51
|
Wery M, Ruidant S, Schillewaert S, Leporé N, Lafontaine DLJ. The nuclear poly(A) polymerase and Exosome cofactor Trf5 is recruited cotranscriptionally to nucleolar surveillance. RNA (NEW YORK, N.Y.) 2009; 15:406-419. [PMID: 19141608 PMCID: PMC2657017 DOI: 10.1261/rna.1402709] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
Terminal balls detected at the 5'-end of nascent ribosomal transcripts act as pre-rRNA processing complexes and are detected in all eukaryotes examined, resulting in illustrious Christmas tree images. Terminal balls (also known as SSU-processomes) compaction reflects the various stages of cotranscriptional ribosome assembly. Here, we have followed SSU-processome compaction in vivo by use of a chromatin immunoprecipitation (Ch-IP) approach and shown, in agreement with electron microscopy analysis of Christmas trees, that it progressively condenses to come in close proximity to the 5'-end of the 25S rRNA gene. The SSU-processome is comprised of independent autonomous building blocks that are loaded onto nascent pre-rRNAs and assemble into catalytically active pre-rRNA processing complexes in a stepwise and highly hierarchical process. Failure to assemble SSU-processome subcomplexes with proper kinetics triggers a nucleolar surveillance pathway that targets misassembled pre-rRNAs otherwise destined to mature into small subunit 18S rRNA for polyadenylation, preferentially by TRAMP5, and degradation by the 3' to 5' exoribonucleolytic activity of the Exosome. Trf5 colocalized with nascent pre-rRNPs, indicating that this nucleolar surveillance initiates cotranscriptionally.
Collapse
Affiliation(s)
- Maxime Wery
- Fonds de la Recherche Scientifique (FRS-FNRS), AcadémieWallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041 Belgium
| | | | | | | | | |
Collapse
|
52
|
Kawauchi J, Mischo H, Braglia P, Rondon A, Proudfoot NJ. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev 2008; 22:1082-92. [PMID: 18413718 DOI: 10.1101/gad.463408] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Both RNA polymerase I and II (Pol I and Pol II) in budding yeast employ a functionally homologous "torpedo-like" mechanism to promote transcriptional termination. For two well-defined Pol II-transcribed genes, CYC1 and PMA1, we demonstrate that both Rat1p exonuclease and Sen1p helicase are required for efficient termination by promoting degradation of the nascent transcript associated with Pol II, following mRNA 3' end processing. Similarly, Pol I termination relies on prior Rnt1p cleavage at the 3' end of the pre-rRNA 35S transcript. This is followed by the combined actions of Rat1p and Sen1p to degrade the Pol I-associated nascent transcript that consequently promote termination in the downstream rDNA spacer sequence. Our data suggest that the previously defined in vitro Pol I termination mechanism involving the action of the Reb1p DNA-binding factor to "road-block" Pol I transcription close to the termination region may have overlooked more complex in vivo molecular processes.
Collapse
Affiliation(s)
- Junya Kawauchi
- Sir William Dunn School of Pathology, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
53
|
El Hage A, Koper M, Kufel J, Tollervey D. Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast. Genes Dev 2008; 22:1069-81. [PMID: 18413717 DOI: 10.1101/gad.463708] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During transcription termination by RNA polymerase II on protein-coding genes, the nuclear 5' exonuclease Rat1/Xrn2 degrades the nascent transcript downstream from the polyadenylation site and "torpedoes" the polymerase. We report that the activity of Rat1 is also required for efficient termination by RNA polymerase I (Pol I) on the rDNA. In strains lacking catalytically active Rat1 or its cofactor Rai1, Pol I reads through the major, "Reb1-dependent" terminator (T1) but stops downstream at the "fail-safe" terminator (T2) and replication fork barrier (RFB). The absence of both Rat1 and the RFB-binding protein Fob1 increased Pol I read-through of T2 and the RFB. We propose that cotranscriptional cleavage of the pre-rRNA by the endonuclease Rnt1 generates a loading site for the Rat1/Rai1 complex, which then degrades the nascent transcript. When Rat1 catches Pol I, which is predicted to be paused at T1, transcription is terminated.
Collapse
Affiliation(s)
- Aziz El Hage
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
54
|
Abstract
In this issue, Kuhn et al. (2007) report the complete structure of the 14-subunit yeast RNA polymerase (Pol) I enzyme at 12 A resolution using cryo-electron microscopy (cryo-EM). Their study reveals that three subunits of Pol I perform functions in transcription elongation that are outsourced to the transcription factors TFIIF and TFIIS in the analogous Pol II transcription system.
Collapse
Affiliation(s)
- Jeremy R Haag
- Department of Biology, Washington University, 1 Brookings Drive, St. Louis, MO, USA
| | | |
Collapse
|
55
|
Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P. Functional architecture of RNA polymerase I. Cell 2008; 131:1260-72. [PMID: 18160037 DOI: 10.1016/j.cell.2007.10.051] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/26/2007] [Indexed: 01/10/2023]
Abstract
Synthesis of ribosomal RNA (rRNA) by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. Here we report the 12 A cryo-electron microscopic structure for the complete 14-subunit yeast Pol I, a homology model for the core enzyme, and the crystal structure of the subcomplex A14/43. In the resulting hybrid structure of Pol I, A14/43, the clamp, and the dock domain contribute to a unique surface interacting with promoter-specific initiation factors. The Pol I-specific subunits A49 and A34.5 form a heterodimer near the enzyme funnel that acts as a built-in elongation factor and is related to the Pol II-associated factor TFIIF. In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA Polymerase I/chemistry
- DNA Polymerase I/genetics
- DNA Polymerase I/metabolism
- Models, Molecular
- Mutation
- Peptide Elongation Factors/chemistry
- Peptide Elongation Factors/metabolism
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/metabolism
- Promoter Regions, Genetic
- Protein Conformation
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors/chemistry
- Transcriptional Elongation Factors/metabolism
Collapse
Affiliation(s)
- Claus-D Kuhn
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Gerber J, Reiter A, Steinbauer R, Jakob S, Kuhn CD, Cramer P, Griesenbeck J, Milkereit P, Tschochner H. Site specific phosphorylation of yeast RNA polymerase I. Nucleic Acids Res 2007; 36:793-802. [PMID: 18084032 PMCID: PMC2241885 DOI: 10.1093/nar/gkm1093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All nuclear RNA polymerases are phosphoprotein complexes. Yeast RNA polymerase I (Pol I) contains approximately 15 phosphate groups, distributed to 5 of the 14 subunits. Information about the function of the single phosphosites and their position in the primary, secondary and tertiary structure is lacking. We used a rapid and efficient way to purify yeast RNA Pol I to determine 13 phosphoserines and –threonines. Seven of these phosphoresidues could be located in the 3D-homology model for Pol I, five of them are more at the surface. The single phosphorylated residues were systematically mutated and the resulting strains and Pol I preparations were analyzed in cellular growth, Pol I composition, stability and genetic interaction with non-essential components of the transcription machinery. Surprisingly, all Pol I phosphorylations analyzed were found to be non-essential post-translational modifications. However, one mutation (subunit A190 S685D) led to higher growth rates in the presence of 6AU or under environmental stress conditions, and was synthetically lethal with a deletion of the Pol I subunit A12.2, suggesting a role in RNA cleavage/elongation or termination. Our results suggest that individual major or constitutively phosphorylated residues contribute to non-essential Pol I-functions.
Collapse
Affiliation(s)
- Jochen Gerber
- Institut für Biochemie, Mikrobiologie und Genetik, Universität Regensburg, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Deletion of Rnt1p alters the proportion of open versus closed rRNA gene repeats in yeast. Mol Cell Biol 2007; 28:619-29. [PMID: 17991894 DOI: 10.1128/mcb.01805-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the double-stranded-RNA-specific RNase III (Rnt1p) is required for the processing of pre-rRNA and coprecipitates with transcriptionally active rRNA gene repeats. Here we show that Rnt1p physically interacts with RNA polymerase I (RNAPI) and its deletion decreases the transcription of the rRNA gene and increases the number of rRNA genes with an open chromatin structure. In contrast, depletion of ribosomal proteins or factors that impair RNAPI termination did not increase the number of open rRNA gene repeats, suggesting that changes in the ratio of open and closed rRNA gene chromatin is not due to a nonspecific response to ribosome depletion or impaired termination. The results demonstrate that defects in pre-rRNA processing can influence the chromatin structure of the rRNA gene arrays and reveal links among the rRNA gene chromatin, transcription, and processing.
Collapse
|
58
|
Berger AB, Decourty L, Badis G, Nehrbass U, Jacquier A, Gadal O. Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. Mol Cell Biol 2007; 27:8015-26. [PMID: 17875934 PMCID: PMC2169146 DOI: 10.1128/mcb.01102-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis requires equimolar amounts of four rRNAs and all 79 ribosomal proteins (RP). Coordinated regulation of rRNA and RP synthesis by eukaryotic RNA polymerases (Pol) I, III, and II is a key requirement for growth control. Using a novel global genetic approach, we showed that the absence of Hmo1 becomes lethal when combined with mutations of components of either the RNA Pol II or Pol I transcription machineries, of specific RP, or of the TOR pathway. Hmo1 directly interacts with both the region transcribed by Pol I and a subset of RP gene promoters. Down-regulation of Hmo1 expression affects RP gene expression. Upon TORC1 inhibition, Hmo1 dissociates from ribosomal DNA (rDNA) and some RP gene promoters simultaneously. Finally, in the absence of Hmo1, TOR-dependent repression of RP genes is alleviated. Therefore, we show here that Saccharomyces cerevisiae Hmo1 is directly involved in coordinating rDNA transcription by Pol I and RP gene expression by Pol II under the control of the TOR pathway.
Collapse
Affiliation(s)
- Axel B Berger
- Unité de Biologie Cellulaire du Noyau, Unité de Génétique des Interactions Macromoléculaires, CNRS URA 2171, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | |
Collapse
|
59
|
Shibata R, Bessho Y, Shinkai A, Nishimoto M, Fusatomi E, Terada T, Shirouzu M, Yokoyama S. Crystal structure and RNA-binding analysis of the archaeal transcription factor NusA. Biochem Biophys Res Commun 2007; 355:122-8. [PMID: 17288993 DOI: 10.1016/j.bbrc.2007.01.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 01/23/2007] [Indexed: 11/29/2022]
Abstract
The transcription factor NusA functions in transcriptional regulation involving termination in bacteria. A NusA homolog consisting of only the two KH domains is widely conserved in archaea, but its function remains unknown. We have found that Aeropyrum pernix NusA strongly binds to a certain CU-rich sequence near a termination signal. Our crystal structure of A. pernix NusA revealed that its spatial arrangement is quite similar to that of the KH domains of bacterial NusA. Thus, we consider archaeal NusA to have retained some functions of bacterial NusA, including the ssRNA-binding ability. Remarkable structural differences between archaeal and bacterial NusA exist at the interface with RNAP, in connection with the different NusA-binding sites around the termination signals. Transcriptional termination in archaea could differ from all of the known bacterial and eukaryal mechanisms, in terms of the combination of a bacterial factor and a eukaryal-type RNAP.
Collapse
Affiliation(s)
- Rie Shibata
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Jones HS, Kawauchi J, Braglia P, Alen CM, Kent NA, Proudfoot NJ. RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nat Struct Mol Biol 2007; 14:123-30. [PMID: 17259992 PMCID: PMC6941936 DOI: 10.1038/nsmb1199] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) I-transcribed ribosomal genes of budding yeast exist as a tandem array (about 150 repeats) with transcription units separated by spacer sequences. Half of these rDNAs are inactivated by repressive chromatin structure, whereas the rest exist in an open conformation transcribed by closely spaced Pol I elongation complexes. Whereas previous studies have suggested that active rDNA is devoid of nucleosomal structure, we demonstrate that active rDNA has nucleosomal structure, according to chromatin immunoprecipitation and biochemical fractionation. Using a yeast strain with reduced numbers of all actively transcribed rDNA repeats, we show that rDNA exists in a dynamic chromatin structure of unphased nucleosomes. Furthermore, it is associated with chromatin-remodeling enzymes Chd1p, Isw1p and Isw2p, whose inactivation causes defects in transcription termination. We suggest that Pol I transcription, like that of Pol II, may be modulated by specific chromatin structures.
Collapse
Affiliation(s)
- Hannah S Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
61
|
Zaros C, Briand JF, Boulard Y, Labarre-Mariotte S, Garcia-Lopez MC, Thuriaux P, Navarro F. Functional organization of the Rpb5 subunit shared by the three yeast RNA polymerases. Nucleic Acids Res 2006; 35:634-47. [PMID: 17179178 PMCID: PMC1802627 DOI: 10.1093/nar/gkl686] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/30/2006] [Accepted: 09/07/2006] [Indexed: 12/05/2022] Open
Abstract
Rpb5, a subunit shared by the three yeast RNA polymerases, combines a eukaryotic N-terminal module with a globular C-end conserved in all non-bacterial enzymes. Conditional and lethal mutants of the moderately conserved eukaryotic module showed that its large N-terminal helix and a short motif at the end of the module are critical in vivo. Lethal or conditional mutants of the C-terminal globe altered the binding of Rpb5 to Rpb1-beta25/26 (prolonging the Bridge helix) and Rpb1-alpha44/47 (ahead of the Switch 1 loop and binding Rpb5 in a two-hybrid assay). The large intervening segment of Rpb1 is held across the DNA Cleft by Rpb9, consistent with the synergy observed for rpb5 mutants and rpb9Delta or its RNA polymerase I rpa12Delta counterpart. Rpb1-beta25/26, Rpb1-alpha44/45 and the Switch 1 loop were only found in Rpb5-containing polymerases, but the Bridge and Rpb1-alpha46/47 helix bundle were universally conserved. We conclude that the main function of the dual Rpb5-Rpb1 binding and the Rpb9-Rpb1 interaction is to hold the Bridge helix, the Rpb1-alpha44/47 helix bundle and the Switch 1 loop into a closely packed DNA-binding fold around the transcription bubble, in an organization shared by the two other nuclear RNA polymerases and by the archaeal and viral enzymes.
Collapse
Affiliation(s)
- Cécile Zaros
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Jean-François Briand
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Yves Boulard
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Sylvie Labarre-Mariotte
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - M. Carmen Garcia-Lopez
- Department Biología Experimental—Area de Genética (ED.B3) Universidad de Jaén Paraje lasLagunillas E-23071 Jaén, SPAIN
| | - Pierre Thuriaux
- Service de Biochimie & Génétique Moléculaire.Bâtiment 144 CEA-Saclay, F-91191, Gif-sur-Yvette, CEDEX, France
| | - Francisco Navarro
- Department Biología Experimental—Area de Genética (ED.B3) Universidad de Jaén Paraje lasLagunillas E-23071 Jaén, SPAIN
| |
Collapse
|
62
|
Barbara KE, Haley TM, Willis KA, Santangelo GM. The transcription factor Gcr1 stimulates cell growth by participating in nutrient-responsive gene expression on a global level. Mol Genet Genomics 2006; 277:171-88. [PMID: 17124610 DOI: 10.1007/s00438-006-0182-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 10/06/2006] [Indexed: 12/21/2022]
Abstract
Transcriptomic reprogramming is critical to the coordination between growth and cell cycle progression in response to changing extracellular conditions. In Saccharomyces cerevisiae, the transcription factor Gcr1 contributes to this coordination by supporting maximum expression of G1 cyclins in addition to regulating both glucose-induced and glucose-repressed genes. We report here the comprehensive genome-wide expression profiling of gcr1Delta cells. Our data show that reduced expression of ribosomal protein genes in gcr1Delta cells is detectable both 20 min after glucose addition and in steady-state cultures of raffinose-grown cells, showing that this defect is not the result of slow growth or growth on a repressing sugar. However, the large cell phenotype of the gcr1Delta mutant occurs only in the presence of repressing sugars. GCR1 deletion also results in aberrant derepression of numerous glucose repressed loci; glucose-grown gcr1Delta cells actively respire, demonstrating that this global alteration in transcription corresponds to significant changes at the physiological level. These data offer an insight into the coordination of growth and cell division by providing an integrated view of the transcriptomic, phenotypic, and metabolic consequences of GCR1 deletion.
Collapse
Affiliation(s)
- Kellie E Barbara
- Mississippi Functional Genomics Network, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS, USA
| | | | | | | |
Collapse
|
63
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
64
|
Landrieux E, Alic N, Ducrot C, Acker J, Riva M, Carles C. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J 2005; 25:118-28. [PMID: 16362040 PMCID: PMC1356358 DOI: 10.1038/sj.emboj.7600915] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 11/22/2005] [Indexed: 11/09/2022] Open
Abstract
While initiation of transcription by RNA polymerase III (Pol III) has been thoroughly investigated, molecular mechanisms driving transcription termination remain poorly understood. Here we describe how the characterization of the in vitro transcriptional properties of a Pol III variant (Pol IIIdelta), lacking the C11, C37, and C53 subunits, revealed crucial information about the mechanisms of Pol III termination and reinitiation. The specific requirement for the C37-C53 complex in terminator recognition was determined. This complex was demonstrated to slow down elongation by the enzyme, adding to the evidence implicating the elongation rate as a critical determinant of correct terminator recognition. In addition, the presence of the C37-C53 complex required the simultaneous addition of C11 to Pol IIIdelta for the enzyme to reinitiate after the first round of transcription, thus uncovering a role for polymerase subunits in the facilitated recycling process. Interestingly, we demonstrated that the role of C11 in recycling was independent of its role in RNA cleavage. The data presented allowed us to propose a model of Pol III termination and its links to reinitiation.
Collapse
Affiliation(s)
- Emilie Landrieux
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Nazif Alic
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Cécile Ducrot
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Joël Acker
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Michel Riva
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, F-91191 Gif sur Yvette Cedex, France. Tel.: +33 1 69 08 84 17; Fax: +33 1 69 08 47 12; E-mail:
| | - Christophe Carles
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| |
Collapse
|
65
|
Braglia P, Percudani R, Dieci G. Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 2005; 280:19551-62. [PMID: 15788403 DOI: 10.1074/jbc.m412238200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic RNA polymerase (Pol) III terminates transcription at short runs of T residues in the coding DNA strand. By genomic analysis, we found that T(5) and T(4) are the shortest Pol III termination signals in yeasts and mammals, respectively, and that, at variance with yeast, oligo(dT) terminators longer than T(5) are very rare in mammals. In Saccharomyces cerevisiae, the strength of T(5) as a terminator was found to be largely influenced by both the upstream and the downstream sequence context. In particular, the CT sequence, which is naturally present downstream of T(5) in the 3'-flank of some tDNAs, was found to act as a terminator-weakening element that facilitates translocation by reducing Pol III pausing at T(5). In contrast, tDNA transcription termination was highly efficient when T(5) was followed by an A or G residue. Surprisingly, however, when a termination-proficient T(5) signal was taken out from the tDNA context and placed downstream of a fragment of the SCR1 gene, its termination activity was compromised, both in vitro and in vivo. Even the T(6) sequence, acting as a strong terminator in tRNA gene contexts, was unexpectedly weak within the SNR52 transcription unit, where it naturally occurs. The observed sequence context effects reflect intrinsic recognition properties of Pol III, because they were still observed in a simplified in vitro transcription system only consisting of purified RNA polymerase and template DNA. Our findings strengthen the notion that termination signal recognition by Pol III is influenced in a complex way by the region surrounding the T cluster and suggest that read-through transcription beyond T clusters might play a significant role in the biogenesis of class III gene products.
Collapse
Affiliation(s)
- Priscilla Braglia
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Italy
| | | | | |
Collapse
|
66
|
Henras AK, Bertrand E, Chanfreau G. A cotranscriptional model for 3'-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor. RNA (NEW YORK, N.Y.) 2004; 10:1572-1585. [PMID: 15337846 PMCID: PMC1370644 DOI: 10.1261/rna.7750804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/15/2004] [Indexed: 05/24/2023]
Abstract
Cleavage of the Saccharomyces cerevisiae primary ribosomal RNA (rRNA) transcript in the 3' external transcribed spacer (ETS) by Rnt1p generates the 35S pre-rRNA, the earliest detectable species in the pre-rRNA processing pathway. In this study we show that Rnt1p is concentrated in a subnucleolar dot-shaped territory distinct from the nucleolar body. The 35S pre-rRNA is localized at the periphery of the Rnt1p dot, in a pattern that suggests a diffusion of the 35S pre-rRNA from the site of Rnt1p processing. When plasmid-borne versions of the rDNA are used to express rRNAs, the Rnt1p territory reorganizes around these plasmids, suggesting a close association between Rnt1p and the plasmid-borne rDNA units. Rnt1p was found associated with the endogenous rDNA by chromatin immunoprecipitation. Deletion of functionally important Rnt1p domains result in a loss of the dot-shaped territory, showing that this subnucleolar territory corresponds to a functional site of processing. These results show that a large fraction of Rnt1p is localized at the site of transcription of the rDNA, suggesting that the cleavage of the primary pre-rRNA transcript to generate the 35S pre-rRNA is a cotranscriptional event.
Collapse
Affiliation(s)
- Anthony K Henras
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|