51
|
Abstract
This Minireview summarises recent developments in the biosynthesis of diterpenes by diterpene synthases in bacteria. It is structured by the class of enzyme involved in the first committed step towards diterpenes, starting with type I diterpene synthases, followed by type II enzymes and the more recently discovered UbiA-related diterpene synthases. A special emphasis lies on the reaction mechanisms of diterpene synthases that convert simple linear precursors through cationic cascades into structurally complex, usually polycyclic carbon skeletons with multiple stereogenic centres. A further main focus of this Minireview is a discussion of how these mechanisms can be unravelled. Downstream modifications to bioactive molecules are also covered.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
52
|
Dong LB, Liu YC, Cepeda AJ, Kalkreuter E, Deng MR, Rudolf JD, Chang C, Joachimiak A, Phillips GN, Shen B. Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:12406-12412. [PMID: 31291107 DOI: 10.1021/jacs.9b06183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme diiron monooxygenases make up a rapidly growing family of oxygenases that are rarely identified in secondary metabolism. Herein, we report the in vivo, in vitro, and structural characterizations of a nonheme diiron monooxygenase, PtmU3, that installs a C-5 β-hydroxyl group in the unified biosynthesis of platensimycin and platencin, two highly functionalized diterpenoids that act as potent and selective inhibitors of bacterial and mammalian fatty acid synthases. This hydroxylation sets the stage for the subsequent A-ring cleavage step key to the unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 adopts an unprecedented triosephosphate isomerase (TIM) barrel structural fold for this class of enzymes and possesses a noncanonical diiron active site architecture with a saturated six-coordinate iron center lacking a μ-oxo bridge. This study reveals the first member of a previously unidentified superfamily of TIM-barrel-fold enzymes for metal-dependent dioxygen activation, with the majority predicted to act on CoA-linked substrates, thus expanding our knowledge of nature's repertoire of nonheme diiron monooxygenases and TIM-barrel-fold enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changsoo Chang
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- Department of Biosciences , Rice University , Houston , Texas 77030 , United States
| | | |
Collapse
|
53
|
Nofiani R, Philmus B, Nindita Y, Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. MEDCHEMCOMM 2019; 10:1517-1530. [PMID: 31673313 DOI: 10.1039/c9md00162j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
Abstract
The 3-ketoacyl-ACP synthase (KAS) III proteins are one of the most abundant enzymes in nature, as they are involved in the biosynthesis of fatty acids and natural products. KAS III enzymes catalyse a carbon-carbon bond formation reaction that involves the α-carbon of a thioester and the carbonyl carbon of another thioester. In addition to the typical KAS III enzymes involved in fatty acid and polyketide biosynthesis, there are proteins homologous to KAS III enzymes that catalyse reactions that are different from that of the traditional KAS III enzymes. Those include enzymes that are responsible for a head-to-head condensation reaction, the formation of acetoacetyl-CoA in mevalonate biosynthesis, tailoring processes via C-O bond formation or esterification, as well as amide formation. This review article highlights the diverse reactions catalysed by this class of enzymes and their role in natural product biosynthesis.
Collapse
Affiliation(s)
- Risa Nofiani
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA . .,Department of Chemistry , Universitas Tanjungpura , Pontianak , Indonesia
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Yosi Nindita
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| |
Collapse
|
54
|
Qiu L, Wen Z, Li Y, Tian K, Deng Y, Shen B, Duan Y, Huang Y. Stereoselective functionalization of platensimycin and platencin by sulfa-Michael/aldol reactions. Org Biomol Chem 2019; 17:4261-4272. [PMID: 30816397 DOI: 10.1039/c9ob00324j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioinspired sulfa-Michael/aldol cascade reactions have been developed for the semisynthesis of sulfur-containing heterocyclic derivatives of platensimycin and platencin, with three newly formed contiguous stereogenic centers. Density functional theory calculations revealed the mechanism for the stereochemistry control. This method was used in a synthesis of a platensimycin thiophene analogue with potent antibacterial activities against Staphylococcus aureus.
Collapse
Affiliation(s)
- Lin Qiu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
56
|
Teijaro CN, Adhikari A, Shen B. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts. J Ind Microbiol Biotechnol 2019; 46:433-444. [PMID: 30426283 PMCID: PMC6405299 DOI: 10.1007/s10295-018-2094-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
Recent advances and emerging technologies for metabolic pathway engineering and synthetic biology have transformed the field of natural product discovery, production, and engineering. Despite these advancements, there remain many challenges in understanding how biosynthetic gene clusters are silenced or activated, including changes in the transcription of key biosynthetic and regulatory genes. This knowledge gap is highlighted by the success and failed attempts of manipulating regulatory genes within biosynthetic gene clusters in both native producers and heterologous hosts. These complexities make the choice of native producers versus heterologous hosts, fermentation medium, and supply of precursors crucial factors in achieving the production of the target natural products and engineering designer analogs. Nature continues to serve as inspiration for filling the knowledge gaps and developing new research strategies. By exploiting the evolutionary power of nature, alternative producers, with the desired genetic amenability and higher titers of the target natural products, and new strains, harboring gene clusters that encode evolutionary optimized congeners of the targeted natural product scaffolds, can be discovered. These newly identified strains can serve as an outstanding biotechnology platform for the engineered production of sufficient quantities of the target natural products and their analogs, enabling biosynthetic studies and potential therapeutic applications. These challenges and opportunities are showcased herein using fredericamycin, iso-migrastatin, platencin and platensimycin, the enediynes of C-1027, tiancimycin, and yangpumicin, and the leinamycin family of natural products.
Collapse
Affiliation(s)
- Christiana N Teijaro
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
57
|
Dong LB, Zhang X, Rudolf JD, Deng MR, Kalkreuter E, Cepeda AJ, Renata H, Shen B. Cryptic and Stereospecific Hydroxylation, Oxidation, and Reduction in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:4043-4050. [PMID: 30735041 DOI: 10.1021/jacs.8b13452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoids of ent-kauranol and ent-atiserene biosynthetic origin. C7 oxidation in the B-ring plays a key biosynthetic role in generating structural complexity known for ent-kaurane and ent-atisane derived diterpenoids. While all three oxidation patterns, α-hydroxyl, β-hydroxyl, and ketone, at C7 are seen in both the ent-kaurane and ent-atisane derived diterpenoids, their biosynthetic origins remain largely unknown. We previously established that PTM and PTN are produced by a single biosynthetic machinery, featuring cryptic C7 oxidations at the B-rings that transform the ent-kauranol and ent-atiserene derived precursors into the characteristic PTM and PTN scaffolds. Here, we report a three-enzyme cascade affording C7 α-hydroxylation in PTM and PTN biosynthesis. Combining in vitro and in vivo studies, we show that PtmO3 and PtmO6 are two functionally redundant α-ketoglutarate-dependent dioxygenases that generate a cryptic C7 β-hydroxyl on each of the ent-kauranol and ent-atiserene scaffolds, and PtmO8 and PtmO1, a pair of NAD+/NADPH-dependent dehydrogenases, subsequently work in concert to invert the C7 β-hydroxyl to α-hydroxyl via a C7 ketone intermediate. PtmO3 and PtmO6 represent the first dedicated C7 β-hydroxylases characterized to date and, together with PtmO8 and PtmO1, provide an account for the biosynthetic origins of all three C7 oxidation patterns that may shed light on other B-ring modifications in bacterial, plant, and fungal diterpenoid biosynthesis. Given their unprecedented activities in C7 oxidations, PtmO3, PtmO6, PtmO8, and PtmO1 enrich the growing toolbox of novel enzymes that could be exploited as biocatalysts to rapidly access complex diterpenoid natural products.
Collapse
|
58
|
Sivaranjani M, Leskinen K, Aravindraja C, Saavalainen P, Pandian SK, Skurnik M, Ravi AV. Deciphering the Antibacterial Mode of Action of Alpha-Mangostin on Staphylococcus epidermidis RP62A Through an Integrated Transcriptomic and Proteomic Approach. Front Microbiol 2019; 10:150. [PMID: 30787919 PMCID: PMC6372523 DOI: 10.3389/fmicb.2019.00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Alpha-mangostin (α-MG) is a natural xanthone reported to exhibit rapid bactericidal activity against Gram-positive bacteria, and may therefore have potential clinical application in healthcare sectors. This study sought to identify the impact of α-MG on Staphylococcus epidermidis RP62A through integrated advanced omic technologies. Methods: S. epidermidis was challenged with sub-MIC (0.875 μg/ml) of α-MG at various time points and the differential expression pattern of genes/proteins were analyzed in the absence and presence of α-MG using RNA sequencing and LC-MS/MS experiments. Bioinformatic tools were used to categorize the biological processes, molecular functions and KEGG pathways of differentially expressed genes/proteins. qRT-PCR was employed to validate the results obtained from these analyses. Results: Transcriptomic and proteomic profiling of α-MG treated cells indicated that genes/proteins affected by α-MG treatment were associated with diverse cellular functions. The greatest reduction in expression was observed in transcription of genes conferring cytoplasmic membrane integrity (yidC2, secA and mscL), cell division (ftsY and divlB), teichoic acid biosynthesis (tagG and dltA), fatty-acid biosynthesis (accB, accC, fabD, fabH, fabI, and fabZ), biofilm formation (icaA) and DNA replication and repair machinery (polA, polC, dnaE, and uvrA). Those with increased expression were involved in oxidative (katA and sodA) and cellular stress response (clpB, clpC, groEL, and asp23). The qRT-PCR analysis substantiated the results obtained from transcriptomic and proteomic profiling studies. Conclusion: Combining transcriptomic and proteomic methods provided comprehensive information about the antibacterial mode of action of α-MG. The obtained results suggest that α-MG targets S. epidermidis through multifarious mechanisms, and especially prompts that loss of cytoplasmic membrane integrity leads to rapid onset of bactericidal activity.
Collapse
Affiliation(s)
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Päivi Saavalainen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | | |
Collapse
|
59
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
60
|
Tian K, Deng Y, Qiu L, Zhu X, Shen B, Duan Y, Huang Y. Semisynthesis and Biological Evaluation of Platensimycin Analogues with Varying Aminobenzoic Acids. ChemistrySelect 2018; 3:12625-12629. [PMID: 32232122 PMCID: PMC7105086 DOI: 10.1002/slct.201802475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 11/06/2022]
Abstract
Platensimycin (PTM) is an excellent natural product drug lead against various gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. In this study, twenty PTM derivatives with varying aminobenzoic acids were semisynthesized. In contrast to all the previous reported inactive aminobenzaote analogues, a few of them showed moderate antibacterial activities against S. aureus. Our study suggested that modification of the conserved aminobenzoic acid remains a viable approach to diversify the PTM scaffold.
Collapse
Affiliation(s)
- Kai Tian
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Lin Qiu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410205 (China)
| | - Ben Shen
- Departments of Chemistry and Molecular Medicine, and Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458 (USA)
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410205 (China)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410205 (China)
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013 (China)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410205 (China)
| |
Collapse
|
61
|
Liu R, Deng Z, Liu T. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab Eng 2018; 50:74-84. [DOI: 10.1016/j.ymben.2018.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/26/2022]
|
62
|
Rudolf JD, Dong LB, Zhang X, Renata H, Shen B. Cytochrome P450-Catalyzed Hydroxylation Initiating Ether Formation in Platensimycin Biosynthesis. J Am Chem Soc 2018; 140:12349-12353. [PMID: 30216060 PMCID: PMC6211292 DOI: 10.1021/jacs.8b08012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Platensimycin (PTM) and platencin (PTN) are potent and selective inhibitors of bacterial and mammalian fatty acid synthases. The regio- and stereospecificity of the ether oxygen atom in PTM, which PTN does not have, strongly contribute to the selectivity and potency of PTM. We previously reported the biosynthetic origin of the 11 S,16 S-ether moiety by characterizing the diterpene synthase PtmT3 as a (16 R)- ent-kauran-16-ol synthase and isolating 11-deoxy-16 R-hydroxylated congeners of PTM from the Δ ptmO5 mutant. PtmO5, a cytochrome P450, was proposed to catalyze formation of the ether moiety in PTM. Here we report the in vitro characterization of PtmO5, revealing that PtmO5 stereoselectively hydroxylates the C-11 position of the ent-kaurane scaffold resulting in an 11 S,16 R-diol intermediate. The ether moiety, the oxygen of which originates from the P450-catalyzed hydroxylation at C-11, is formed via cyclization of the diol intermediate. This study provides mechanistic insight into ether formation in natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Xiao Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
63
|
Meng Q, Liang H, Gao H. Roles of multiple KASIII homologues of Shewanella oneidensis in initiation of fatty acid synthesis and in cerulenin resistance. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1153-1163. [DOI: 10.1016/j.bbalip.2018.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 01/04/2023]
|
64
|
Affiliation(s)
- Day-Shin Hsu
- Department of Chemistry and Biochemistry; National Chung Cheng University; 621 Minhsiung Taiwan
| | - Tai-Yu Hwang
- Department of Chemistry and Biochemistry; National Chung Cheng University; 621 Minhsiung Taiwan
| |
Collapse
|
65
|
Heravi MM, Mohammadkhani L. Recent applications of Stille reaction in total synthesis of natural products: An update. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Defieber C, Mohr JT, Grabovyi GA, Stoltz BM. Short Enantioselective Formal Synthesis of (-)-Platencin. SYNTHESIS-STUTTGART 2018; 50:4359-4368. [PMID: 31061542 DOI: 10.1055/s-0037-1610437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A short enantioselective formal synthesis of the antibiotic natural product platencin is reported. Key steps in the synthesis include enantioselective decarboxylation alkylation, aldehyde/olefin radical cyclization, and regioselective aldol cyclization.
Collapse
Affiliation(s)
- Christian Defieber
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
| | - Justin T Mohr
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA.,Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Gennadii A Grabovyi
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
| |
Collapse
|
67
|
Ramos PIP, Fernández Do Porto D, Lanzarotti E, Sosa EJ, Burguener G, Pardo AM, Klein CC, Sagot MF, de Vasconcelos ATR, Gales AC, Marti M, Turjanski AG, Nicolás MF. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci Rep 2018; 8:10755. [PMID: 30018343 PMCID: PMC6050338 DOI: 10.1038/s41598-018-28916-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-threatening infections. It has been found as the culprit of many infection outbreaks in hospital environments, being particularly aggressive towards newborns and adults under intensive care. Many Kp strains produce extended-spectrum β-lactamases, enzymes that promote resistance against antibiotics used to fight these infections. The presence of other resistance determinants leading to multidrug-resistance also limit therapeutic options, and the use of 'last-resort' drugs, such as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great challenge, we generated multiple layers of 'omics' data related to Kp and prioritized proteins that could serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic and metabolic information were integrated in order to prioritize candidate targets, and this data compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics from a drug development perspective were shortlisted, which participate in important processes such as lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel targets for the control of Kp and related bacterial pathogens.
Collapse
Affiliation(s)
- Pablo Ivan Pereira Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Darío Fernández Do Porto
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Germán Burguener
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Cecilia C Klein
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre for Genomic Regulation (CRG), Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
| | | | - Ana Cristina Gales
- Laboratório Alerta. Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Marti
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
68
|
Kowalski K. Recent developments in the chemistry of ferrocenyl secondary natural product conjugates. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
69
|
Dong LB, Rudolf JD, Kang D, Wang N, He CQ, Deng Y, Huang Y, Houk KN, Duan Y, Shen B. Biosynthesis of thiocarboxylic acid-containing natural products. Nat Commun 2018; 9:2362. [PMID: 29915173 PMCID: PMC6006322 DOI: 10.1038/s41467-018-04747-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Thiocarboxylic acid-containing natural products are rare and their biosynthesis and biological significance remain unknown. Thioplatensimycin (thioPTM) and thioplatencin (thioPTN), thiocarboxylic acid congeners of the antibacterial natural products platensimycin (PTM) and platencin (PTN), were recently discovered. Here we report the biosynthetic origin of the thiocarboxylic acid moiety in thioPTM and thioPTN. We identify a thioacid cassette encoding two proteins, PtmA3 and PtmU4, responsible for carboxylate activation by coenzyme A and sulfur transfer, respectively. ThioPTM and thioPTN bind tightly to β-ketoacyl-ACP synthase II (FabF) and retain strong antibacterial activities. Density functional theory calculations of binding and solvation free energies suggest thioPTM and thioPTN bind to FabF more favorably than PTM and PTN. Additionally, thioacid cassettes are prevalent in the genomes of bacteria, implicating that thiocarboxylic acid-containing natural products are underappreciated. These results suggest that thiocarboxylic acid, as an alternative pharmacophore, and thiocarboxylic acid-containing natural products may be considered for future drug discovery. Thioplatensimycin (thioPTM) and thioplatencin (thioPTN) are recently discovered thiocarboxylic acid congeners of the antibacterial compounds PTM and PTN. Here, the authors identify a thioacid cassette encoding PtmA3 and PtmU4 that are responsible for carboxylate activation and sulfur transfer, respectively.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Dingding Kang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Nan Wang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Cyndi Qixin He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
70
|
Staphylococcus aureus Utilizes Host-Derived Lipoprotein Particles as Sources of Fatty Acids. J Bacteriol 2018; 200:JB.00728-17. [PMID: 29581406 DOI: 10.1128/jb.00728-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis (FASII) pathway. FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL), represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection.IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the clinical utility of targeting bacterial fatty acid synthesis is debated. Moreover, the fatty acid reservoir(s) exploited by S. aureus is not well understood. Human low-density lipoprotein particles represent a particularly abundant in vivo source of fatty acids and are present in tissues that S. aureus colonizes. Herein, we establish that S. aureus is capable of utilizing the fatty acids present in low-density lipoproteins to bypass both chemical and genetic inhibition of fatty acid synthesis. These findings imply that S. aureus targets LDLs as a source of fatty acids during pathogenesis.
Collapse
|
71
|
Lee WC, Jeong MC, Lee Y, Kwak C, Lee JY, Kim Y. Structure and substrate specificity of β-ketoacyl-acyl carrier protein synthase III from Acinetobacter baumannii. Mol Microbiol 2018. [PMID: 29528170 DOI: 10.1111/mmi.13950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Originally annotated as the initiator of fatty acid synthesis (FAS), β-ketoacyl-acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl-groups, notably octanoyl-CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl-group binding cavity of AbKAS III and co-crystal structure of AbKAS III and octanoyl-CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl-carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.
Collapse
Affiliation(s)
- Woo Cheol Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Cheol Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Chulhee Kwak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jee-Young Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
72
|
Deng Y, Kang D, Shi J, Zhou W, Sun A, Ju J, Zhu X, Shen B, Duan Y, Huang Y. The semi-synthesis, biological evaluation and docking analysis of the oxime, hydrazine and hydrazide derivatives of platensimycin. MEDCHEMCOMM 2018; 9:789-794. [PMID: 30108968 DOI: 10.1039/c8md00081f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/01/2018] [Indexed: 11/21/2022]
Abstract
A dozen oxime, hydrazine and hydrazide derivatives of platensimycin (PTM) analogues were synthesized, some of which showed strong antibacterial activities and were shown to be stable under the bioassay conditions. Docking analysis revealed that they have certain new interactions with β-ketoacyl-[acyl carrier protein] synthase II (FabF), suggesting that Schiff base formation on its terpene scaffold is an effective strategy to diversify PTM structure.
Collapse
Affiliation(s)
- Youchao Deng
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ;
| | - Dingding Kang
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ;
| | - Jie Shi
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ;
| | - Wenqing Zhou
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ;
| | - Aijun Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ; .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410011 , China
| | - Ben Shen
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ; .,Departments of Chemistry and Molecular Medicine, and Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , USA .
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ; .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410011 , China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , Changsha , Hunan 410011 , China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China . ; .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , Changsha , Hunan 410011 , China
| |
Collapse
|
73
|
Qiu L, Tian K, Wen Z, Deng Y, Kang D, Liang H, Zhu X, Shen B, Duan Y, Huang Y. Biomimetic Stereoselective Sulfa-Michael Addition Leads to Platensimycin and Platencin Sulfur Analogues against Methicillin-Resistant Staphylococcus aureus. JOURNAL OF NATURAL PRODUCTS 2018; 81:316-322. [PMID: 29389125 PMCID: PMC6245554 DOI: 10.1021/acs.jnatprod.7b00745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several sulfur-containing platensimycin (PTM) and platencin (PTN) analogues, with activities comparable to the parent natural products, have recently been discovered from microorganisms, implying a biomimetic route to diversify the PTM and PTN scaffolds for structure-activity relationship study. We present here a substrate-directed and scaleable semisynthetic strategy to make PTM and PTN sulfur analogues with excellent diasteroselectivity, without using any chiral catalysts. Most of the sulfur analogues showed strong activities against clinical Staphylococcus aureus isolates, with minimum inhibitory concentrations of 0.5-2 μg mL-1. Density functional theory calculations were in agreement with the observed selectivity for these analogues and suggest that the conformation restraints of the terpene cages of PTM and PTN on the transition states determine the si-face attack selectivity.
Collapse
Affiliation(s)
- Lin Qiu
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Kai Tian
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
| | - Zhongqing Wen
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
| | - Dingding Kang
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
| | - Haoyu Liang
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, People’s Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, People’s Republic of China
| | - Ben Shen
- Departments of Chemistry, Jupiter, Florida 33458, United States
- Molecular Medicine, Jupiter, Florida 33458, United States
- Natural Products Library Initiative, Jupiter, Florida 33458, United States
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, People’s Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, People’s Republic of China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People’s Republic of China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Changsha, Hunan 410013, People’s Republic of China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, People’s Republic of China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People’s Republic of China
| |
Collapse
|
74
|
Ekström AG, Kelly V, Marles-Wright J, Cockroft SL, Campopiano DJ. Structural evidence for the covalent modification of FabH by 4,5-dichloro-1,2-dithiol-3-one (HR45). Org Biomol Chem 2018; 15:6310-6313. [PMID: 28715001 PMCID: PMC5708339 DOI: 10.1039/c7ob01396e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use mass spectrometry analysis and molecular modelling to show the established antimicrobial inhibitor 4,5-dichloro-1,2-dithiol-3-one (HR45) acts by forming a covalent adduct with the target β-ketoacyl-ACP synthase III (FabH). The 5-chloro substituent directs attack of the essential active site thiol (C112) via a Michael-type addition elimination reaction mechanism.
Collapse
Affiliation(s)
- Alexander G Ekström
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | | | | | | | | |
Collapse
|
75
|
Xiong ZJ, Huang J, Yan Y, Wang L, Wang Z, Yang J, Luo J, Li J, Huang SX. Isolation and biosynthesis of labdanmycins: four new labdane diterpenes from endophyticStreptomyces. Org Chem Front 2018. [DOI: 10.1039/c8qo00085a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gene cluster of two new labdanmycins was identified from an endophyticStreptomyces. The P450 enzyme LabE was confirmed to oxidize C-20 methyl of the biosynthetic intermediate3to afford labdanmycins.
Collapse
Affiliation(s)
- Zi-Jun Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jianping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jianying Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| |
Collapse
|
76
|
Ekström AG, Wang JT, Bella J, Campopiano DJ. Non-invasive 19F NMR analysis of a protein-templated N-acylhydrazone dynamic combinatorial library. Org Biomol Chem 2018; 16:8144-8149. [DOI: 10.1039/c8ob01918e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamic combinatorial chemistry (DCC) is a powerful tool to identify ligands for biological targets.
Collapse
Affiliation(s)
| | | | - Juraj Bella
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| | | |
Collapse
|
77
|
Li PG, Li YC, Zhu T, Zou LH, Wu Z. Hydroxysulfonylation of Quinones with Aryl(alkyl)sulfonyl Hydrazides for the Synthesis of 1,4-Dihydroxy-2-aryl(alkyl)sulfonylbenzenes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ping-Gui Li
- Peter Grünberg Institute (PGI-8); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Yan-Chun Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| | - Tao Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| | - Liang-Hua Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
- School of Pharmaceutical Science; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| |
Collapse
|
78
|
Abstract
Covering: 2006 to 2017Actinomycetes have been, for decades, one of the most important sources for the discovery of new antibiotics with an important number of drugs and analogs successfully introduced in the market and still used today in clinical practice. The intensive antibacterial discovery effort that generated the large number of highly potent broad-spectrum antibiotics, has seen a dramatic decline in the large pharma industry in the last two decades resulting in a lack of new classes of antibiotics with novel mechanisms of action reaching the clinic. Whereas the decline in the number of new chemical scaffolds and the rediscovery problem of old known molecules has become a hurdle for industrial natural products discovery programs, new actinomycetes compounds and leads have continued to be discovered and developed to the preclinical stages. Actinomycetes are still one of the most important sources of chemical diversity and a reservoir to mine for novel structures that is requiring the integration of diverse disciplines. These can range from novel strategies to isolate species previously not cultivated, innovative whole cell screening approaches and on-site analytical detection and dereplication tools for novel compounds, to in silico biosynthetic predictions from whole gene sequences and novel engineered heterologous expression, that have inspired the isolation of new NPs and shown their potential application in the discovery of novel antibiotics. This review will address the discovery of antibiotics from actinomycetes from two different perspectives including: (1) an update of the most important antibiotics that have only reached the clinical development in the recent years despite their early discovery, and (2) an overview of the most recent classes of antibiotics described from 2006 to 2017 in the framework of the different strategies employed to untap novel compounds previously overlooked with traditional approaches.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
79
|
|
80
|
Volk K, Breunig SD, Rid R, Herzog J, Bräuer M, Hundsberger H, Klein C, Müller N, Önder K. Structural analysis and interaction studies of acyl-carrier protein (acpP) of Staphylococcus aureus, an extraordinarily thermally stable protein. Biol Chem 2017; 398:125-133. [PMID: 27467752 DOI: 10.1515/hsz-2016-0185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
Acyl-carrier-protein (acpP) is an essential protein in fatty acid biosynthesis of Staphylococcus aureus [Cronan, J.E. and Thomas, J. (2009). Complex enzymes in microbial natural product biosynthesis, part B: polyketides, aminocoumarins and carbohydrates. METHOD Enzymol. 459, 395-433; Halavaty, A.S., Kim, Y., Minasov, G., Shuvalova, L., Dubrovska, I., Winsor, J., Zhou, M., Onopriyenko, O., Skarina, T., Papazisi, L., et al. (2012). Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 1359-1370]. The inactive apo-form is converted to the active holo-enzyme by acyl-carrier protein synthase (acpS) through addition of a 4'-phosphopantetheine group from coenzyme A to a conserved serine residue of acpP [Flugel, R.S., Hwangbo, Y., Lambalot, R.H., Cronan, J.E., and Walsh, C.T. (2000). Holo-(acyl-carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J. Biol. Chem. 275, 959-968; Lambalot, R.H. and Walsh, C.T. (1995). Cloning, overproduction, and characterization of the Escherichia coli holo-acyl-carrier protein synthase. J. Biol. Chem. 270, 24658-24661]. Once activated, acpP acts as an anchor for the growing fatty acid chain. Structural data from X-ray crystallographic analysis reveals that, despite its small size (8 kDa), acpP adopts a distinct, mostly α-helical structure when complexed with acpS [Halavaty, A.S., Kim, Y., Minasov, G., Shuvalova, L., Dubrovska, I., Winsor, J., Zhou, M., Onopriyenko, O., Skarina, T., Papazisi, L., et al. (2012). Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 1359-1370; Byers, D.M. and Gong, H. (2007). Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem. Cell Biol. 85, 649-662]. We expressed and purified recombinant, active S. aureus acpP from Escherichia coli and mimicked the beginning of fatty acid biosynthesis by employing an [14C]-acp loading assay. Surprisingly, acpP remained functional even after heat treatment at 95°C for up to 10 min. NMR data from 2D-HSQC experiments as well as interaction studies with acpS confirmed that acpP is structured and active both before and after heat treatment, with no significant differences between the two. Thus, our data suggest that S. aureus acpP is a highly stable protein capable of maintaining its structure at high temperatures.
Collapse
|
81
|
A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo) 2017; 71:153-184. [DOI: 10.1038/ja.2017.62] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
|
82
|
Kim J, Won G, Park S, Lee JH. Identification of Lawsonia intracellularis putative hemolysin protein A and characterization of its immunoreactivity. Vet Microbiol 2017. [PMID: 28622862 DOI: 10.1016/j.vetmic.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the recent global increase in fatal endemic outbreaks of proliferative enteropathy (PE) caused by the obligate intracellular bacterium Lawsonia intracelluralis (LI) in the swine industry, development of effective prevention strategies or immunodiagnostic tests has been delayed due to the difficulty of cultivating this pathogen in vitro. Although several genetic analyses have been performed at the level of gene transcription after the complete genome sequence of LI was made available, the mechanism of LI infection and virulence genes remain unidentified. In the present study, we assessed the antigenic features of the LI0004 protein, which we putatively defined as Lawsonia hemolysin A (LhlyA), by employing bioinformatics tools and in vivo and in vitro protein-based molecular assays. The amino acid sequence of LhlyA showed approximately 60% homology to the hemolysin-like proteins of Bilophila wadsworthia and Desulfovibrio piger. Presence of computationally predicted linear antigenic B-cell epitopes on the LhlyA protein was demonstrated by immunoblotting; a band with a molecular mass corresponding to the predicted size of the protein was strongly recognized by sera collected from artificially infected mice. Further, in an in vivo cytotoxicity assay, no splenomegaly was observed in mice inoculated with purified LhlyA. Collectively, the data presented here suggest that the LhlyA protein is a highly immuno-reactive antigen of L. intracellullaris and can potentially be used to develop effective protection strategies against PE.
Collapse
Affiliation(s)
- Jehyung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, Republic of Korea
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, Republic of Korea
| | - Suyeon Park
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596, Republic of Korea.
| |
Collapse
|
83
|
Falzone M, Crespo E, Jones K, Khan G, Korn VL, Patel A, Patel M, Patel K, Perkins C, Siddiqui S, Stenger D, Yu E, Gelber M, Scheffler R, Nayda V, Ravin A, Komal R, Rudolf JD, Shen B, Gullo V, Demain AL. Nutritional control of antibiotic production by Streptomyces platensis MA7327: importance of l-aspartic acid. J Antibiot (Tokyo) 2017; 70:828-831. [PMID: 28465627 DOI: 10.1038/ja.2017.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 01/21/2023]
Abstract
Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin also has activity against diabetes in a mouse model. We have been interested in studying the effects of primary metabolites on production of these antibiotics in our chemically defined production medium. In the present work, we tested 32 primary metabolites for their effect. They included 20 amino acids, 7 vitamins and 5 nucleic acid derivatives. Of these, only l-aspartic acid showed stimulation of antibiotic production. We conclude that the stimulatory effect of aspartic acid is due to its role as a precursor involved in the biosynthesis of aspartate-4-semialdehyde, which is the starting point for the biosynthesis of the 3-amino-2,4-dihydroxy benzoic acid portion of the platensimycin molecule.
Collapse
Affiliation(s)
- Maria Falzone
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Emmanuel Crespo
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Klarissa Jones
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Gulaba Khan
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Victoria L Korn
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Amreen Patel
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Mira Patel
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Krishnaben Patel
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Carrie Perkins
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Sana Siddiqui
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Drew Stenger
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Eileen Yu
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Michael Gelber
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Robert Scheffler
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Vasyl Nayda
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Ariela Ravin
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Ronica Komal
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Vincent Gullo
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| | - Arnold L Demain
- Research Institute of Scientists Emeriti (RISE), Charles A. Dana Research Institute, Drew University, Madison, NJ, USA
| |
Collapse
|
84
|
Manandhar M, Cronan JE. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis. Mol Microbiol 2017; 104:595-607. [PMID: 28196402 PMCID: PMC5426962 DOI: 10.1111/mmi.13648] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis.
Collapse
Affiliation(s)
- Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
85
|
Dong LB, Rudolf JD, Lin L, Ruiz C, Cameron MD, Shen B. In vivo instability of platensimycin and platencin: Synthesis and biological evaluation of urea- and carbamate-platensimycin. Bioorg Med Chem 2017; 25:1990-1996. [PMID: 28237556 PMCID: PMC5421316 DOI: 10.1016/j.bmc.2017.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 01/10/2023]
Abstract
Platensimycin (PTM) and platencin (PTN), two natural products and promising drug leads that target bacterial and mammalian fatty acid synthases, are known to have unfavorable pharmacokinetic properties. It is not clear, however, what the metabolic fates of PTM and PTN are and no efforts have been reported to address this key roadblock in the development of these compounds as viable drug options. Here we describe the pharmacokinetics of PTM and PTN, and reveal rapid renal clearance as the primary metabolic liability with three additional sites of chemical liability: (i) amide hydrolysis, (ii) glucuronidation, and (iii) oxidation. We determined that hydrolysis is a viable clearance mechanism in vivo and synthesized two PTM analogues to address in vivo hydrolysis. Urea- and carbamate-PTM analogues showed no detectable hydrolysis in vivo, at the expense of antibacterial activity, with no further improvement in systemic exposure. The antibacterial sulfur-containing analogues PTM D1 and PTM ML14 showed significant decreases in renal clearance. These studies set the stage for continued generation of PTM and PTN analogues in an effort to improve their pharmacokinetics while retaining or improving their biological activities.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Claudia Ruiz
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States; Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
86
|
Krysiak J, Stahl M, Vomacka J, Fetzer C, Lakemeyer M, Fux A, Sieber SA. Quantitative Map of β-Lactone-Induced Virulence Regulation. J Proteome Res 2017; 16:1180-1192. [DOI: 10.1021/acs.jproteome.6b00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joanna Krysiak
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Matthias Stahl
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Jan Vomacka
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Christian Fetzer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Markus Lakemeyer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Anja Fux
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
87
|
Qiu L, Tian K, Pan J, Jiang L, Yang H, Zhu X, Shen B, Duan Y, Huang Y. A Facile Semi-Synthetic Approach towards Halogen-Substituted Aminobenzoic Acid Analogues of Platensimycin. Tetrahedron 2017; 73:771-775. [PMID: 28626267 PMCID: PMC5471356 DOI: 10.1016/j.tet.2016.12.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Platensimycin (PTM), produced by several strains of Streptomyces platensis, is a promising drug lead for infectious diseases and diabetes. The recent pilot-scale production of PTM from S. platensis SB12026 has set the stage for the facile semi-synthesis of a focused library of PTM analogues. In this study, gram-quantity of platensic acid (PTMA) was prepared by the sulfuric acid-catalyzed ethanolysis of PTM, followed by a mild hydrolysis in aqueous lithium hydroxide. Three PTMA esters were also obtained in near quantitative yields in a single step, suggesting a facile route to make PTMA aliphatic esters. 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU)-catalyzed coupling of PTMA and 33 aminobenzoates resulted in the synthesis of 28 substituted aminobenzoate analogues of PTM, among which 26 of them were reported for the first time. Several of the PTM analogues showed weak antibacterial activity against methicillin-resistant Staphylococcus aureus. Our study supported the potential utility to integrate natural product biosynthetic and semi-synthetic approaches for structure diversification.
Collapse
Affiliation(s)
- Lin Qiu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Kai Tian
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Lin Jiang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
| | - Hu Yang
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan 410013, China
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410013, China
| |
Collapse
|
88
|
Stefano GB, Samuel J, Kream RM. Antibiotics May Trigger Mitochondrial Dysfunction Inducing Psychiatric Disorders. Med Sci Monit 2017; 23:101-106. [PMID: 28063266 PMCID: PMC5240889 DOI: 10.12659/msm.899478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clinical usage of several classes of antibiotics is associated with moderate to severe side effects due to the promotion of mitochondrial dysfunction. We contend that this may be due to perturbation of unique evolutionary relationships that link selective biochemical and molecular aspects of mitochondrial biology to conserved enzymatic processes derived from bacterial progenitors. Operationally, stereo-selective conformational matching between mitochondrial respiratory complexes, cytosolic and nuclear signaling complexes appears to support the conservation of a critically important set of chemical messengers required for existential regulation of homeostatic cellular processes. Accordingly, perturbation of normative mitochondrial function by select classes of antibiotics is certainly reflective of the high degree of evolutionary pressure designed to maintain ongoing bidirectional signaling processes between cellular compartments. These issues are of critical importance in evaluating potentially severe side effects of antibiotics on complex behavioral functions mediated by CNS neuronal groups. The CNS is extremely dependent on delivery of molecular oxygen for maintaining a required level of metabolic activity, as reflected by the high concentration of neuronal mitochondria. Thus, it is not surprising to find several distinct behavioral abnormalities conforming to established psychiatric criteria that are associated with antibiotic usage in humans. The manifestation of acute and/or chronic psychiatric conditions following antibiotic usage may provide unique insights into key etiological factors of major psychiatric syndromes that involve rundown of cellular bioenergetics via mitochondrial dysfunction. Thus, a potential window of opportunity exists for development of novel therapeutic agents targeting diminished mitochondrial function as a factor in severe behavioral disorders.
Collapse
Affiliation(s)
- George B Stefano
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| | - Joshua Samuel
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| | - Richard M Kream
- Department of Research, MitoGenetics Research Institute, Farmingdale, NY, USA
| |
Collapse
|
89
|
Soares da Costa TP, Nanson JD, Forwood JK. Structural characterisation of the fatty acid biosynthesis enzyme FabF from the pathogen Listeria monocytogenes. Sci Rep 2017; 7:39277. [PMID: 28045020 PMCID: PMC5206705 DOI: 10.1038/srep39277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/21/2016] [Indexed: 11/12/2022] Open
Abstract
Development of new antimicrobial agents is required against the causative agent for listeriosis, Listeria monocytogenes, as the number of drug resistant strains continues to increase. A promising target is the β-ketoacyl-acyl carrier protein synthase FabF, which participates in the catalysis of fatty acid synthesis and elongation, and is required for the production of phospholipid membranes, lipoproteins, and lipopolysaccharides. In this study, we report the 1.35 Å crystal structure of FabF from L. monocytogenes, providing an excellent platform for the rational design of novel inhibitors. By comparing the structure of L. monocytogenes FabF with other published bacterial FabF structures in complex with known inhibitors and substrates, we highlight conformational changes within the active site, which will need to be accounted for during drug design and virtual screening studies. This high-resolution structure of FabF represents an important step in the development of new classes of antimicrobial agents targeting FabF for the treatment of listeriosis.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Jeffrey D Nanson
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia.,School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience (Division of Chemistry and Structural Biology) and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
| |
Collapse
|
90
|
|
91
|
Rudolf JD, Dong LB, Manoogian K, Shen B. Biosynthetic Origin of the Ether Ring in Platensimycin. J Am Chem Soc 2016; 138:16711-16721. [PMID: 27966343 PMCID: PMC5466352 DOI: 10.1021/jacs.6b09818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoid natural products that target bacterial and mammalian fatty acid synthases. PTM and PTN feature varying diterpene-derived ketolides that are linked to the same 3-amino-2,4-dihydroxybenzoic acid moiety. As a result, PTM is a selective inhibitor for FabF/FabB, while PTN is a dual inhibitor of FabF/FabB and FabH. We previously determined that the PTM cassette, consisting of five genes found in the ptm, but not ptn, gene cluster, partitions the biosynthesis of the PTM and PTN diterpene-derived ketolides. We now report investigation of the PTM cassette through the construction of diterpene production systems in E. coli and genetic manipulation in the PTM-PTN dual overproducer Streptomyces platensis SB12029, revealing two genes, ptmT3 and ptmO5, that are responsible for the biosynthetic divergence between the PTM and PTN diterpene-derived ketolides. PtmT3, a type I diterpene synthase, was determined to be a (16R)-ent-kauran-16-ol synthase, the first of its kind found in bacteria. PtmO5, a cytochrome P450 monooxygenase, is proposed to catalyze the formation of the characteristic 11S,16S-ether ring found in PTM. Inactivation of ptmO5 in SB12029 afforded the ΔptmO5 mutant SB12036 that accumulated nine PTM and PTN congeners, seven of which were new, including seven 11-deoxy-16R-hydroxy-PTM congeners. The two fully processed PTM analogues showed antibacterial activities, albeit lower than that of PTM, indicating that the ether ring, or minimally the stereochemistry of the hydroxyl group at C-16, is crucial for the activity of PTM.
Collapse
Affiliation(s)
- Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Karina Manoogian
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
92
|
Dong LB, Rudolf JD, Shen B. Antibacterial sulfur-containing platensimycin and platencin congeners from Streptomyces platensis SB12029. Bioorg Med Chem 2016; 24:6348-6353. [PMID: 27134119 PMCID: PMC5063666 DOI: 10.1016/j.bmc.2016.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
The platensimycin (PTM) and platencin (PTN) class of natural products are promising drug leads that target bacterial and mammalian fatty acid synthases. Natural congeners and synthetic analogues of PTM and PTN have been instrumental in determining their structure-activity relationships, with only a few analogues retaining the potencies of PTM and PTN. Here we describe the identification and isolation of two new sulfur-containing PTM congeners (3 and 5) from the engineered dual PTM-PTN overproducing Streptomyces platensis SB12029. Structure elucidation of platensimycin D1 (5), a sulfur-containing PTM pseudo-dimer, revealed the existence of its presumptive thioacid precursor (3). The unstable thioacid 3 was isolated and confirmed by structural characterization of its permethylated product (6). LC-MS analysis of crude extracts of SB12029 confirmed the presence of the thioacid analogue of PTN (4). The minimum inhibitory concentration (MIC) was determined for 5 revealing retention of the strong antibacterial activity of PTM.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, United States; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, United States.
| |
Collapse
|
93
|
Singh SB. Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase. Bioorg Med Chem 2016; 24:6291-6297. [DOI: 10.1016/j.bmc.2016.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
94
|
Platensimycin and platencin: Inspirations for chemistry, biology, enzymology, and medicine. Biochem Pharmacol 2016; 133:139-151. [PMID: 27865713 DOI: 10.1016/j.bcp.2016.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022]
Abstract
Natural products have served as the main source of drugs and drug leads, and natural products produced by microorganisms are one of the most prevalent sources of clinical antibiotics. Their unparalleled structural and chemical diversities provide a basis to investigate fundamental biological processes while providing access to a tremendous amount of chemical space. There is a pressing need for novel antibiotics with new mode of actions to combat the growing challenge of multidrug resistant pathogens. This review begins with the pioneering discovery and biological activities of platensimycin (PTM) and platencin (PTN), two antibacterial natural products isolated from Streptomyces platensis. The elucidation of their unique biochemical mode of action, structure-activity relationships, and pharmacokinetics is presented to highlight key aspects of their biological activities. It then presents an overview of how microbial genomics has impacted the field of PTM and PTN and revealed paradigm-shifting discoveries in terpenoid biosynthesis, fatty acid metabolism, and antibiotic and antidiabetic therapies. It concludes with a discussion covering the future perspectives of PTM and PTN in regard to natural products discovery, bacterial diterpenoid biosynthesis, and the pharmaceutical promise of PTM and PTN as antibiotics and for the treatment of metabolic disorders. PTM and PTN have inspired new discoveries in chemistry, biology, enzymology, and medicine and will undoubtedly continue to do so.
Collapse
|
95
|
Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials. Nat Commun 2016; 7:12944. [PMID: 27703138 PMCID: PMC5059476 DOI: 10.1038/ncomms12944] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. Here, Morvan et al. show that exogenous fatty acids can favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors.
Collapse
|
96
|
Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1300-1309. [PMID: 27668701 DOI: 10.1016/j.bbalip.2016.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
Abstract
Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
97
|
Abstract
Inactivation of ptmB1, ptmB2, ptmT2, or ptmC in Streptomyces platensis SB12029, a platensimycin (PTM) and platencin (PTN) overproducer, revealed that PTM and PTN biosynthesis features two distinct moieties that are individually constructed and convergently coupled to afford PTM and PTN. A focused library of PTM and PTN analogues was generated by mutasynthesis in the ΔptmB1 mutant S. platensis SB12032. Of the 34 aryl variants tested, 18 were incorporated with high titers.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, ‡Department of Molecular Therapeutics, and §Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
98
|
Bommineni GR, Kapilashrami K, Cummings JE, Lu Y, Knudson SE, Gu C, Walker SG, Slayden RA, Tonge PJ. Thiolactomycin-Based Inhibitors of Bacterial β-Ketoacyl-ACP Synthases with in Vivo Activity. J Med Chem 2016; 59:5377-90. [PMID: 27187871 DOI: 10.1021/acs.jmedchem.6b00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Ketoacyl-ACP synthases (KAS) are key enzymes involved in the type II bacterial fatty acid biosynthesis (FASII) pathway and are putative targets for antibacterial discovery. Several natural product KAS inhibitors have previously been reported, including thiolactomycin (TLM), which is produced by Nocardia spp. Here we describe the synthesis and characterization of optically pure 5R-thiolactomycin (TLM) analogues that show improved whole cell activity against bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) and priority pathogens such as Francisella tularensis and Burkholderia pseudomallei. In addition, we identify TLM analogues with in vivo efficacy against MRSA and Klebsiella pneumoniae in animal models of infection.
Collapse
Affiliation(s)
| | | | - Jason E Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | | | - Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | | | | | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | | |
Collapse
|
99
|
Shi J, Pan J, Liu L, Yang D, Lu S, Zhu X, Shen B, Duan Y, Huang Y. Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026. J Ind Microbiol Biotechnol 2016; 43:1027-35. [PMID: 27126098 DOI: 10.1007/s10295-016-1769-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022]
Abstract
Platensimycin (PTM) and platencin (PTN), isolated from several strains of Streptomyces platensis are potent antibiotics against multi-drug resistant bacteria. PTM was also shown to have antidiabetic and antisteatotic activities in mouse models. Through a novel genome-mining method, we have recently identified six PTM and PTN dual-producing strains, and generated several mutants with improved production of PTM or PTN by inactivating the pathway-specific transcriptional repressor gene ptmR1. Among them, S. platensis SB12026 gave the highest titer of 310 mg/L for PTM. In this study, we now report titer improvement by medium and fermentation optimization and pilot-scale production and isolation of PTM from SB12026. The fermentation medium optimization was achieved by manipulating the carbon and nitrogen sources, as well as the inorganic salts. The highest titer of 1560 mg/L PTM was obtained in 15-L fermentors, using a formulated medium mainly containing soluble starch, soybean flour, morpholinepropanesulfonic acid sodium salt and CaCO3. In addition, a polyamide chromatographic step was applied to facilitate the purification and 45.14 g of PTM was successfully obtained from a 60 L scale fermentation. These results would speed up the future development of PTM as human medicine.
Collapse
Affiliation(s)
- Jun Shi
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Ling Liu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Songquan Lu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410013, Hunan, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410013, Hunan, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410013, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| |
Collapse
|
100
|
Utsumi D, Matsumoto K, Amagase K, Horie S, Kato S. 5-HT3 receptors promote colonic inflammation via activation of substance P/neurokinin-1 receptors in dextran sulphate sodium-induced murine colitis. Br J Pharmacol 2016; 173:1835-49. [PMID: 26990520 DOI: 10.1111/bph.13482] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-HT (serotonin) regulates various physiological functions, both directly and via enteric neurons. The present study investigated the role of endogenous 5-HT and 5-HT3 receptors in the pathogenic mechanisms involved in colonic inflammation, especially in relation to substance P (SP) and the neurokinin-1 (NK1 ) receptor. EXPERIMENTAL APPROACH The effects of 5-HT3 and NK1 receptor antagonists were examined in dextran sulphate sodium (DSS)-induced colitis in mice. Inflammatory mediator expression and the distribution of 5-HT3 and NK1 receptors were also determined. KEY RESULTS Daily administration of ramosetron and ondansetron (5-HT3 antagonists) dose-dependently attenuated the severity of DSS-induced colitis and up-regulation of inflammatory mediator expression. Immunohistochemical analysis showed 5-HT3 receptors are mainly expressed in vesicular ACh transporter-positive cholinergic nerve fibres in normal colon. DSS increased the number of colonic nerve fibres that were double positive for 5-HT3 receptors and SP but not of those that were double positive for 5-HT3 receptors and vesicular ACh transporter. DSS increased colonic SP levels and SP-positive nerve fibres; these responses were attenuated by ramosetron. DSS-induced colitis and up-regulation of inflammatory mediators were attenuated by aprepitant, an NK1 antagonist. Immunohistochemical studies further revealed that DSS treatment markedly increased NK1 receptor expression in CD11b-positive cells. CONCLUSIONS AND IMPLICATIONS These findings indicate that the 5-HT/5-HT3 receptor and SP/NK1 receptor pathways play pathogenic roles in colonic inflammation. 5-HT acts via 5-HT3 receptors to up-regulate inflammatory mediators and promote colonic inflammation. These effects may be further mediated by activation of macrophage NK1 receptors via SP released from 5-HT3 receptor-positive nerve fibres.
Collapse
Affiliation(s)
- Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|