatic Shaped Pulses. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
86
|
Spindler PE, Glaser SJ, Skinner TE, Prisner TF. Broadband inversion PELDOR spectroscopy with partially adiabatic shaped pulses. Angew Chem Int Ed Engl 2013; 52:3425-9. [PMID: 23424088 DOI: 10.1002/anie.201207777] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp E Spindler
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum, Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
87
|
Tkach I, Pornsuwan S, Höbartner C, Wachowius F, Sigurdsson ST, Baranova TY, Diederichsen U, Sicoli G, Bennati M. Orientation selection in distance measurements between nitroxide spin labels at 94 GHz EPR with variable dual frequency irradiation. Phys Chem Chem Phys 2013; 15:3433-7. [PMID: 23381580 DOI: 10.1039/c3cp44415e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulsed electron-electron double resonance (PELDOR, also known as DEER) has become a method of choice to measure distances in biomolecules. In this work we show how the performance of the method can be improved at high EPR frequencies (94 GHz) using variable dual frequency irradiation in a dual mode cavity in order to obtain enhanced resolution toward orientation selection. Dipolar evolution traces of a representative RNA duplex and an α-helical peptide were analysed in terms of possible bi-radical structures by considering the inherent ambiguity of symmetry-related solutions.
Collapse
Affiliation(s)
- Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kaminker I, Tkach I, Manukovsky N, Huber T, Yagi H, Otting G, Bennati M, Goldfarb D. W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 227:66-71. [PMID: 23314001 DOI: 10.1016/j.jmr.2012.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Double electron-electron resonance (DEER) at W-band (95 GHz) was applied to measure the distance between a pair of nitroxide and Gd(3+) chelate spin labels, about 6 nm apart, in a homodimer of the protein ERp29. While high-field DEER measurements on systems with such mixed labels can be highly attractive in terms of sensitivity and the potential to access long distances, a major difficulty arises from the large frequency spacing (about 700 MHz) between the narrow, intense signal of the Gd(3+) central transition and the nitroxide signal. This is particularly problematic when using standard single-mode cavities. Here we show that a novel dual-mode cavity that matches this large frequency separation dramatically increases the sensitivity of DEER measurements, allowing evolution times as long as 12 μs in a protein. This opens the possibility of accessing distances of 8 nm and longer. In addition, orientation selection can be resolved and analyzed, thus providing additional structural information. In the case of W-band DEER on a Gd(3+)-nitroxide pair, only two angles and their distributions have to be determined, which is a much simpler problem to solve than the five angles and their distributions associated with two nitroxide spin labels.
Collapse
Affiliation(s)
- Ilia Kaminker
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Orientation-Selective DEER Using Rigid Spin Labels, Cofactors, Metals, and Clusters. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2013_115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
90
|
Borbat PP, Freed JH. Pulse Dipolar Electron Spin Resonance: Distance Measurements. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2012_82] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
91
|
Lovett JE, Lovett BW, Harmer J. DEER-Stitch: combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:98-106. [PMID: 22975240 DOI: 10.1016/j.jmr.2012.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Over approximately the last 15 years the electron paramagnetic resonance (EPR) technique of double electron electron resonance (DEER) has attracted considerable attention since it allows for the precise measurement of the dipole-dipole coupling between radicals and thus can lead to distance information between pairs of radicals separated by up to ca. 8 nm. The "deadtime free" 4-pulse DEER sequence is widely used but can suffer from poor sensitivity if the electron spin-echo decays too quickly to allow collection of a sufficiently long time trace. In this paper we present a method which takes advantage of the much greater sensitivity that the 3-pulse sequence offers over the 4-pulse sequence since the measured electron spin-echo intensity (for equal sequence lengths) is greater. By combining 3- and 4-pulse DEER time traces using a method coined DEER-Stitch (DEERS) accurate dipole-dipole coupling measurements can be made which combine the sensitivity of the 3-pulse DEER sequence with the deadtime free advantage of the 4-pulse DEER sequence. To develop the DEER-Stitch method three systems were measured: a semi-rigid bis-nitroxide labeled nanowire, the bis-nitroxide labeled protein CD55 with a distance between labels of almost 8 nm and a dimeric copper amine oxidase from Arthrobacter globiformis (AGAO).
Collapse
Affiliation(s)
- J E Lovett
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
92
|
Mokdad A, Herrick DZ, Kahn AK, Andrews E, Kim M, Cafiso DS. Ligand-induced structural changes in the Escherichia coli ferric citrate transporter reveal modes for regulating protein-protein interactions. J Mol Biol 2012; 423:818-30. [PMID: 22982293 DOI: 10.1016/j.jmb.2012.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Outer-membrane TonB-dependent transporters, such as the Escherichia coli ferric citrate transporter FecA, interact with the inner-membrane protein TonB through an energy-coupling segment termed the Ton box. In FecA, which regulates its own transcription, the Ton box is preceded by an N-terminal extension that interacts with the inner-membrane protein FecR. Here, site-directed spin labeling was used to examine the structural basis for transcriptional signaling and Ton box regulation in FecA. EPR spectroscopy indicates that regions of the N-terminal domain are in conformational exchange, consistent with its role as a protein binding element; however, the local fold and dynamics of the domain are not altered by substrate or TonB. Distance restraints derived from pulse EPR were used to generate models for the position of the extension in the apo, substrate-, and TonB-bound states. In the apo state, this domain is positioned at the periplasmic surface of FecA, where it interacts with the Ton box and blocks access of the Ton box to the periplasm. Substrate addition rotates the transcriptional domain and exposes the Ton box, leading to a disorder transition in the Ton box that may facilitate interactions with TonB. When a soluble fragment of TonB is bound to FecA, the transcriptional domain is displaced to one edge of the barrel, consistent with a proposed β-strand exchange mechanism. However, neither substrate nor TonB displaces the N-terminus further into the periplasm. This result suggests that the intact TonB system mediates both signaling and transport by unfolding portions of the transporter.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, VA 22904-4319, USA
| | | | | | | | | | | |
Collapse
|
93
|
Mamonov AB, Lettieri S, Ding Y, Sarver JL, Palli R, Cunningham TF, Saxena S, Zuckerman DM. Tunable, mixed-resolution modeling using library-based Monte Carlo and graphics processing units. J Chem Theory Comput 2012; 8:2921-2929. [PMID: 23162384 PMCID: PMC3496292 DOI: 10.1021/ct300263z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Building on our recently introduced library-based Monte Carlo (LBMC) approach, we describe a flexible protocol for mixed coarse-grained (CG)/all-atom (AA) simulation of proteins and ligands. In the present implementation of LBMC, protein side chain configurations are pre-calculated and stored in libraries, while bonded interactions along the backbone are treated explicitly. Because the AA side chain coordinates are maintained at minimal run-time cost, arbitrary sites and interaction terms can be turned on to create mixed-resolution models. For example, an AA region of interest such as a binding site can be coupled to a CG model for the rest of the protein. We have additionally developed a hybrid implementation of the generalized Born/surface area (GBSA) implicit solvent model suitable for mixed-resolution models, which in turn was ported to a graphics processing unit (GPU) for faster calculation. The new software was applied to study two systems: (i) the behavior of spin labels on the B1 domain of protein G (GB1) and (ii) docking of randomly initialized estradiol configurations to the ligand binding domain of the estrogen receptor (ERα). The performance of the GPU version of the code was also benchmarked in a number of additional systems.
Collapse
|
94
|
End-to-End Distance Determination in a Cucurbit[6]uril-Based Rotaxane by PELDOR Spectroscopy. Chemphyschem 2012; 13:2659-61. [DOI: 10.1002/cphc.201200103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Indexed: 11/07/2022]
|
95
|
Brandon S, Beth AH, Hustedt EJ. The global analysis of DEER data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 218:93-104. [PMID: 22578560 PMCID: PMC3608411 DOI: 10.1016/j.jmr.2012.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 05/11/2023]
Abstract
Double Electron-Electron Resonance (DEER) has emerged as a powerful technique for measuring long range distances and distance distributions between paramagnetic centers in biomolecules. This information can then be used to characterize functionally relevant structural and dynamic properties of biological molecules and their macromolecular assemblies. Approaches have been developed for analyzing experimental data from standard four-pulse DEER experiments to extract distance distributions. However, these methods typically use an a priori baseline correction to account for background signals. In the current work an approach is described for direct fitting of the DEER signal using a model for the distance distribution which permits a rigorous error analysis of the fitting parameters. Moreover, this approach does not require a priori background correction of the experimental data and can take into account excluded volume effects on the background signal when necessary. The global analysis of multiple DEER data sets is also demonstrated. Global analysis has the potential to provide new capabilities for extracting distance distributions and additional structural parameters in a wide range of studies.
Collapse
Affiliation(s)
| | | | - Eric J. Hustedt
- Corresponding author. Address: 735B Light Hall, Vanderbilt University, Nashville, TN 37232, United States. (E.J. Hustedt)
| |
Collapse
|
96
|
Abé C, Klose D, Dietrich F, Ziegler WH, Polyhach Y, Jeschke G, Steinhoff HJ. Orientation selective DEER measurements on vinculin tail at X-band frequencies reveal spin label orientations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:53-61. [PMID: 22285633 DOI: 10.1016/j.jmr.2011.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 05/22/2023]
Abstract
Double electron electron resonance (DEER) spectroscopy has been established as a valuable method to determine distances between spin labels bound to protein molecules. Caused by selective excitation of molecular orientations DEER primary data also depend on the mutual orientation of the spin labels. For a doubly spin labeled variant of the cytoskeletal protein vinculin tail strong orientation selection can be observed already at X-band frequencies, which allows us to reduce the problem to the relative orientation of two molecular axes and the spin-spin axis parameterized by three angles. A full grid search of parameter space reveals that the DEER experiment introduces parameter-space symmetry higher than the symmetry of the spin Hamiltonian. Thus, the number of equivalent parameter sets is twice as large as expected and the relative orientation of the two spin labels is ambiguous. Except for this inherent ambiguity the most probable relative orientation of the two spin labels can be determined with good confidence and moderate uncertainty by global fitting of a set of five DEER experiments at different offsets between pump and observer frequency. The experiment provides restraints on the angles between the z axis of the nitroxide molecular frame and the spin-spin vector and on the dihedral between the two z axes. When using the same type of label at both sites, assignment of the angle restraints is ambiguous and the sign of the dihedral restraint is also ambiguous.
Collapse
Affiliation(s)
- Christoph Abé
- University of Osnabrück, Department of Physics, Barbarastr. 7, 49076 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Distance distributions between paramagnetic centers in the range of 1.8 to 6 nm in membrane proteins and up to 10 nm in deuterated soluble proteins can be measured by the DEER technique. The number of paramagnetic centers and their relative orientation can be characterized. DEER does not require crystallization and is not limited with respect to the size of the protein or protein complex. Diamagnetic proteins are accessible by site-directed spin labeling. To characterize structure or structural changes, experimental protocols were optimized and techniques for artifact suppression were introduced. Data analysis programs were developed, and it was realized that interpretation of the distance distributions must take into account the conformational distribution of spin labels. First methods have appeared for deriving structural models from a small number of distance constraints. The present scope and limitations of the technique are illustrated.
Collapse
Affiliation(s)
- Gunnar Jeschke
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Switzerland.
| |
Collapse
|
98
|
Metal-Based Spin Labeling for Distance Determination. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2012. [DOI: 10.1007/430_2011_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Kaminker I, Yagi H, Huber T, Feintuch A, Otting G, Goldfarb D. Spectroscopic selection of distance measurements in a protein dimer with mixed nitroxide and Gd3+ spin labels. Phys Chem Chem Phys 2012; 14:4355-8. [DOI: 10.1039/c2cp40219j] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
100
|
Polyhach Y, Bordignon E, Tschaggelar R, Gandra S, Godt A, Jeschke G. High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies. Phys Chem Chem Phys 2012; 14:10762-73. [DOI: 10.1039/c2cp41520h] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|