51
|
Kurashige Y. Matrix product state formulation of the multiconfiguration time-dependent Hartree theory. J Chem Phys 2018; 149:194114. [DOI: 10.1063/1.5051498] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto 606-8502, Japan
| |
Collapse
|
52
|
Plötz PA, Megow J, Niehaus T, Kühn O. All-DFTB Approach to the Parametrization of the System-Bath Hamiltonian Describing Exciton-Vibrational Dynamics of Molecular Assemblies. J Chem Theory Comput 2018; 14:5001-5010. [PMID: 30141929 DOI: 10.1021/acs.jctc.8b00493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spectral density functions are central to the simulation of complex many body systems. Their determination requires making approximations not only to the dynamics but also to the underlying electronic structure theory. Here, blending different methods bears the danger of an inconsistent description. To solve this issue we propose an all-DFTB approach to determine spectral densities for the description of Frenkel excitons in molecular assemblies. The protocol is illustrated for a model of a PTCDI crystal, which involves the calculation of monomeric excitation energies and Coulomb couplings between monomer transitions, as well as their spectral distributions due to thermal fluctuations of the nuclei. Using dynamically defined normal modes, a mapping onto the standard harmonic oscillator spectral densities is achieved.
Collapse
Affiliation(s)
- Per-Arno Plötz
- Institut für Physik , Universität Rostock , Albert-Einstein-Strasse 23-24 , 18059 Rostock , Germany
| | - Jörg Megow
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
| | - Thomas Niehaus
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne , France
| | - Oliver Kühn
- Institut für Physik , Universität Rostock , Albert-Einstein-Strasse 23-24 , 18059 Rostock , Germany
| |
Collapse
|
53
|
Affiliation(s)
- Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA and Beijing Computational Science Research Center, No. 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
| | - Hans-Dieter Meyer
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
54
|
Wang Y, Ke Y, Zhao Y. The hierarchical and perturbative forms of stochastic Schrödinger equations and their applications to carrier dynamics in organic materials. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yu‐Chen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| | - Yaling Ke
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| | - Yi Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| |
Collapse
|
55
|
Wang L, Fujihashi Y, Chen L, Zhao Y. Finite-temperature time-dependent variation with multiple Davydov states. J Chem Phys 2018; 146:124127. [PMID: 28388128 DOI: 10.1063/1.4979017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.
Collapse
Affiliation(s)
- Lu Wang
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuta Fujihashi
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Lipeng Chen
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
56
|
Reprint of “The effect of site-specific spectral densities on the high-dimensional exciton-vibrational dynamics in the FMO complex”. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
57
|
Shi Q, Xu Y, Yan Y, Xu M. Efficient propagation of the hierarchical equations of motion using the matrix product state method. J Chem Phys 2018; 148:174102. [DOI: 10.1063/1.5026753] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
58
|
Hu W, Gu B, Franco I. Lessons on electronic decoherence in molecules from exact modeling. J Chem Phys 2018; 148:134304. [DOI: 10.1063/1.5004578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenxiang Hu
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA
| | - Bing Gu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
59
|
Abramavicius D, Chorošajev V, Valkunas L. Tracing feed-back driven exciton dynamics in molecular aggregates. Phys Chem Chem Phys 2018; 20:21225-21240. [DOI: 10.1039/c8cp00682b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitation, exciton transport, dephasing and energy relaxation, and finally detection processes shift molecular systems into a specific superposition of quantum states causing localization, local heating and finally excitonic polaronic effects.
Collapse
Affiliation(s)
| | | | - Leonas Valkunas
- Institute of Chemical Physics
- Vilnius University
- Vilnius
- Lithuania
- Center for Physical Sciences and Technology
| |
Collapse
|
60
|
Mendive-Tapia D, Mangaud E, Firmino T, de la Lande A, Desouter-Lecomte M, Meyer HD, Gatti F. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions. J Phys Chem B 2017; 122:126-136. [DOI: 10.1021/acs.jpcb.7b10412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Mendive-Tapia
- Institut
Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, CTMM, Université Montpellier, CC 15001, Place Eugène Bataillon, 34095 Montpellier, France
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - Etienne Mangaud
- Laboratoire
Collisions Agrégats Réactivité, UMR 5589, IRSAMC, Université Toulouse III Paul Sabatier, F-31062 Toulouse, France
| | - Thiago Firmino
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Aurélien de la Lande
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Michèle Desouter-Lecomte
- Laboratoire
de Chimie Physique, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | - Hans-Dieter Meyer
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - Fabien Gatti
- Institut
des Sciences Moléculaires d’Orsay, UMR-CNRS 8214, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| |
Collapse
|
61
|
Fujihashi Y, Wang L, Zhao Y. Direct evaluation of boson dynamics via finite-temperature time-dependent variation with multiple Davydov states. J Chem Phys 2017; 147:234107. [DOI: 10.1063/1.5017713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuta Fujihashi
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Lu Wang
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
- Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
62
|
Chen L, Borrelli R, Zhao Y. Dynamics of Coupled Electron–Boson Systems with the Multiple Davydov D1 Ansatz and the Generalized Coherent State. J Phys Chem A 2017; 121:8757-8770. [DOI: 10.1021/acs.jpca.7b07069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lipeng Chen
- Division
of Materials Science, Nanyang Technological University, 639798, Singapore
| | - Raffaele Borrelli
- Department
of Agricultural, Forestry and Food Science, Universitá di Torino, I-10095 Grugliasco, Turin, Italy
| | - Yang Zhao
- Division
of Materials Science, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
63
|
Schulze J, Shibl MF, Al-Marri MJ, Kühn O. The effect of site-specific spectral densities on the high-dimensional exciton-vibrational dynamics in the FMO complex. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
64
|
Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev 2017; 117:13502-13565. [DOI: 10.1021/acs.chemrev.7b00177] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hoi Ling Luk
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
65
|
Padula D, Lee MH, Claridge K, Troisi A. Chromophore-Dependent Intramolecular Exciton–Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics. J Phys Chem B 2017; 121:10026-10035. [DOI: 10.1021/acs.jpcb.7b08020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniele Padula
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Myeong H. Lee
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Kirsten Claridge
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alessandro Troisi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
66
|
Paleček D, Edlund P, Westenhoff S, Zigmantas D. Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. SCIENCE ADVANCES 2017; 3:e1603141. [PMID: 28913419 PMCID: PMC5587020 DOI: 10.1126/sciadv.1603141] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/08/2017] [Indexed: 05/25/2023]
Abstract
Photosynthetic proteins have evolved over billions of years so as to undergo optimal energy transfer to the sites of charge separation. On the basis of spectroscopically detected quantum coherences, it has been suggested that this energy transfer is partially wavelike. This conclusion depends critically on the assignment of the coherences to the evolution of excitonic superpositions. We demonstrate that, for a bacterial reaction center protein, long-lived coherent spectroscopic oscillations, which bear canonical signatures of excitonic superpositions, are essentially vibrational excited-state coherences shifted to the ground state of the chromophores. We show that the appearance of these coherences arises from a release of electronic energy during energy transfer. Our results establish how energy migrates on vibrationally hot chromophores in the reaction center, and they call for a reexamination of claims of quantum energy transfer in photosynthesis.
Collapse
Affiliation(s)
- David Paleček
- Department of Chemical Physics, Lund University, Box 124, SE-22100 Lund, Sweden
- Department of Chemical Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha 2, Czech Republic
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Donatas Zigmantas
- Department of Chemical Physics, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
67
|
Borrelli R, Gelin MF. Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics. Sci Rep 2017; 7:9127. [PMID: 28831074 PMCID: PMC5567225 DOI: 10.1038/s41598-017-08901-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/18/2017] [Indexed: 11/09/2022] Open
Abstract
Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on Thermo Field Dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. The solution of Thermo Field Dynamics equations with a novel technique for the propagation of Tensor Trains (Matrix Product States) is implemented and discussed. The methodology is applied to the study of the exciton dynamics in the Fenna-Mathews-Olsen complex using a realistic structured spectral density to model the electron-phonon interaction. The results of the simulations highlight the effect of specific vibrational modes on the exciton dynamics and energy transfer process, as well as call for careful modeling of electron-phonon couplings.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- Department of Theoretical Chemistry, Technische Universität München, Garching, D-85747, Germany
| |
Collapse
|
68
|
Larsson HR, Tannor DJ. Dynamical pruning of the multiconfiguration time-dependent Hartree (DP-MCTDH) method: An efficient approach for multidimensional quantum dynamics. J Chem Phys 2017; 147:044103. [DOI: 10.1063/1.4993219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- H. R. Larsson
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - D. J. Tannor
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
69
|
Manthe U. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:253001. [PMID: 28430111 DOI: 10.1088/1361-648x/aa6e96] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.
Collapse
Affiliation(s)
- Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
70
|
Lee MK, Bravaya KB, Coker DF. First-Principles Models for Biological Light-Harvesting: Phycobiliprotein Complexes from Cryptophyte Algae. J Am Chem Soc 2017; 139:7803-7814. [DOI: 10.1021/jacs.7b01780] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mi Kyung Lee
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
71
|
Seibt J, Mančal T. Ultrafast energy transfer with competing channels: Non-equilibrium Förster and Modified Redfield theories. J Chem Phys 2017; 146:174109. [PMID: 28477589 DOI: 10.1063/1.4981523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joachim Seibt
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
72
|
Lee MH, Troisi A. Vibronic enhancement of excitation energy transport: Interplay between local and non-local exciton-phonon interactions. J Chem Phys 2017; 146:075101. [DOI: 10.1063/1.4976558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Myeong H. Lee
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alessandro Troisi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|