51
|
Egidi F, Williams-Young DB, Baiardi A, Bloino J, Scalmani G, Frisch MJ, Li X, Barone V. Effective Inclusion of Mechanical and Electrical Anharmonicity in Excited Electronic States: VPT2-TDDFT Route. J Chem Theory Comput 2017; 13:2789-2803. [PMID: 28453287 DOI: 10.1021/acs.jctc.7b00218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a reliable and cost-effective procedure for the inclusion of anharmonic effects in excited-state energies and spectroscopic intensities by means of second-order vibrational perturbation theory. This development is made possible thanks to a recent efficient implementation of excited-state analytic Hessians and properties within the time-dependent density functional theory framework. As illustrated in this work, by taking advantage of such algorithmic developments, it is possible to perform calculations of excited-state infrared spectra of medium-large isolated molecular systems, with anharmonicity effects included in both the energy and property surfaces. We also explore the use of this procedure for the inclusion of anharmonic effects in the simulation of vibronic bandshapes of electronic spectra and compare the results with previous, more approximate models.
Collapse
Affiliation(s)
- Franco Egidi
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - David B Williams-Young
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Alberto Baiardi
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Julien Bloino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR) , UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, Pisa 56124, Italy
| | - Giovanni Scalmani
- Gaussian, Inc. , 340 Quinnipiac St., Bldg. 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian, Inc. , 340 Quinnipiac St., Bldg. 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
52
|
Mendolicchio M, Penocchio E, Licari D, Tasinato N, Barone V. Development and Implementation of Advanced Fitting Methods for the Calculation of Accurate Molecular Structures. J Chem Theory Comput 2017; 13:3060-3075. [PMID: 28437115 DOI: 10.1021/acs.jctc.7b00279] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of dynamical and environmental effects in tuning their overall behavior. For this purpose the so-called semiexperimental approach, based on a nonlinear least-squares fit of the moments of inertia associated with a set of available isotopologues, allows one to obtain very accurate results, without the unfavorable computational cost characterizing high-level quantum chemical methods. In the present work the MSR (Molecular Structure Refinement) software for the determination of equilibrium structures by means of the semiexperimental approach is presented, and its implementation is discussed in some detail. The software, which is interfaced with a powerful graphical user interface, includes different optimization algorithms, an extended error analysis, and a number of advanced features, the most remarkable ones concerning the choice of internal coordinates and the method of predicate observations. In particular, a new black-box scheme for defining automatically a suitable set of nonredundant internal coordinates of A1 symmetry in place of the customary Z-matrix has been designed and tested. Finally, the implementation of the method of the predicate observations is discussed and validated for a set of test molecules. As an original application, the method is employed for the determination of the semiexperimental structure for the most stable conformer of glycine.
Collapse
Affiliation(s)
| | | | - Daniele Licari
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
53
|
Cannelli O, Giovannini T, Baiardi A, Carlotti B, Elisei F, Cappelli C. Understanding the interplay between the solvent and nuclear rearrangements in the negative solvatochromism of a push–pull flexible quinolinium cation. Phys Chem Chem Phys 2017; 19:32544-32555. [DOI: 10.1039/c7cp07104c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main effects (solvation, vibronic progression) affecting the band position and shape of a push–pull flexible quinolinium cation OPA are highlighted.
Collapse
Affiliation(s)
- Oliviero Cannelli
- Scuola Normale Superiore
- Pisa
- Italy
- Laboratoire de Spectroscopie Ultrarapide
- ISIC-FSB
| | | | | | - Benedetta Carlotti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- via Elce di Sotto 8
- 06123 Perugia
| | - Fausto Elisei
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- via Elce di Sotto 8
- 06123 Perugia
| | | |
Collapse
|
54
|
Cerezo J, Mazzeo G, Longhi G, Abbate S, Santoro F. Quantum-Classical Calculation of Vibronic Spectra along a Reaction Path: The Case of the ECD of Easily Interconvertible Conformers with Opposite Chiral Responses. J Phys Chem Lett 2016; 7:4891-4897. [PMID: 27934048 DOI: 10.1021/acs.jpclett.6b02484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel mixed method suitable for computing the low-to-middle resolution spectra of systems characterized by a large-amplitude motion s (defined by either a reaction or an internal path) coupled to a bath of harmonic oscillators r, which change with s. The method is based on an adiabatic approximation whereby s is considered much slower than r degrees of freedom and is treated classically. We show that the spectrum can be obtained by a suitable average of quantum vibronic spectra of the fast coordinates computed at representative values of the slow coordinate along the path. By our method we calculate the electronic circular dichroism (ECD) of 2,2,2-trifluoro-anthryl-ethanol, which possesses two conformers with opposite chirality separated by a low-energy barrier. Path-averaged spectra are significantly different from those obtained only at the stable minima: Agreement with experiment is improved. The method represents a generalization of those currently based on harmonic approximation.
Collapse
Affiliation(s)
- Javier Cerezo
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia , Viale Europa 11, I-25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia , Viale Europa 11, I-25123 Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia , Viale Europa 11, I-25123 Brescia, Italy
| | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
55
|
Monteiro JG, Barbosa AG. VSCF calculations for the intra- and intermolecular vibrational modes of the water dimer and its isotopologs. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
56
|
Cerezo J, Santoro F. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates. J Chem Theory Comput 2016; 12:4970-4985. [PMID: 27586086 DOI: 10.1021/acs.jctc.6b00442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q1-frame, where Q1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q1-frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal modes of initial and final states in adiabatic approaches. We highlight that such a dependence of G on s is also an issue in vertical models, due to the necessity to approximate the kinetic term in the Hamiltonian when setting up the so-called GF problem. When large structural differences exist between the initial and the final-state minima, the changes in the G matrix can become too large to be disregarded.
Collapse
Affiliation(s)
- Javier Cerezo
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Richerche (ICCOM-CNR) , Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Richerche (ICCOM-CNR) , Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
57
|
Piserchia A, Barone V. Toward a General Yet Effective Computational Approach for Diffusive Problems: Variable Diffusion Tensor and DVR Solution of the Smoluchowski Equation along a General One-Dimensional Coordinate. J Chem Theory Comput 2016; 12:3482-90. [PMID: 27403666 DOI: 10.1021/acs.jctc.6b00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A generalization to arbitrary large amplitude motions of a recent approach to the evaluation of diffusion tensors [ J. Comput. Chem. , 2009 , 30 , 2 - 13 ] is presented and implemented in a widely available package for electronic structure computations. A fully black-box tool is obtained, which, starting from the generation of geometric structures along different kinds of paths, proceeds toward the evaluation of an effective diffusion tensor and to the solution of one-dimensional Smoluchowski equations by a robust numerical approach rooted in the discrete variable representation (DVR). Application to a number of case studies shows that the results issuing from our approach are identical to those delivered by previous software (in particular DiTe) for rigid scans along a dihedral angle, but can be improved by employing relaxed scans (i.e., constrained geometry optimizations) or even more general large amplitude paths. The theoretical and numerical background is robust and general enough to allow quite straightforward extensions in several directions (e.g., inclusion of reactive paths, solution of Fokker-Planck or stochastic Liouville equations, multidimensional problems, free-energy rather than electronic-energy driven processes).
Collapse
Affiliation(s)
- Andrea Piserchia
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
58
|
Hodecker M, Biczysko M, Dreuw A, Barone V. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: The Role of Vibrational Effects. J Chem Theory Comput 2016; 12:2820-33. [PMID: 27159495 PMCID: PMC5612404 DOI: 10.1021/acs.jctc.6b00121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one-photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment.
Collapse
Affiliation(s)
- Manuel Hodecker
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444 China
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
59
|
Liu Y, Cerezo J, Santoro F, Rizzo A, Lin N, Zhao X. Theoretical investigation of the broad one-photon absorption line-shape of a flexible symmetric carbazole derivative. Phys Chem Chem Phys 2016; 18:22889-905. [DOI: 10.1039/c6cp04162k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-photon absorption spectrum of a carbazole derivative has been studied by employing density functional response theory combined with a mixed quantum/classical approach to simulate the spectral shape.
Collapse
Affiliation(s)
- Yanli Liu
- State Key Laboratory of Crystal Materials
- Shandong University
- 250100 Jinan
- P. R. China
- CNR – Consiglio Nazionale delle Ricerche
| | - Javier Cerezo
- CNR – Consiglio Nazionale delle Ricerche
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR)
- I-56124 Pisa
- Italy
| | - Fabrizio Santoro
- CNR – Consiglio Nazionale delle Ricerche
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR)
- I-56124 Pisa
- Italy
| | - Antonio Rizzo
- CNR – Consiglio Nazionale delle Ricerche
- Istituto per i Processi Chimico Fisici (IPCF-CNR)
- I-56124 Pisa
- Italy
| | - Na Lin
- State Key Laboratory of Crystal Materials
- Shandong University
- 250100 Jinan
- P. R. China
| | - Xian Zhao
- State Key Laboratory of Crystal Materials
- Shandong University
- 250100 Jinan
- P. R. China
| |
Collapse
|