51
|
Das S, Amin AN, Lin YH, Chan HS. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Phys Chem Chem Phys 2018; 20:28558-28574. [PMID: 30397688 DOI: 10.1039/c8cp05095c] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomolecular condensates undergirded by phase separations of proteins and nucleic acids serve crucial biological functions. To gain physical insights into their genetic basis, we study how liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) depends on their sequence charge patterns using a continuum Langevin chain model wherein each amino acid residue is represented by a single bead. Charge patterns are characterized by the "blockiness" measure κ and the "sequence charge decoration" (SCD) parameter. Consistent with random phase approximation (RPA) theory and lattice simulations, LLPS propensity as characterized by critical temperature Tcr* increases with increasingly negative SCD for a set of sequences showing a positive correlation between κ and -SCD. Relative to RPA, the simulated sequence-dependent variation in Tcr* is often-though not always-smaller, whereas the simulated critical volume fractions are higher. However, for a set of sequences exhibiting an anti-correlation between κ and -SCD, the simulated Tcr*'s are quite insensitive to either parameter. Additionally, we find that blocky sequences that allow for strong electrostatic repulsion can lead to coexistence curves with upward concavity as stipulated by RPA, but the LLPS propensity of a strictly alternating charge sequence was likely overestimated by RPA and lattice models because interchain stabilization of this sequence requires spatial alignments that are difficult to achieve in real space. These results help delineate the utility and limitations of the charge pattern parameters and of RPA, pointing to further efforts necessary for rationalizing the newly observed subtleties.
Collapse
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Medical Sciences Building - 5th Fl., 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
52
|
Makarov DE, Schuler B. Preface: Special Topic on Single-Molecule Biophysics. J Chem Phys 2018; 148:123001. [PMID: 29604869 DOI: 10.1063/1.5028275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
53
|
Samanta HS, Chakraborty D, Thirumalai D. Charge fluctuation effects on the shape of flexible polyampholytes with applications to intrinsically disordered proteins. J Chem Phys 2018; 149:163323. [PMID: 30384718 DOI: 10.1063/1.5035428] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Random polyampholytes (PAs) contain positively and negatively charged monomers that are distributed randomly along the polymer chain. The interaction between charges is assumed to be given by the Debye-Huckel potential. We show that the size of the PA is determined by an interplay between electrostatic interactions, giving rise to the polyelectrolyte effect due to net charge per monomer (σ) and an effective attractive PA interaction due to charge fluctuations, δσ. The interplay between these terms gives rise to non-monotonic dependence of the radius of gyration, R g , on the inverse Debye length, κ, when PA effects are important ( δ σ σ > 1 ). In the opposite limit, R g decreases monotonically with increasing κ. Simulations of PA chains, using a charged bead-spring model, further corroborate our theoretical predictions. The simulations unambiguously show that conformational heterogeneity manifests itself among sequences that have identical PA parameters. A clear implication is that the phases of PA sequences, and by inference intrinsically disordered proteins (IDPs), cannot be determined using only the bare PA parameters (σ and δσ). The theory is used to calculate the changes in R g on N, the number of residues for a set of IDPs. For a certain class of IDPs, with N between 24 and 441, the size grows as R g ∼ N 0.6, which agrees with data from small angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Himadri S Samanta
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Debayan Chakraborty
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
54
|
Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Curr Opin Struct Biol 2018; 56:1-10. [PMID: 30439585 DOI: 10.1016/j.sbi.2018.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 11/22/2022]
Abstract
While many proteins and protein regions utilize a complex repertoire of amino acids to achieve their biological function, a subset of protein sequences are enriched in a reduced set of amino acids. These so-called low complexity (LC) sequences, specifically intrinsically disordered variants of LC sequences, have been the focus of recent investigations owing to their roles in a range of biological functions, specifically phase separation. Computational studies of LC sequences have provided rich insights into their behavior both as individual proteins in dilute solutions and as the drivers and modulators of higher-order assemblies. Here, we review how simulations performed across distinct resolutions have provided different types of insights into the biological role of LC sequences.
Collapse
|
55
|
Huihui J, Firman T, Ghosh K. Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins. J Chem Phys 2018; 149:085101. [PMID: 30193467 DOI: 10.1063/1.5037727] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an analytical theory to describe conformational changes as a function of salt for polymers with a given sequence of charges. We apply this model to describe Intrinsically Disordered Proteins (IDPs) by explicitly accounting for charged residues and their exact placement in the primary sequence while approximating the effect of non-electrostatic interactions at a mean-field level by effective short-range (two body and three-body) interaction parameters. The effect of ions is introduced by treating electrostatic interactions within Debye-Huckle approximation. Using typical values of the short-range mean-field parameters derived from all-atom Monte Carlo simulations (at zero salt), we predict the conformational changes as a function of salt concentration. We notice that conformational transitions in response to changes in ionic strength strongly depend on sequence specific charge patterning. For example, globule to coil transition can be observed upon increasing salt concentration, in stark contrast to uniformly charged polyelectrolyte theories based on net charge only. In addition, it is possible to observe non-monotonic behavior with salt as well. Drastic differences in salt-induced conformational transitions is also evident between two doubly phosphorylated sequences-derived from the same wild type sequence-that only differ in the site of phosphorylation. Similar effects are also predicted between two sequences derived from the same parent sequence differing by a single site mutation where a negative charge is replaced by a positive charge. These effects are purely a result of charge decoration and can only be understood in terms of metrics based on specific placement of charges, and cannot be explained by models based on charge composition alone. Identifying sequences and hot spots within sequences-for post translational modification or charge mutation-using our high-throughput theory will yield fundamental insights into design and biological regulation mediated by phosphorylation and/or local changes in salt concentration.
Collapse
Affiliation(s)
- Jonathan Huihui
- Department of Physics and Astronomy, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA and Molecular and Cellular Biophysics, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA
| | - Taylor Firman
- Department of Physics and Astronomy, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA and Molecular and Cellular Biophysics, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA and Molecular and Cellular Biophysics, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA
| |
Collapse
|
56
|
Stenzoski NE, Luan B, Holehouse AS, Raleigh DP. The Unfolded State of the C-Terminal Domain of L9 Expands at Low but Not at Elevated Temperatures. Biophys J 2018; 115:655-663. [PMID: 30098729 DOI: 10.1016/j.bpj.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022] Open
Abstract
The temperature dependence of the overall dimensions of the denatured state ensemble (DSE) of proteins remains unclear. Some studies indicate compaction of the DSE at high temperatures, whereas others argue that dimensions do not decrease. The degree of compaction or expansion in the cold-denatured state has been less studied. To investigate the temperature dependence of unfolded state dimensions, small angle x-ray scattering measurements were performed in native buffer in the absence of denaturant for a designed point mutant of the C-terminal domain of L9, a small cooperatively folded α-β protein, at 14 different temperatures over the range of 5-60°C. The I98A mutation destabilizes the domain such that both the DSE and the folded state are populated at 25°C in the absence of denaturant or extreme pH. Thermal unfolding as well as cold unfolding can thus be observed in the absence of denaturant, allowing a direct comparison of these regimes for the same protein using the same technique. The temperature of maximal stability, Ts, is 30°C. There is no detectable change in Rg of the unfolded state as the temperature is increased above Ts, but a clear expansion is detected as the temperature is decreased below Ts. The Rg of the DSE populated in buffer was found to be 27.8 ± 1.7 Å at 5°C, 21.8 ± 1.9 Å at 30°C, and 21.7 ± 2.0 Å at 60°C. In contrast, no significant temperature dependence was observed for the value of Rg measured in 6 M guanidine hydrochloride. The small angle x-ray scattering data reported here indicate clear differences between the cold- and thermal-unfolded states and show that there is no significant compaction at elevated temperatures.
Collapse
Affiliation(s)
- Natalie E Stenzoski
- Graduate Program in Biochemistry & Structural Biology, Stony Brook, New York
| | - Bowu Luan
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Alex S Holehouse
- Center for Biological Systems Engineering, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel P Raleigh
- Graduate Program in Biochemistry & Structural Biology, Stony Brook, New York; Department of Chemistry, Stony Brook University, Stony Brook, New York; Institute of Structural and Molecular Biology, University of College London, London, United Kingdom.
| |
Collapse
|
57
|
Das S, Eisen A, Lin YH, Chan HS. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation. J Phys Chem B 2018; 122:5418-5431. [DOI: 10.1021/acs.jpcb.7b11723] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adam Eisen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|