51
|
Jorge F, Bobbio T, da Silva A. Adapted Gaussian basis sets for the relativistic closed-shell atoms from helium to barium generated with the generator coordinate Dirac-Fock method. Chem Phys Lett 1996. [DOI: 10.1016/s0009-2614(96)01287-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Jorge FE, da Silva ABF. On the inclusion of the Breit interaction term in the closed‐shell generator coordinate Dirac–Fock formalism. J Chem Phys 1996. [DOI: 10.1063/1.472390] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
53
|
Jorge F, Silva AD. The generator coordinate Dirac–Fock method applied to beryllium-like atomic species. CAN J CHEM 1996. [DOI: 10.1139/v96-193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recently formulated generator coordinate Dirac–Fock method for relativistic closed-shell atoms is applied to the Be atom and Be-like ions Ne6+, Ar14+, and Sn46+ in order to assess its efficacy for light atomic systems. The Dirac–Fock equations are integrated numerically in the generator coordinate Dirac–Fock method so as to generate Gaussian basis sets for the atomic species under study. The results obtained with the application of the generator coordinate Dirac–Fock method in this work for Dirac–Fock–Coulomb and Dirac–Fock–Breit energies for Be-like ions are in excellent agreement with Declaux's benchmark numerical calculations, and are better than the Dirac–Fock–Coulomb and Dirac–Fock–Breit energies obtained with even-tempered Gaussian-type function calculations. For the Be atom, the Dirac–Fock–Coulomb energy result obtained with the generator coordinate Dirac–Fock method is lower than the corresponding value obtained with the Declaux's numerical finite-difference program. Key words: Dirac–Fock–Coulomb energy, Dirac–Fock–Breit energy, Gaussian basis sets, generator coordinate Dirac–Fock method.
Collapse
|
54
|
|
55
|
Cao X, Liao M, Chen X, Li B. Molecular symmetry andab initio calculations. II. Symmetry-matrix and symmetry-supermatrix in the Dirac-Fock method. J Comput Chem 1996. [DOI: 10.1002/(sici)1096-987x(199605)17:7<851::aid-jcc9>3.0.co;2-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
56
|
Jorge FE, da Silva ABF. A generator coordinate version of the closed‐shell Dirac–Fock equations. J Chem Phys 1996. [DOI: 10.1063/1.471288] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
57
|
Malli GL, Styszynski J. Ab initio all‐electron Dirac–Fock–Breit calculations for UF6. J Chem Phys 1996. [DOI: 10.1063/1.470825] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
58
|
Parpia FA, Mohanty AK. Dirac-Fock calculations for the ground states of some small molecules. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1995; 52:962-968. [PMID: 9912335 DOI: 10.1103/physreva.52.962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|