51
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
52
|
Assadollahi V, Fathi F, Abdi M, Khadem Erfan MB, Soleimani F, Banafshi O. Increasing maternal age of blastocyst affects on efficient derivation and behavior of mouse embryonic stem cells. J Cell Biochem 2018; 120:3716-3726. [DOI: 10.1002/jcb.27652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Vahideh Assadollahi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohamad Bager Khadem Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| | | | - Omid Banafshi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
53
|
Payton RR, Rispoli LA, Nagle KA, Gondro C, Saxton AM, Voy BH, Edwards JL. Mitochondrial-related consequences of heat stress exposure during bovine oocyte maturation persist in early embryo development. J Reprod Dev 2018; 64:243-251. [PMID: 29553057 PMCID: PMC6021609 DOI: 10.1262/jrd.2017-160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hyperthermia during estrus has direct consequences on the maturing oocyte that carries over to the resultant embryo to compromise its ability to continue in development. Because early embryonic development is reliant upon maternal transcripts and other ooplasmic components, we examined impact of heat stress on bovine oocyte transcripts using microarray. Oocytes were matured at 38.5ºC for 24 h or 41.0ºC for the first 12 h of in vitro maturation; 38.5ºC thereafter. Transcriptome profile was performed on total (adenylated + deadenylated) RNA and polyadenylated mRNA populations. Heat stress exposure altered the abundance of several transcripts important for mitochondrial function. The extent to which transcript differences are coincident with functional changes was evaluated by examining reactive oxygen species, ATP content, and glutathione levels. Mitochondrial reactive oxygen species levels were increased by 6 h exposure to 41.0ºC while cytoplasmic levels were reduced compared to controls (P < 0.0001). Exposure to 41.0ºC for 12 h increased total and reduced glutathione levels in oocytes at 12 h but reduced them by 24 h (time × temperature P < 0.001). ATP content was higher in heat-stressed oocytes at 24 h (P < 0.0001). Heat-induced increases in ATP content of matured oocytes persisted in early cleavage-stage embryos (8- to 16-cell embryos; P < 0.05) but were no longer apparent in blastocysts (P > 0.05). Collectively, results indicate that direct exposure of maturing oocytes to heat stress may alter oocyte mitochondrial processes/function, which is inherited by the early embryo after fertilization.
Collapse
Affiliation(s)
- Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Kimberly A Nagle
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Brynn H Voy
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| |
Collapse
|
54
|
Adrian-Kalchhauser I, Walser JC, Schwaiger M, Burkhardt-Holm P. RNA sequencing of early round goby embryos reveals that maternal experiences can shape the maternal RNA contribution in a wild vertebrate. BMC Evol Biol 2018; 18:34. [PMID: 29566669 PMCID: PMC5863367 DOI: 10.1186/s12862-018-1132-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Background It has been proposed that non-genetic inheritance could promote species fitness. Non-genetic inheritance could allow offspring to benefit from the experience of their parents, and could advocate pre-adaptation to prevailing and potentially selective conditions. Indeed, adaptive parental effects have been modeled and observed, but the molecular mechanisms behind them are far from understood. Results In the present study, we investigated whether maternal RNA can carry information about environmental conditions experienced by the mother in a wild vertebrate. Maternal RNA directs the development of the early embryo in many non-mammalian vertebrates and invertebrates. However, it is not known whether vertebrate maternal RNA integrates information about the parental environment. We sequenced the maternal RNA contribution from a model that we expected to rely on parental effects: the invasive benthic fish species Neogobius melanostomus (Round Goby). We found that maternal RNA expression levels correlated with the water temperature experienced by the mother before oviposition, and identified temperature-responsive gene groups such as core nucleosome components or the microtubule cytoskeleton. Conclusions Our findings suggest that the maternal RNA contribution may incorporate environmental information. Maternal RNA should therefore be considered a potentially relevant pathway for non-genetic inheritance. Also, the ability of a species to integrate environmental information in the maternal RNA contribution could potentially contribute to species fitness and may also play a role in extraordinary adaptive success stories of invasive species such as the round goby. Electronic supplementary material The online version of this article (10.1186/s12862-018-1132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre Zurich, ETH Zurich, Universitätstrasse 16, CH-8092, Zurich, Switzerland
| | - Michaela Schwaiger
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| |
Collapse
|
55
|
Novel mutations in genes encoding subcortical maternal complex proteins may cause human embryonic developmental arrest. Reprod Biomed Online 2018; 36:698-704. [PMID: 29606347 DOI: 10.1016/j.rbmo.2018.03.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 11/22/2022]
Abstract
Successful human reproduction initiates from normal gamete formation, fertilization and early embryonic development. Abnormalities in any of these steps will lead to infertility. Many infertile patients undergo several failures of IVF and intracytoplasmic sperm injection (ICSI) cycles, and embryonic developmental arrest is a common phenotype in cases of recurrent failure of IVF/ICSI attempts. However, the genetic basis for this phenotype is poorly understood. The subcortical maternal complex (SCMC) genes play important roles during embryonic development, and using whole-exome sequencing novel biallelic mutations in the SCMC genes TLE6, PADI6 and KHDC3L were identified in four patients with embryonic developmental arrest. A mutation in TLE6 was found in a patient with cleaved embryos that arrested on day 3 and failed to form blastocysts. Two patients with embryos that arrested at the cleavage stage had mutations in PADI6, and a mutation in KHDC3L was found in a patient with embryos arrested at the morula stage. No mutations were identified in these genes in an additional 80 patients. These findings provide further evidence for the important roles of TLE6, PADI6 and KHDC3L in embryonic development. This work lays the foundation for the genetic diagnosis of patients with recurrent IVF/ICSI failure.
Collapse
|
56
|
Ding B, Cao Z, Hong R, Li H, Zuo X, Luo L, Li Y, Huang W, Li W, Zhang K, Zhang Y. WDR5 in porcine preimplantation embryos: expression, regulation of epigenetic modifications and requirement for early development†. Biol Reprod 2018; 96:758-771. [PMID: 28379447 DOI: 10.1093/biolre/iox020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
WD repeat-containing protein 5 (WDR5), a member of conserved WD40 protein family, is an essential component of the mixed lineage leukemia (MLL) complexes, which are crucial for numerous key biological processes including methylation of histone H3 lysine 4 (H3K4), self-renewal of embryonic stem cells, and formation of induced pluripotent stem cells. The expression pattern and functional role of WDR5 during porcine preimplantation embryonic development, however, remain unknown. Our results showed that the transcripts and protein of WDR5 exhibited stage-specific expression pattern in porcine early embryos. Moreover, blastocyst rate and total cell number per blastocyst were reduced by RNAi-mediated silencing of WDR5 or pharmacological inhibition of WDR5. Knockdown of WDR5 also disturbed the expression of several pluripotency genes. Interestingly, tri-methylation of H3K4 (H3K4me3) level was dramatically increased by WDR5 depletion. Further analysis revealed that loss of MLL3 phenocopied WDR5 knockdown, triggering increased H3K4me3 level. Simultaneously, WDR5 depletion significantly decreased the levels of histone H4 lysine 16 acetylation (H4K16ac) and its writer males absent on the first (MOF). Last but not least, WDR5 knockdown induced DNA damage and DNA repair defects during porcine preimplantation development. Taken together, results of described studies establish that WDR5 plays a significant role in porcine preimplantation embryos probably through regulating key epigenetic modifications and genome integrity.
Collapse
Affiliation(s)
- Biao Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Key Laboratory of Embryo Development and Reproduction Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Renyun Hong
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hui Li
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Lei Luo
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenyong Li
- Key Laboratory of Embryo Development and Reproduction Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
57
|
Zhang K, Wang H, Rajput SK, Folger JK, Smith GW. Characterization of H3.3 and HIRA expression and function in bovine early embryos. Mol Reprod Dev 2018; 85:106-116. [PMID: 29232016 DOI: 10.1002/mrd.22939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023]
Abstract
Histone variant H3.3 is encoded by two distinct genes, H3F3A and H3F3B, that are closely associated with actively transcribed genes. H3.3 replacement is continuous and essential for maintaining correct chromatin structure during mouse oogenesis. Upon fertilization, H3.3 is incorporated to parental chromatin, and is required for blastocyst formation in mice. The H3.3 exchange process is facilitated by the chaperone HIRA, particularly during zygote development. We previously demonstrated that H3.3 is required for bovine early embryonic development; here, we explored the mechanisms of its functional requirement. H3F3A mRNA abundance is stable whereas H3F3B and HIRA mRNA are relatively dynamic during early embryonic development. H3F3B mRNA quantity is also considerably higher than H3F3A. Immunofluorescence analysis revealed an even distribution of H3.3 between paternal and maternal pronuclei in zygotes, and subsequent stage-specific localization of H3.3 in early bovine embryos. Knockdown of H3.3 by targeting both H3F3A and H3F3B dramatically decreased the expression of NANOG (a pluripotency marker) and CTGF (Connective tissue growth factor; a trophectoderm marker) in bovine blastocysts. Additionally, we noted that Histone H3 lysine 36 dimethylation and linker Histone H1 abundance is reduced in H3.3-deficient embryos, which was similar to effects following knockdown of CHD1 (Chromodomain helicase DNA-binding protein 1). By contrast, no difference was observed in the abundance of Histone H3 lysine 4 trimethylation, Histone H3 lysine 9 dimethylation, or Splicing factor 3 B1. Collectively, these results established that H3.3 is required for correct epigenetic modifications and H1 deposition, dysregulation of which likely mediate the poor development in H3.3-deficient embryos.
Collapse
Affiliation(s)
- Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Dairy Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Han Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| |
Collapse
|
58
|
The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception? Stem Cell Rev Rep 2017; 12:276-84. [PMID: 26892267 DOI: 10.1007/s12015-016-9648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essential contribution of multiple maternal factors to early mammalian development is rapidly altering the view that mammals have a unique pattern of development compared to other species. Currently, over 60 maternal-effect mutations have been described in mammalian systems, including critical determinants of pluripotency. This data, combined with the evidence for lineage bias and differential gene expression in early blastomeres, strongly suggests that mammalian development is to some extent mosaic from the four-cell stage onward.
Collapse
|
59
|
DAS DEBABRATA, ARUR SWATHI. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev 2017; 84:444-459. [PMID: 28379636 PMCID: PMC5477485 DOI: 10.1002/mrd.22806] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals-yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes.
Collapse
Affiliation(s)
- DEBABRATA DAS
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - SWATHI ARUR
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
60
|
Hwang G, Sun F, O'Brien M, Eppig JJ, Handel MA, Jordan PW. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 2017; 144:1648-1660. [PMID: 28302748 PMCID: PMC5450844 DOI: 10.1242/dev.145607] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/07/2017] [Indexed: 01/11/2023]
Abstract
SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis. The infertility phenotypes of females with a Zp3-Cre-driven conditional knockout (cKO) of Smc5 demonstrated that maternally expressed SMC5 protein is essential for early embryogenesis. Interestingly, protein levels of SMC5/6 complex components in oocytes decline as wild-type females age. When SMC5/6 complexes were completely absent in oocytes during meiotic resumption, homologous chromosomes failed to segregate accurately during meiosis I. Despite what appears to be an inability to resolve concatenation between chromosomes during meiosis, localization of topoisomerase IIα to bivalents was not affected; however, localization of condensin along the chromosome axes was perturbed. Taken together, these data demonstrate that the SMC5/6 complex is essential for the formation of segregation-competent bivalents during meiosis I, and findings suggest that age-dependent depletion of the SMC5/6 complex in oocytes could contribute to increased incidence of oocyte aneuploidy and spontaneous abortion in aging females.
Collapse
Affiliation(s)
- Grace Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fengyun Sun
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - John J Eppig
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
61
|
Wu H, Ashcraft L, Whitcomb BW, Rahil T, Tougias E, Sites CK, Pilsner JR. Parental contributions to early embryo development: influences of urinary phthalate and phthalate alternatives among couples undergoing IVF treatment. Hum Reprod 2016; 32:65-75. [PMID: 27927842 DOI: 10.1093/humrep/dew301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/19/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Are preconception urinary concentrations of phthalates and phthalate alternatives associated with diminished early stage embryo quality in couples undergoing IVF? SUMMARY ANSWER Male, but not female, urinary concentrations of select metabolites of phthalates and phthalate alternatives are associated with diminished blastocyst quality. WHAT IS KNOWN ALREADY Although phthalates are endocrine disrupting compounds associated with adverse reproductive health, they are in widespread use across the world. Male and female preconception exposures to select phthalates have been previously associated with adverse reproductive outcomes in both the general population and in those undergoing IVF. STUDY DESIGN, SIZE, DURATION This prospective cohort included 50 subfertile couples undergoing IVF in western Massachusetts. PARTICIPANTS/MATERIALS, SETTING, METHODS This study includes the first 50 couples recruited from the Baystate Medical Center's Fertility Center in Springfield, MA, as part of the Sperm Environmental Epigenetics and Development Study (SEEDS). Relevant data from both partners, including embryo quality at the cleavage (Day 3) and blastocyst (Day 5) stages, were collected by clinic personnel during the normal course of an IVF cycle. A spot urine sample was collected from both male and female partners on the same day as semen sample procurement and oocyte retrieval. Concentrations of 17 urinary metabolite were quantified by liquid chromatography mass spectrometry and normalized via specific gravity. Generalized estimating equations were used to estimate odds ratios (OR) and 95% CI, with urinary phthalates and phthalate alternatives fitted as continuous variables and embryo quality as a binary variable. MAIN RESULTS AND THE ROLE OF CHANCE The 50 couples contributed 761 oocytes, of which 423 progressed to the cleavage stage, 261 were high-quality cleavage stage embryos, 137 were transferrable quality blastocysts and 47 were high-quality blastocysts. At the cleavage stage, male urinary monoethyl phthalate concentrations were positively associated with high-quality cleavage stage embryos (OR = 1.20, 95% CI 1.01-1.43, P = 0.04); no other significant associations were observed at this stage. At the blastocyst stage, male urinary concentrations of monobenzyl phthalate (OR = 0.55, 95% CI 0.36-0.84, P = 0.01), mono-3-hydroxybutyl phthalate (OR = 0.37, 95% CI 0.18-0.76, P = 0.01), mono-n-butyl phthalate (OR = 0.55, 95% CI 0.42-0.73, P < 0.01) and monomethyl phthalate (OR = 0.39, 95% CI 0.26-0.60, P < 0.01) were inversely associated with high-quality blastocysts. A borderline statistically significant relationship was observed for male concentrations of mono(2-ethylhexyl) phthalate (OR = 0.52, 95% CI 0.27-1.00, P = 0.05) and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (OR = 0.21, 95% CI 0.04-1.03, P = 0.05) at the blastocyst stage. Similar inverse associations were observed between male urinary phthalate metabolite concentrations and likelihood of transferrable quality blastocysts. For female partners, select metabolites were positively associated with odds of high or transferrable blastocyst quality, but the observed associations were not consistent across blastocyst quality measures or between sex-specific and couples-level models. All models were adjusted for age of both partners, urinary metabolite concentrations of female partners and male infertility status, while models of blastocysts were additionally adjusted for embryo quality at cleavage stage. LIMITATIONS, REASONS FOR CAUTION Our modest sample included only 50 couples contributing one cycle each. In addition, non-differential misclassification of exposure remains a concern given the single-spot urine collection and the short half-life of phthalates. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest an inverse association between male preconception concentrations of select phthalate metabolites and blastocyst quality, likely occurring after genomic activation. If corroborated with other studies, such findings will have public health and clinical significance for both the general population and those undergoing IVF. STUDY FUNDING/COMPETING INTERESTS This work was generously supported by grant K22-ES023085 from the National Institute of Environmental Health Sciences. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, USA
| | - Lisa Ashcraft
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003, USA
| | - Tayyab Rahil
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Ellen Tougias
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - Cynthia K Sites
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
62
|
Bebbere D, Masala L, Albertini DF, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet 2016; 33:1431-1438. [PMID: 27525657 DOI: 10.1007/s10815-016-0788-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex uniquely expressed in mammalian oocytes and early embryos, essential for zygote progression beyond the first embryonic cell divisions. Similiar to other factors encoded by maternal effect genes, the physiological role of SCMC remains unclear, although recent evidence has provided important molecular insights into different possible functions. Its potential involvement in human fertility is attracting increasing attention; however, the complete story is far from being told. The present mini review provides an overview of recent findings related to the SCMC and discusses its potential physiological role/s with the aim of inspiring new directions for future research.
Collapse
Affiliation(s)
- D Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - L Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| | - D F Albertini
- The Center for Human Reproduction, New York, NY, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
63
|
Kim J, Zhao H, Dan J, Kim S, Hardikar S, Hollowell D, Lin K, Lu Y, Takata Y, Shen J, Chen T. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse. PLoS Genet 2016; 12:e1005970. [PMID: 27070551 PMCID: PMC4829257 DOI: 10.1371/journal.pgen.1005970] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression.
Collapse
Affiliation(s)
- Jeesun Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Hongbo Zhao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
| | - Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Soojin Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Debra Hollowell
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
64
|
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, Arnold GJ, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 2016; 31:133-49. [PMID: 26577303 PMCID: PMC5853592 DOI: 10.1093/humrep/dev279] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)? SUMMARY ANSWER Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance. WHAT IS KNOWN ALREADY Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote. STUDY DESIGN, SIZE, DURATION Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM). MATERIAL AND METHODS GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE). MAIN RESULTS AND ROLE OF CHANCE The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization. LIMITATION, REASONS FOR CAUTION We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging. WIDER IMPLICATIONS OF THE FINDINGS Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro. STUDY FUNDING/COMPETING INTERESTS The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest.
Collapse
Affiliation(s)
- T Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - M Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - D Dankert
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - H Demond
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - D Deutsch
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - G J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - R Grümmer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - B Horsthemke
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
65
|
Zhang K, Rajput SK, Lee KB, Wang D, Huang J, Folger JK, Knott JG, Zhang J, Smith GW. Evidence supporting a role for SMAD2/3 in bovine early embryonic development: potential implications for embryotropic actions of follistatin. Biol Reprod 2015; 93:86. [PMID: 26289443 DOI: 10.1095/biolreprod.115.130278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023] Open
Abstract
The TGF-beta-SMAD signaling pathway is involved in regulation of various aspects of female reproduction. However, the intrinsic functional role of SMADs in early embryogenesis remains poorly understood. Previously, we demonstrated that treatment with follistatin, an activin (TGF-beta superfamily ligand)-binding protein, is beneficial for bovine early embryogenesis and specific embryotropic actions of follistatin are dependent on SMAD4. Because SMAD4 is a common SMAD that can bind both SMAD2/3 and SMAD1/5, the objective of this study was to further determine the intrinsic role of SMAD2/3 in the control of early embryogenesis and delineate if embryotropic actions of follistatin in early embryos are SMAD2/3 dependent. By using a combination of pharmacological and small interfering RNA-mediated inhibition of SMAD2/3 signaling in the presence or absence of follistatin treatment, our results indicate that SMAD2 and SMAD3 are both required for bovine early embryonic development and stimulatory actions of follistatin on 8- to 16-cell and that blastocyst rates, but not early cleavage, are muted when SMAD2/3 signaling is inhibited. SMAD2 deficiency also results in reduced expression of the bovine trophectoderm cell-specific gene CTGF. In conclusion, the present work provides evidence supporting a functional role of SMAD2/3 in bovine early embryogenesis and that specific stimulatory actions of follistatin are not observed in the absence of SMAD2/3 signaling.
Collapse
Affiliation(s)
- Kun Zhang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Kyung-Bon Lee
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Department of Biology Education, College of Education, Chonnam National University, Gwangju, Korea
| | - Dongliang Wang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Shuozhou Vocational and Technical College, Shuozhou, Shanxi, China
| | - Juncheng Huang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Jason G Knott
- Department of Animal Science, Michigan State University, East Lansing, Michigan Developmental Epigenetics Laboratory, Michigan State University, East Lansing, Michigan
| | - Jiuzhen Zhang
- Shuozhou Vocational and Technical College, Shuozhou, Shanxi, China
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|