51
|
Chapman E, Fry AN, Kang M. The complexities of p97 function in health and disease. MOLECULAR BIOSYSTEMS 2010; 7:700-10. [PMID: 21152665 DOI: 10.1039/c0mb00176g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
p97 is a homohexameric, toroidal machine that harnesses the energy of ATP binding and hydrolysis to effect structural reorganization of a diverse and primarily uncharacterized set of substrate proteins. This action has been linked to endoplasmic reticulum associated degradation (ERAD), homotypic membrane fusion, transcription factor control, cell cycle progression, DNA repair, and post-mitotic spindle disassembly. Exactly how these diverse processes use p97 is not fully understood, but it is clear that binding sites, primarily on the N- and C-domains of p97, facilitate this diversity by coordinating a growing collection of cofactors. These cofactors act at the levels of mechanism, sub-cellular localization, and substrate modification. Another unifying theme is the use of ubiquitylation. Both p97 and many of the associated cofactors have demonstrable ubiquitin-binding competence. The present review will discuss some of the current mechanistic studies and controversies and how these relate to cofactors as well as discussing potential therapeutic targeting of p97.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Molecular Biology, The Scripps Research Institute, Skaggs Molecular Biology Building, 10596 Torrey Pines Road, Rm. 203, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
52
|
Haines DS. p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 2010; 1:753-763. [PMID: 21103003 DOI: 10.1177/1947601910381381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p97 (also called VCP in metazoans and CDC48 in yeast) is a highly conserved, abundant and essential type II ATPase that functions in numerous ubiquitin signaling dependent processes. p97/Cd48 activities require a growing number of adaptor or accessory proteins that promote interactions with ubiquitinated proteins. p97 has human disease relevance as it is mutated in familial cases of inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). There is also increasing evidence suggesting that p97 and/or some of its adaptors play a role in cancer. This review will summarize our existing knowledge of the biochemical, molecular and cellular activities of p97-containing complexes, with an ending focus on their potential role in malignancy.
Collapse
Affiliation(s)
- Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, USA
| |
Collapse
|
53
|
Kumar KR, Needham M, Mina K, Davis M, Brewer J, Staples C, Ng K, Sue CM, Mastaglia FL. Two Australian families with inclusion-body myopathy, Paget’s disease of bone and frontotemporal dementia: Novel clinical and genetic findings. Neuromuscul Disord 2010; 20:330-4. [DOI: 10.1016/j.nmd.2010.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/03/2010] [Accepted: 03/01/2010] [Indexed: 12/01/2022]
|
54
|
Ju JS, Weihl CC. Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy. Hum Mol Genet 2010; 19:R38-45. [PMID: 20410287 DOI: 10.1093/hmg/ddq157] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inclusion body myopathy associated with Paget's disease of the bone and fronto-temporal dementia (IBMPFD) is a progressive autosomal dominant disorder caused by mutations in p97/VCP (valosin-containing protein). p97/VCP is a member of the AAA+ (ATPase associated with a variety of activities) protein family and participates in multiple cellular processes. One particularly important role for p97/VCP is facilitating intracellular protein degradation. p97/VCP has traditionally been thought to mediate the ubiquitin-proteasome degradation of proteins; however, recent studies challenge this dogma. p97/VCP clearly participates in the degradation of aggregate-prone proteins, a process principally mediated by autophagy. In addition, IBMPFD mutations in p97/VCP lead to accumulation of autophagic structures in patient and transgenic animal tissue. This is likely due to a defect in p97/VCP-mediated autophagosome maturation. The following review will discuss the evidence for p97/VCP in autophagy and how a disruption in this process contributes to IBMPFD pathogenesis.
Collapse
Affiliation(s)
- Jeong-Sun Ju
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
55
|
Tang WK, Li D, Esser L, Xia D. Purification, crystallization and preliminary X-ray diffraction analysis of disease-related mutants of p97. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1166-70. [PMID: 19923742 PMCID: PMC2777050 DOI: 10.1107/s174430910904055x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/05/2009] [Indexed: 11/11/2022]
Abstract
The human type II AAA+ protein p97 participates in various cellular activities, presumably through its involvement in the ubiquitin-proteasome degradation pathway. Mutations in p97 have been implicated in patients with inclusion-body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). In this work, three mutant p97 N-D1 fragments, R86A, R95G and R155H, were crystallized in the presence of ATPgammaS with PEG 3350 as a main precipitant, yielding two different crystal forms. The R155H mutant crystal belonged to space group R3, with unit-cell parameters in the hexagonal setting of a = b = 134.2, c = 182.9 angstrom, and was merohedrally twinned, with an estimated twin fraction of 0.34. The crystals of the R86A and R95G mutants belonged to space group P1, with similar unit-cell parameters of a = 90.89, b = 102.6, c = 107.2 angstrom, alpha = 97.5, beta = 90.6, gamma = 91.5 degrees and a = 92.76, b = 103.7, c = 107.7 angstrom , alpha = 97.7, beta = 91.9, gamma = 89.7 degrees, respectively.
Collapse
Affiliation(s)
- Wai-Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dongyang Li
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
56
|
Sasagawa Y, Otani M, Higashitani N, Higashitani A, Sato K, Ogura T, Yamanaka K. Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA-1 level in a CUL-2-dependent manner. J Cell Sci 2009; 122:3663-72. [PMID: 19773360 DOI: 10.1242/jcs.052415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
p97 (CDC-48 in Caenorhabditis elegans) is a ubiquitin-selective AAA (ATPases associated with diverse cellular activities) chaperone and its key function is to disassemble protein complexes. p97 functions in diverse cellular processes including endoplasmic reticulum (ER)-associated degradation, membrane fusion, and meiotic and mitotic progression. However, its cellular functions in development have not yet been clarified. Here, we present data that p97 is involved in the switch from spermatogenesis to oogenesis in the germline of the C. elegans hermaphrodite. We found that the cdc-48.1 deletion mutant produced less sperm than the wild type and thus showed a decreased brood size. The cdc-48.1 mutation suppressed the sperm-overproducing phenotypes of fbf-1 and fem-3(gf) mutants. In addition, the p97/CDC-48-UFD-1-NPL-4 complex interacted with the E3 ubiquitin ligase CUL-2 complex via NPL-4 binding to Elongin C. Furthermore, TRA-1A, which is the terminal effector of the sex determination pathway and is regulated by CUL-2-mediated proteolysis, accumulated in the cdc-48.1 mutant. Proteasome activity was also required for the brood size determination and sperm-oocyte switch. Our results demonstrate that the C. elegans p97/CDC-48-UFD-1-NPL-4 complex controls the sperm-oocyte switch by regulating CUL-2-mediated TRA-1A proteasome degradation.
Collapse
Affiliation(s)
- Yohei Sasagawa
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Fairbank M, St-Pierre P, Nabi IR. The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. MOLECULAR BIOSYSTEMS 2009; 5:793-801. [PMID: 19603112 DOI: 10.1039/b820820b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoglucose isomerase (PGI) is a glycolytic enzyme that exhibits a dual function as an extracellular cytokine, under the name autocrine motility factor (AMF). Its cell surface receptor, gp78/AMFR, is also localized to the endoplasmic reticulum where it functions as an E3 ubiquitin ligase. Expression of both AMF/PGI and gp78/AMFR is associated with cancer and, in this review, we will discuss various aspects of the biology of this ligand-receptor complex and its role in tumor progression.
Collapse
Affiliation(s)
- Maria Fairbank
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6P 5V8, Canada
| | | | | |
Collapse
|
58
|
Gitcho MA, Strider J, Carter D, Taylor-Reinwald L, Forman MS, Goate AM, Cairns NJ. VCP mutations causing frontotemporal lobar degeneration disrupt localization of TDP-43 and induce cell death. J Biol Chem 2009; 284:12384-98. [PMID: 19237541 PMCID: PMC2673306 DOI: 10.1074/jbc.m900992200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Indexed: 11/06/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) with inclusion body myopathy and Paget disease of bone is a rare, autosomal dominant disorder caused by mutations in the VCP (valosin-containing protein) gene. The disease is characterized neuropathologically by frontal and temporal lobar atrophy, neuron loss and gliosis, and ubiquitin-positive inclusions (FTLD-U), which are distinct from those seen in other sporadic and familial FTLD-U entities. The major component of the ubiquitinated inclusions of FTLD with VCP mutation is TDP-43 (TAR DNA-binding protein of 43 kDa). TDP-43 proteinopathy links sporadic amyotrophic lateral sclerosis, sporadic FTLD-U, and most familial forms of FTLD-U. Understanding the relationship between individual gene defects and pathologic TDP-43 will facilitate the characterization of the mechanisms leading to neurodegeneration. Using cell culture models, we have investigated the role of mutant VCP in intracellular trafficking, proteasomal function, and cell death and demonstrate that mutations in the VCP gene 1) alter localization of TDP-43 between the nucleus and cytosol, 2) decrease proteasome activity, 3) induce endoplasmic reticulum stress, 4) increase markers of apoptosis, and 5) impair cell viability. These results suggest that VCP mutation-induced neurodegeneration is mediated by several mechanisms.
Collapse
Affiliation(s)
- Michael A Gitcho
- Alzheimer's Disease Research Center and the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul Disord 2009; 19:308-15. [PMID: 19380227 DOI: 10.1016/j.nmd.2009.01.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/15/2008] [Accepted: 01/18/2009] [Indexed: 01/18/2023]
Abstract
Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM) associated with Paget's disease of the bone (PDB) and fronto-temporal dementia (FTD) or IBMPFD. Although IBMPFD is a multisystem disorder, muscle weakness is the presenting symptom in greater than half of patients and an isolated symptom in 30%. Patients with the full spectrum of the disease make up only 12% of those affected; therefore it is important to consider and recognize IBMPFD in a neuromuscular clinic. The current review describes the skeletal muscle phenotype and common muscle histochemical features in IBMPFD. In addition to myopathic features; vacuolar changes and tubulofilamentous inclusions are found in a subset of patients. The most consistent findings are VCP, ubiquitin and TAR DNA-binding protein 43 (TDP-43) positive inclusions. VCP is a ubiquitously expressed multifunctional protein that is a member of the AAA+ (ATPase associated with various activities) protein family. It has been implicated in multiple cellular functions ranging from organelle biogenesis to protein degradation. Although the role of VCP in skeletal muscle is currently unknown, it is clear that VCP mutations lead to the accumulation of ubiquitinated inclusions and protein aggregates in patient tissue, transgenic animals and in vitro systems. We suggest that IBMPFD is novel type of protein surplus myopathy. Instead of accumulating a poorly degraded and aggregated mutant protein as seen in some myofibrillar and nemaline myopathies, VCP mutations disrupt its normal role in protein homeostasis resulting in the accumulation of ubiquitinated and aggregated proteins that are deleterious to skeletal muscle.
Collapse
Affiliation(s)
- Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
60
|
Alberts SM, Sonntag C, Schäfer A, Wolf DH. Ubx4 modulates cdc48 activity and influences degradation of misfolded proteins of the endoplasmic reticulum. J Biol Chem 2009; 284:16082-16089. [PMID: 19359248 DOI: 10.1074/jbc.m809282200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolded proteins of the secretory pathway are recognized in the endoplasmic reticulum (ER), retrotranslocated into the cytoplasm, and degraded by the ubiquitin-proteasome system. Right after retrotranslocation and polyubiquitination, they are extracted from the cytosolic side of the ER membrane through a complex consisting of the AAA ATPase Cdc48 (p97 in mammals), Ufd1, and Npl4. This complex delivers misfolded proteins to the proteasome for final degradation. Extraction, delivery, and processing of ERAD (ER-associated degradation) substrates to the proteasome requires additional cofactors of Cdc48. Here we characterize the UBX domain containing protein Ubx4 (Cui1) as a crucial factor for the degradation of polyubiquitinated proteins via ERAD. Ubx4 modulates the Cdc48-Ufd1-Npl4 complex to guarantee its correct function. Mutant variants of Ubx4 lead to defective degradation of misfolded proteins and accumulation of polyubiquitinated proteins bound to Cdc48. We show the requirement of the UBX domain of Ubx4 for its function in ERAD. The observation that Ubx2 and Ubx4 are not found together in one complex with Cdc48 suggests several distinct steps in modulating the activity and localization of Cdc48 in ERAD.
Collapse
Affiliation(s)
- Sven M Alberts
- From the Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Caroline Sonntag
- From the Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Antje Schäfer
- From the Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Dieter H Wolf
- From the Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| |
Collapse
|
61
|
Morreale G, Conforti L, Coadwell J, Wilbrey AL, Coleman MP. Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins. FEBS J 2009; 276:1208-20. [PMID: 19175675 DOI: 10.1111/j.1742-4658.2008.06858.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cell-autonomous process that eliminates large quantities of misfolded, newly synthesized protein, and is thus essential for the survival of any basic eukaryotic cell. Accordingly, the proteins involved and their interaction partners are well conserved from yeast to mammals, and Saccharomyces cerevisiae is widely used as a model system with which to investigate this fundamental cellular process. For example, valosin-containing protein (VCP) and its yeast homologue cell division cycle protein 48 (Cdc48p), which help to direct polyubiquitinated proteins for proteasome-mediated degradation, interact with an equivalent group of ubiquitin ligases in mouse and in S. cerevisiae. A conserved structural motif for cofactor binding would therefore be expected. We report a VCP-binding motif (VBM) shared by mammalian ubiquitin ligase E4b (Ube4b)-ubiquitin fusion degradation protein 2a (Ufd2a), hydroxymethylglutaryl reductase degradation protein 1 (Hrd1)-synoviolin and ataxin 3, and a related sequence in M(r) 78,000 glycoprotein-Amfr with slightly different binding properties, and show that Ube4b and Hrd1 compete for binding to the N-terminal domain of VCP. Each of these proteins is involved in ERAD, but none has an S. cerevisiae homologue containing the VBM. Some other invertebrate model organisms also lack the VBM in one or more of these proteins, in contrast to vertebrates, where the VBM is widely conserved. Thus, consistent with their importance in ERAD, evolution has developed at least two ways to bring these proteins together with VCP-Cdc48p. However, the differing molecular architecture of VCP-Cdc48p complexes indicates a key point of divergence in the molecular details of ERAD mechanisms.
Collapse
Affiliation(s)
- Giacomo Morreale
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, UK.
| | | | | | | | | |
Collapse
|
62
|
Humphreys D, Hume PJ, Koronakis V. The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host Microbe 2009; 5:225-33. [PMID: 19286132 PMCID: PMC2724103 DOI: 10.1016/j.chom.2009.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/14/2008] [Accepted: 01/20/2009] [Indexed: 11/24/2022]
Abstract
Virulence effectors delivered into intestinal epithelial cells by Salmonella trigger actin remodeling to direct pathogen internalization and intracellular replication in Salmonella-containing vacuoles (SCVs). One such effector, SptP, functions early during pathogen entry to deactivate Rho GTPases and reverse pathogen-induced cytoskeletal changes following uptake. SptP also harbors a C-terminal protein tyrosine phosphatase (PTPase) domain with no clear host substrates. Investigating SptP's longevity in infected cells, we uncover a late function of SptP, showing that it associates with SCVs, and its PTPase activity increases pathogen replication. Direct SptP binding and specific dephosphorylation of the AAA+ ATPase valosin-containing protein (VCP/p97), a facilitator of cellular membrane fusion and protein degradation, enhanced pathogen replication in SCVs. VCP and its adaptors p47 and Ufd1 were necessary for generating Salmonella-induced filaments on SCVs, a membrane fusion event characteristic of the pathogen replicative phase. Thus, Salmonella regulates the biogenesis of an intracellular niche through SptP-mediated dephosphorylation of VCP.
Collapse
Affiliation(s)
- Daniel Humphreys
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Peter J. Hume
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Vassilis Koronakis
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
63
|
Abstract
p97/VCP (valosin-containing protein) is a cytosolic AAA (ATPase associated with various cellular activities) essential for retrotranslocation of misfolded proteins during ERAD [ER (endoplasmic reticulum)-associated degradation]. gp78, an ERAD ubiquitin ligase, is one of the p97/VCP recruitment proteins localized to the ER membrane. A newly identified VIM (p97/VCP-interacting motif) in gp78 has brought about novel insights into mechanisms of ERAD, such as the presence of a p97/VCP-dependent but Ufd1-independent retrotranslocation during gp78-mediated ERAD. Additionally, SVIP (small p97/VCP-interacting protein), which contains a VIM in its N-terminal region, negatively regulates ERAD by uncoupling p97/VCP and Derlin1 from gp78. Thus SVIP may protect cells from damage by extravagant ERAD.
Collapse
|
64
|
Bazile F, Gagné JP, Mercier G, Lo KS, Pascal A, Vasilescu J, Figeys D, Poirier GG, Kubiak JZ, Chesnel F. Differential proteomic screen to evidence proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryos. J Proteome Res 2008; 7:4701-14. [PMID: 18823142 DOI: 10.1021/pr800250x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modification of proteins via ubiquitination plays a crucial role in numerous vital functions of the cell. Polyubiquitination is one of the key regulatory processes involved in regulation of mitotic progression. Here we describe a differential proteomic screen dedicated to identification of novel proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryo. Mutated recombinant His6-tagged ubiquitin (Ubi (K48R)) was added to mitotic extract from which we purified conjugated proteins, as well as associated proteins in nondenaturing conditions by cobalt affinity chromatography. Proteins eluted from Ubi (K48R) supplemented and control extracts were compared by LC-MS/MS analysis after monodimensional SDS-PAGE. A total of 144 proteins potentially ubiquitinated or associated with them were identified. Forty-one percent of these proteins were shown to be involved in ubiquitination and/or proteasomal degradation pathway confirming the specificity of the screen. Twelve proteins, among them ubiquitin itself, were shown to carry a "GG" or "LRGG" remnant tag indicating their direct ubiquitination. Interestingly, sequence analysis of ubiquitinated substrates carrying these tags indicated that in Xenopus cell-free embryo extract supplemented with Ubi (K48R) the majority of polyubiquitination occurred through lysine-11 specific ubiquitin chain polymerization. The potential interest in this atypical form of ubiquitination as well as usefulness of our method in analyzing atypical polyubiquitin species is discussed.
Collapse
Affiliation(s)
- Franck Bazile
- CNRS UMR 6061, Institute of Genetics & Development, University of Rennes 1, Mitosis & Meiosis Group, IFR 140 GFAS, 35 043 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Ju JS, Miller SE, Hanson PI, Weihl CC. Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease. J Biol Chem 2008; 283:30289-99. [PMID: 18715868 DOI: 10.1074/jbc.m805517200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in p97/VCP cause the multisystem disease inclusion body myopathy, Paget disease of the bone and frontotemporal dementia (IBMPFD). p97/VCP is a member of the AAA+ (ATPase associated with a variety of activities) protein family and has been implicated in multiple cellular processes. One pathologic feature in IBMPFD is ubiquitinated inclusions, suggesting that mutations in p97/VCP may affect protein degradation. The present study shows that IBMPFD mutant expression increases ubiquitinated proteins and susceptibility to proteasome inhibition. Co-expression of an aggregate prone protein such as expanded polyglutamine in IBMPFD mutant cells results in an increase in aggregated protein that localizes to small inclusions instead of a single perinuclear aggresome. These small inclusions fail to co-localize with autophagic machinery. IBMPFD mutants avidly bind to these small inclusions and may not allow them to traffic to an aggresome. This is rescued by HDAC6, a p97/VCP-binding protein that facilitates the autophagic degradation of protein aggregates. Expression of HDAC6 improves aggresome formation and protects IBMPFD mutant cells from polyglutamine-induced cell death. Our study emphasizes the importance of protein aggregate trafficking to inclusion bodies in degenerative diseases and the therapeutic benefit of inclusion body formation.
Collapse
Affiliation(s)
- Jeong-Sun Ju
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
66
|
Madsen L, Andersen KM, Prag S, Moos T, Semple CA, Seeger M, Hartmann-Petersen R. Ubxd1 is a novel co-factor of the human p97 ATPase. Int J Biochem Cell Biol 2008; 40:2927-42. [PMID: 18656546 DOI: 10.1016/j.biocel.2008.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 11/30/2022]
Abstract
The AAA ATPase complex known as p97 or VCP in mammals and Cdc48 in yeast is connected to a multitude of cellular pathways, including membrane fusion, protein folding, protein degradation and activation of membrane-bound transcription factors. The mechanism by which p97 participates in such a broad spectrum of cellular functions appears to be via recruiting certain specific co-factors. Here we isolate and characterize the human protein Ubxd1, a novel co-factor of p97. We show that Ubxd1 is a stable protein that localizes to the cytoplasm and nucleus and is highly enriched in centrosomes. In mice Ubxd1 is widely expressed, but especially abundant in brain. Curiously, Ubxd1 does not associate with p97 via its UBX domain, but via its PUB domain which binds the extreme C-terminus of p97. Phosphorylation of the penultimate tyrosine residue in p97 completely abolishes Ubxd1 interaction. Ternary complexes of Ubxd1, p47, and p97 were detected in vitro. Inhibition of Ubxd1 expression by siRNA did not affect the degradation of bulk protein or a model substrate of the ERAD pathway, indicating that Ubxd1 directs p97 activity to specialized functions in vivo.
Collapse
Affiliation(s)
- Louise Madsen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
67
|
Analysis of Npl4 deletion mutants in mammalian cells unravels new Ufd1-interacting motifs and suggests a regulatory role of Npl4 in ERAD. Exp Cell Res 2008; 314:2715-23. [PMID: 18586029 DOI: 10.1016/j.yexcr.2008.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 01/04/2023]
Abstract
Npl4 is a 67 kDa protein forming a stable heterodimer with Ufd1, which in turn binds the ubiquitous p97/VCP ATPase. According to a widely accepted model, VCP(Ufd1-Npl4) promotes the retrotranslocation of emerging ER proteins, their ubiquitination by associated ligases, and handling to the 26S proteasome for degradation in a process known as ERAD (ER-associated degradation). Using a series of Npl4 deletion mutants we have revealed that the binding of Ufd1 to Npl4 is mediated by two regions: a conserved stretch of amino acids from 113 to 255 within the zf-Npl4 domain and by the Npl4 homology domain between amino acids 263 and 344. Within the first region, we have identified two discrete subdomains: one involved in Ufd1 binding and one regulating VCP binding. Expression of any one of the mutants failed to induce any changes in the morphology of the ER or Golgi compartments. Moreover, we have observed that overexpression of all the analyzed mutants induced mild ER stress, as evidenced by increased Grp74/BiP expression without associated XBP1 splicing or induction of apoptosis. Surprisingly, we have not observed any accumulation of the typical ERAD substrate alphaTCR. This favors the model where the Ufd1-Npl4 dimer forms a regulatory gate at the exit from the retrotranslocone, rather than actively promoting retrotranslocation like the p97VCP ATPase.
Collapse
|
68
|
Yamauchi S, Higashitani N, Otani M, Higashitani A, Ogura T, Yamanaka K. Involvement of HMG-12 and CAR-1 in the cdc-48.1 expression of Caenorhabditis elegans. Dev Biol 2008; 318:348-59. [DOI: 10.1016/j.ydbio.2008.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 02/20/2008] [Accepted: 02/23/2008] [Indexed: 10/22/2022]
|
69
|
Goder V, Carvalho P, Rapoport TA. The ER-associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p. FEBS Lett 2008; 582:1575-80. [PMID: 18407841 DOI: 10.1016/j.febslet.2008.03.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/24/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are often degraded in the cytosol by a process called ER-associated protein degradation (ERAD). During ERAD in S. cerevisiae, the ATPase Cdc48p associates with Der1p, a putative component of a retro-translocation channel. Cdc48p also binds a homolog of Der1p, Dfm1p, that has no known function in ERAD. Here, we show that Der1p and Dfm1p are contained in distinct complexes. While the complexes share several ERAD components, only the Dfm1p complex contains the Cdc48p cofactors Ubx1p and Ubx7p, while the Der1p complex is enriched in Ufd1p. These data suggest distinct functions for the Der1p and Dfm1p complexes.
Collapse
Affiliation(s)
- Veit Goder
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
70
|
Takahata M, Bohgaki M, Tsukiyama T, Kondo T, Asaka M, Hatakeyama S. Ro52 functionally interacts with IgG1 and regulates its quality control via the ERAD system. Mol Immunol 2008; 45:2045-54. [DOI: 10.1016/j.molimm.2007.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/11/2007] [Indexed: 11/28/2022]
|
71
|
Abstract
The AAA (ATPase associated with various cellular activities) p97 [also known as VCP (valosin-containing protein)] participates in numerous biological activities and is an essential component of the ubiquitin signalling pathway. A plethora of adaptors have been reported for p97, and increasing evidence is suggesting that it is through adaptor binding that p97 is diverted into different cellular pathways. Studying the interaction between p97 and its adaptors is therefore crucial to our understanding of the physiological roles of the protein. The interactions between p97 and the PUB [PNGase (peptide N-glycosidase)/ubiquitin-associated] domain of PNGase, the UBX (ubiquitin regulatory X) domain of p47, and the UBD (ubiquitin D) domain of Npl4 have been structurally characterized. UBX and UBD are structural homologues that share similar p97-binding modes; it is plausible that other proteins that contain a UBX/UBX-like domain also interact with p97 via similar mechanisms. In addition, several short p97-interacting motifs, such as VBM (VCP-binding motif), VIM (VCP-interacting motif) and SHP, have been identified recently and are also shared between p97 adaptors, hinting that proteins possessing the same p97-binding motif might also share common p97-binding mechanisms. In this review, we aim to summarize our current knowledge on adaptor binding to p97.
Collapse
|
72
|
Alber F, Förster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 2008; 77:443-77. [PMID: 18318657 DOI: 10.1146/annurev.biochem.77.060407.135530] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To understand the cell, we need to determine the macromolecular assembly structures, which may consist of tens to hundreds of components. First, we review the varied experimental data that characterize the assemblies at several levels of resolution. We then describe computational methods for generating the structures using these data. To maximize completeness, resolution, accuracy, precision, and efficiency of the structure determination, a computational approach is required that uses spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. This approach is illustrated by determining the configuration of the 456 proteins in the nuclear pore complex (NPC) from baker's yeast. With these tools, we are poised to integrate structural information gathered at multiple levels of the biological hierarchy--from atoms to cells--into a common framework.
Collapse
Affiliation(s)
- Frank Alber
- Department of Biopharmaceutical Sciences, and California Institute for Quantitative Biosciences, University of California at San Francisco, CA 94158-2330, USA.
| | | | | | | | | |
Collapse
|
73
|
|
74
|
Tucker PA, Sallai L. The AAA+ superfamily--a myriad of motions. Curr Opin Struct Biol 2007; 17:641-52. [PMID: 18023171 DOI: 10.1016/j.sbi.2007.09.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/13/2007] [Accepted: 09/28/2007] [Indexed: 11/19/2022]
Abstract
ATPases associated with various cellular activities are aptly named. They are the engines that drive processes such as protein degradation, protein refolding, sigma(54)-dependent transcriptional activation, DNA helicase activity, DNA replication initiation, and cellular cargo transport. Recent structural information derived from biochemical studies, electron microscopy (EM), small-angle X-ray scattering (SAXS), and X-ray crystallography are beginning to show how, at an atomic level, some of these systems use the conformational changes generated during the ATP hydrolysis cycle. Structural highlights in the processes mentioned are provided by work on ClpX and p97, ClpB, PspF and NtrC, RuvBL1, DnaA and the papillomavirus E1 initiator protein and dynein. The results emphasize the versatility of the AAA+ core domain.
Collapse
Affiliation(s)
- Paul A Tucker
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D22603 Hamburg, Germany.
| | | |
Collapse
|
75
|
Raasi S, Wolf DH. Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin Cell Dev Biol 2007; 18:780-91. [PMID: 17942349 DOI: 10.1016/j.semcdb.2007.09.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/22/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
The elimination of misfolded proteins, known as protein quality control, is an essential cellular process. Removal of misfolded proteins from the secretory pathway depends on their recognition in the endoplasmic reticulum (ER) followed by their retrograde transport into the cytosol for degradation. The AAA-ATPase Cdc48/p97 facilitates the translocation of misfolded ER-proteins into the cytosol. Cdc48/p97 can dock onto the ER-membrane via direct interaction with ER-membrane proteins and/or indirectly via its substrate-recruiting cofactors, which interact with the ubiquitylated substrates at the membrane. This tight interaction in conjunction with the conformational changes induced upon ATP hydrolysis within Cdc48/p97 is thought to provide the driving force for the translocation reaction. Subsequently, a series of protein-protein interactions between the Cdc48/p97 complex, its cofactors, and the ubiquitylated substrates is instrumental for the proper delivery of the ER substrates to the proteasome. These protein-protein interactions are governed mainly by ubiquitin-fold and ubiquitin-binding domains.
Collapse
Affiliation(s)
- Shahri Raasi
- Fachbereich Biologie, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz, Germany.
| | | |
Collapse
|
76
|
Kostova Z, Tsai YC, Weissman AM. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin Cell Dev Biol 2007; 18:770-9. [PMID: 17950636 DOI: 10.1016/j.semcdb.2007.09.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/23/2007] [Accepted: 09/05/2007] [Indexed: 12/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) represents the primary means of quality control within the secretory pathway. Critical to this process are ubiquitin protein ligases (E3s) which, together with ubiquitin conjugating enzymes (E2s), mediate the ubiquitylation of proteins targeted for degradation from the ER. In this chapter we review our knowledge of both Saccharomyces cerevisiae and mammalian ERAD ubiquitin ligases. We focus on recent insights into these E3s, their associated proteins and potential mechanisms of action.
Collapse
Affiliation(s)
- Zlatka Kostova
- Laboratory of Protein Dynamics and Signaling, Building 560 Room 22-103, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, MD 21702, United States
| | | | | |
Collapse
|
77
|
Cao J, Wang J, Qi W, Miao HH, Wang J, Ge L, DeBose-Boyd RA, Tang JJ, Li BL, Song BL. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab 2007; 6:115-28. [PMID: 17681147 DOI: 10.1016/j.cmet.2007.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/10/2007] [Accepted: 07/11/2007] [Indexed: 12/21/2022]
Abstract
The membrane-anchored ubiquitin ligase gp78 promotes degradation of misfolded endoplasmic reticulum (ER) proteins and sterol-regulated degradation of HMG-CoA reductase. It was known previously that Ufd1 plays a critical role in ER-associated degradation (ERAD) together with Npl4 and VCP. The VCP-Ufd1-Npl4 complex recognizes polyubiquitin chains and transfers the ubiquitinated proteins to the proteasome. Here we show that Ufd1 directly interacts with gp78 and functions as a cofactor. Ufd1 enhances the E3 activity of gp78, accelerates the ubiquitination and degradation of reductase, and eventually promotes receptor-mediated uptake of low-density lipoprotein. Furthermore, we demonstrate that the monoubiquitin-binding site in Ufd1 is required for the enhancement of gp78 activity and that the polyubiquitin-binding site in Ufd1 is critical for a postubiquitination step in ERAD. In summary, our study identifies Ufd1 as a cofactor of gp78, reveals an unappreciated function of Ufd1 in the ubiquitination reaction during ERAD, and illustrates that Ufd1 plays a critical role in cholesterol metabolism.
Collapse
Affiliation(s)
- Jian Cao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Devos D, Russell RB. A more complete, complexed and structured interactome. Curr Opin Struct Biol 2007; 17:370-7. [PMID: 17574831 DOI: 10.1016/j.sbi.2007.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 04/18/2007] [Accepted: 05/31/2007] [Indexed: 11/16/2022]
Abstract
Multiprotein complexes are key players in virtually all important cellular processes. The past year has seen the publication of several papers that have illuminated what we know about the number and composition of these molecular machines, using high-throughput purification methods. Other studies have illuminated structural and functional aspects of protein interactions, networks and molecular assemblies. As a result, we have a more complete view of how many complexes are in living systems, what they look like and the roles they play in the cell.
Collapse
Affiliation(s)
- Damien Devos
- EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
79
|
Isaacson RL, Pye VE, Simpson P, Meyer HH, Zhang X, Freemont PS, Matthews S. Detailed structural insights into the p97-Npl4-Ufd1 interface. J Biol Chem 2007; 282:21361-9. [PMID: 17491009 DOI: 10.1074/jbc.m610069200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAA ATPase, p97, achieves its versatility through binding to a wide range of cofactor proteins that adapt it to different cellular functions. The heterodimer UN (comprising Ufd1 and Npl4) is an adaptor complex that recruits p97 for numerous tasks, many of which involve the ubiquitin pathway. Insights into the structural specificity of p97 for its UN adaptor are currently negligible. Here, we present the solution structure of the Npl4 "ubiquitin-like" domain (UBD), which adopts a beta-grasp fold with a 3(10) helical insert. Moreover we performed a chemical shift perturbation analysis of its binding surface with the p97 N domain. We assigned the backbone amides of the p97 N domain and probed both its reciprocal binding surface with Npl4 UBD and its interaction with the p97-binding region of Ufd1. NMR data recorded on a 400-kDa full-length UN-hexamer p97 complex reveals an identical mode of interaction. We calculated a structural model for the p97 N-Npl4 UBD complex, and a comparison with the p97-p47 adaptor complex reveals subtle differences in p97 adaptor recognition and specificity.
Collapse
Affiliation(s)
- Rivka L Isaacson
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|