51
|
Yun S, Byun HY, Oh YS, Yang YR, Ryu SH, Suh PG. Protein kinase C-alpha negatively regulates EGF-induced PLC-epsilon activity through direct phosphorylation. ACTA ACUST UNITED AC 2009; 50:178-89. [PMID: 19948183 DOI: 10.1016/j.advenzreg.2009.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sanguk Yun
- Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
52
|
Walsh CT, Stupack D, Brown JH. G protein-coupled receptors go extracellular: RhoA integrates the integrins. Mol Interv 2009; 8:165-73. [PMID: 18829842 DOI: 10.1124/mi.8.4.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification of downstream effectors of G protein-coupled receptors (GPCRs) is critical for understanding the interactions between signaling cascades and for developing new pharmacological approaches for controlling GPCR-mediated responses. RhoA is a small G protein that serves as a proximal downstream effector of numerous GPCRs and regulates a variety of basic cell functions, including migration, survival, and proliferation. Intriguingly, GPCR ligands such as thrombin, sphingosine-1-phosphate, and lysophosphatidic acid, which signal through G(12/13) and activate RhoA, have recently been shown to induce the expression of the extracellular matrix protein Cyr61 (i.e., CCN1). Cyr61 is secreted and interacts with cell surface integrins to activate kinase and transcriptional cascades that are also known to contribute to cell migration, survival, and proliferation. The GPCR/RhoA/Cyr61/integrin pathway defines a novel convergence mechanism for integrating GPCR-and integrin-dependent signaling cascades that may contribute to sustained and pathophysiological responses to GPCR activation.
Collapse
Affiliation(s)
- Colin T Walsh
- Department of Pharmacology, The John and Rebecca Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
53
|
Harden TK, Hicks SN, Sondek J. Phospholipase C isozymes as effectors of Ras superfamily GTPases. J Lipid Res 2008; 50 Suppl:S243-8. [PMID: 19033212 DOI: 10.1194/jlr.r800045-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological effects of many extracellular stimuli are initiated through receptor-promoted activation of phospholipase C and inositol lipid signaling pathways. The historical view that phospholipase C-promoted signaling primarily occurs through activation of heterotrimeric G proteins or tyrosine kinases has expanded in recent years with the realization that at least three different mammalian phospholipase C isozymes are directly activated by members of the Ras superfamily of GTPases. Thus, Ras, Rap, Rac, and Rho GTPases all specifically regulate certain phospholipase C isozymes, and insight into the physiological significance of these signaling responses is beginning to accrue. High resolution three-dimensional structures of phospholipase C isozymes also are beginning to shed light on their mechanism of activation.
Collapse
Affiliation(s)
- T Kendall Harden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
54
|
Adjobo-Hermans MJW, Goedhart J, Gadella TWJ. Regulation of PLCβ1a membrane anchoring by its substrate phosphatidylinositol (4,5)-bisphosphate. J Cell Sci 2008; 121:3770-7. [DOI: 10.1242/jcs.029785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Basic knowledge as to the subcellular location and dynamics of PLCβ isozymes is scant. Here, we report on the subcellular location of GFP-PLCβ1a and the use of total internal reflection fluorescence (TIRF) microscopy to examine the dynamics of GFP-PLCβ1a at the plasma membrane upon stimulation of Gq-coupled receptors. Using this technique, we observed PLCβ1a dissociation from the plasma membrane upon addition of agonist. An increase in intracellular calcium and a decrease in PtdIns(4,5)P2 both coincided with a translocation of PLCβ1a from the plasma membrane into the cytosol. In order to differentiate between calcium and PtdIns(4,5)P2, rapamycin-induced heterodimerization of FRB and FKBP12 fused to 5-phosphatase IV was used to instantaneously convert PtdIns(4,5)P2 into PtdIns(4)P. Addition of rapamycin caused PLCβ1a to dissociate from the plasma membrane, indicating that removal of PtdIns(4,5)P2 is sufficient to cause translocation of PLCβ1a from the plasma membrane. In conclusion, PLCβ1a localization is regulated by its own substrate.
Collapse
Affiliation(s)
- Merel J. W. Adjobo-Hermans
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, Centre for Advanced Microscopy, University of Amsterdam, Kruislaan 316, NL-1098 SM, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, Centre for Advanced Microscopy, University of Amsterdam, Kruislaan 316, NL-1098 SM, Amsterdam, The Netherlands
| | - Theodorus W. J. Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, Centre for Advanced Microscopy, University of Amsterdam, Kruislaan 316, NL-1098 SM, Amsterdam, The Netherlands
| |
Collapse
|
55
|
Oestreich EA, Malik S, Goonasekera SA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J Biol Chem 2008; 284:1514-22. [PMID: 18957419 DOI: 10.1074/jbc.m806994200] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)epsilon that plays a critical role in maximal beta-adrenergic receptor (betaAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCepsilon phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCepsilon-stimulated Rap1 GEF activity are both required for PLCepsilon-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCepsilon significantly enhances Rap activation in response to betaAR stimulation in the heart. Downstream of PLCepsilon hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both betaAR- and Epac-stimulated increases in CICR in PLCepsilon+/+ myocytes but had no effect in PLCepsilon-/- myocytes. betaAR and Epac activation caused membrane translocation of PKCepsilon in PLCepsilon+/+ but not PLCepsilon-/- myocytes and small interfering RNA-mediated PKCepsilon knockdown significantly inhibited both betaAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited betaAR- and Epac-mediated CICR in PLCepsilon+/+ but not PLCepsilon-/- myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and betaAR-stimulated peak L-type current density are similar in PLCepsilon+/+ and PLCepsilon-/- myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCepsilon, PKCepsilon, and CamKII downstream of betaAR activation.
Collapse
Affiliation(s)
- Emily A Oestreich
- Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Seifert JP, Zhou Y, Hicks SN, Sondek J, Harden TK. Dual activation of phospholipase C-epsilon by Rho and Ras GTPases. J Biol Chem 2008; 283:29690-8. [PMID: 18765661 DOI: 10.1074/jbc.m805038200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Phospholipase C-epsilon (PLC-epsilon) is a highly elaborated PLC required for a diverse set of signaling pathways. Here we use a combination of cellular assays and studies with purified proteins to show that activated RhoA and Ras isoforms directly engage distinct regions of PLC-epsilon to stimulate its phospholipase activity. Purified PLC-epsilon was activated in a guanine nucleotide- and concentration-dependent fashion by purified lipidated K-Ras reconstituted in PtdIns(4,5)P(2)-containing phospholipid vesicles. Whereas mutation of two critical lysine residues within the second Ras-association domain of PLC-epsilon prevented K-Ras-dependent activation of the purified enzyme, guanine nucleotide-dependent activation by RhoA was retained. Deletion of a loop unique to PLC-epsilon eliminated its activation by RhoA but not H-Ras. In contrast, removal of the autoinhibitory X/Y-linker region of the catalytic core of PLC-epsilon markedly activates the enzyme (Hicks, S. N., Jezyk, M. R., Gershburg, S., Seifert, J. P., Harden, T. K., and Sondek, J. (2008) Mol. Cell, 31, 383-394), but PLC-epsilon lacking this regulatory region retained activation by both Rho and Ras GTPases. Additive activation of PLC-epsilon by RhoA and K- or H-Ras was observed in intact cell studies, and this additivity was recapitulated in experiments in which activation of purified PLC-epsilon was quantified with PtdIns(4,5)P(2)-containing phospholipid vesicles reconstituted with purified, isoprenylated GTPases. A maximally effective concentration of activated RhoA also increased the sensitivity of purified PLC-epsilon to activation by K-Ras. These results indicate that PLC-epsilon can be directly and concomitantly activated by both RhoA and individual Ras GTPases resulting in diverse upstream control of signaling cascades downstream of PLC-epsilon.
Collapse
Affiliation(s)
- Jason P Seifert
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
57
|
Walsh CT, Radeff-Huang J, Matteo R, Hsiao A, Subramaniam S, Stupack D, Brown JH. Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteine-rich protein 61. FASEB J 2008; 22:4011-21. [PMID: 18687805 DOI: 10.1096/fj.08-113266] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A subset of G-protein coupled receptors (GPCRs), including the thrombin receptor (PAR1), elicits mitogenic responses. Thrombin also activates Ras homolog gene family member A (RhoA) and activating protein (AP-1) -mediated gene expression in 1321N1 astrocytoma cells, whereas the nonmitogenic agonist carbachol does not. Transcriptomic analysis was used to explore differential gene induction by these agonists and revealed that the matricellular protein cysteine-rich 61 (Cyr61/CCN1) is selectively induced by thrombin. The ability of GPCR agonists to induce Cyr61 parallels their ability to activate RhoA; agonist-stimulated Cyr61 expression is inhibited by C3 toxin. When Cyr61 is down-regulated using short interfering RNA (siRNA) or short-hairpin RNA (shRNA), thrombin-induced DNA synthesis is significantly attenuated. When Cyr61 expression is induced, it appears in the extracellular compartment and on the cell surface. Extracellular Cyr61 interacts with alpha(5), alpha(6), and beta(1) integrins on these cells, and monoclonal antibodies directed against alpha(5) and beta(1) integrins inhibit thrombin-induced DNA synthesis. Functional blockade of Cyr61 with soluble heparin or anti-Cyr61 antibodies also inhibits thrombin-induced DNA synthesis. Thus Cyr61 is a highly inducible, secreted extracellular factor through which GPCR and RhoA signaling pathways engage integrins that contribute to GPCR-mediated proliferation.
Collapse
Affiliation(s)
- Colin T Walsh
- Joan Heller Brown, Department of Pharmacology, University of California San Diego, 9500 Gilman Dr.-0636, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.
Collapse
Affiliation(s)
- A V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
59
|
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun SU, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008; 41:415-34. [DOI: 10.5483/bmbrep.2008.41.6.415] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
60
|
Blum AE, Joseph SM, Przybylski RJ, Dubyak GR. Rho-family GTPases modulate Ca(2+) -dependent ATP release from astrocytes. Am J Physiol Cell Physiol 2008; 295:C231-41. [PMID: 18495810 DOI: 10.1152/ajpcell.00175.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previously, we reported that activation of G protein-coupled receptors (GPCR) in 1321N1 human astrocytoma cells elicits a rapid release of ATP that is partially dependent on a G(q)/phophospholipase C (PLC)/Ca(2+) mobilization signaling cascade. In this study we assessed the role of Rho-family GTPase signaling as an additional pathway for the regulation of ATP release in response to activation of protease-activated receptor-1 (PAR1), lysophosphatidic acid receptor (LPAR), and M3-muscarinic (M3R) GPCRs. Thrombin (or other PAR1 peptide agonists), LPA, and carbachol triggered quantitatively similar Ca(2+) mobilization responses, but only thrombin and LPA caused rapid accumulation of active GTP-bound Rho. The ability to elicit Rho activation correlated with the markedly higher efficacy of thrombin and LPA, relative to carbachol, as ATP secretagogues. Clostridium difficile toxin B and Clostridium botulinum C3 exoenzyme, which inhibit Rho-GTPases, attenuated the thrombin- and LPA-stimulated ATP release but did not decrease carbachol-stimulated release. Thus the ability of certain G(q)-coupled receptors to additionally stimulate Rho-GTPases acts to strongly potentiate a Ca(2+)-activated ATP release pathway. However, pharmacological inhibition of Rho kinase I/II or myosin light chain kinase did not attenuate ATP release. PAR1-induced ATP release was also reduced twofold by brefeldin treatment suggesting the possible mobilization of Golgi-derived, ATP-containing secretory vesicles. ATP release was also markedly repressed by the gap junction channel inhibitor carbenoxolone in the absence of any obvious thrombin-induced change in membrane permeability indicative of hemichannel gating.
Collapse
Affiliation(s)
- Andrew E Blum
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
61
|
Wu YP, Mizugishi K, Bektas M, Sandhoff R, Proia RL. Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Hum Mol Genet 2008; 17:2257-64. [PMID: 18424450 DOI: 10.1093/hmg/ddn126] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid-signaling molecule produced by sphingosine kinase in response to a wide number of stimuli. By acting through a family of widely expressed G protein-coupled receptors, S1P regulates diverse physiological processes. Here we examined the role of S1P signaling in neurodegeneration using a mouse model of Sandhoff disease, a prototypical neuronopathic lysosomal storage disorder. When sphingosine kinase 1 (Sphk1) was deleted in Sandhoff disease mice, a milder disease course occurred, with decreased proliferation of glial cells and less-pronounced astrogliosis. A similar result of milder disease course and reduced astroglial proliferation was obtained by deletion of the gene for the S1P(3) receptor, a G protein-coupled receptor enriched in astrocytes. Our studies demonstrate a functional role of S1P synthesis and receptor expression in astrocyte proliferation leading to astrogliosis during the terminal stages of neurodegeneration in Sandhoff disease mice. Because astrocyte responses are involved in many types of neurodegeneration, the Sphk1/S1P receptor signaling axis may be generally important during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun-Ping Wu
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1821, USA
| | | | | | | | | |
Collapse
|