51
|
Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions. Proc Natl Acad Sci U S A 2018. [PMID: 29531052 PMCID: PMC5879700 DOI: 10.1073/pnas.1720448115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The potential effect of conformational dynamics of enzymes on their chemical steps has been intensely debated recently. We use single-molecule FRET experiments on adenylate kinase (AK) to shed new light on this question. AK closes its domains to bring its two substrate close together for reaction. We show that domain closure takes only microseconds to complete, which is two orders of magnitude faster than the chemical reaction. Nevertheless, active-site mutants that reduce the rate of domain closure also reduce the reaction rate, suggesting a connection between the two phenomena. We propose that ultrafast domain closure is used by enzymes as a mechanism to optimize mutual orientation of substrates, a novel mode of coupling between conformational dynamics and catalysis. The functional cycle of many proteins involves large-scale motions of domains and subunits. The relation between conformational dynamics and the chemical steps of enzymes remains under debate. Here we show that in the presence of substrates, domain motions of an enzyme can take place on the microsecond time scale, yet exert influence on the much-slower chemical step. We study the domain closure reaction of the enzyme adenylate kinase from Escherichia coli while in action (i.e., under turnover conditions), using single-molecule FRET spectroscopy. We find that substrate binding increases dramatically domain closing and opening times, making them as short as ∼15 and ∼45 µs, respectively. These large-scale conformational dynamics are likely the fastest measured to date, and are ∼100–200 times faster than the enzymatic turnover rate. Some active-site mutants are shown to fully or partially prevent the substrate-induced increase in domain closure times, while at the same time they also reduce enzymatic activity, establishing a clear connection between the two phenomena, despite their disparate time scales. Based on these surprising observations, we propose a paradigm for the mode of action of enzymes, in which numerous cycles of conformational rearrangement are required to find a mutual orientation of substrates that is optimal for the chemical reaction.
Collapse
|
52
|
McCluskey K, Carlos Penedo J. An integrated perspective on RNA aptamer ligand-recognition models: clearing muddy waters. Phys Chem Chem Phys 2018; 19:6921-6932. [PMID: 28225108 DOI: 10.1039/c6cp08798a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Riboswitches are short RNA motifs that sensitively and selectively bind cognate ligands to modulate gene expression. Like protein receptor-ligand pairs, their binding dynamics are traditionally categorized as following one of two paradigmatic mechanisms: conformational selection and induced fit. In conformational selection, ligand binding stabilizes a particular state already present in the receptor's dynamic ensemble. In induced fit, ligand-receptor interactions enable the system to overcome the energetic barrier into a previously inaccessible state. In this article, we question whether a polarized division of RNA binding mechanisms truly meets the conceptual needs of the field. We will review the history behind this classification of RNA-ligand interactions, and the way induced fit in particular has been rehabilitated by single-molecule studies of RNA aptamers. We will highlight several recent results from single-molecule experimental studies of riboswitches that reveal gaps or even contradictions between common definitions of the two terms, and we will conclude by proposing a more robust framework that considers the range of RNA behaviors unveiled in recent years as a reality to be described, rather than an increasingly unwieldy set of exceptions to the traditional models.
Collapse
Affiliation(s)
- K McCluskey
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| | - J Carlos Penedo
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK. and Biomolecular Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| |
Collapse
|
53
|
Zheng Y, Cui Q. Multiple Pathways and Time Scales for Conformational Transitions in apo-Adenylate Kinase. J Chem Theory Comput 2018; 14:1716-1726. [PMID: 29378407 DOI: 10.1021/acs.jctc.7b01064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The open/close transition in adenylate kinase (AK) is regarded as a representative example for large-scale conformational transition in proteins, yet its mechanism remains unclear despite numerous experimental and computational studies. Using extensive (∼50 μs) explicit solvent atomistic simulations and Markov state analysis, we shed new lights on the mechanism of this transition in the apo form of AK. The closed basin of apo AK features an open NMP domain while the LID domain closes and rotates toward it. Therefore, although the computed structural properties of the closed ensemble are consistent with previously reported FRET and PRE measurements, our simulations suggest that NMP closure is likely to follow AMP binding, in contrast to the previous interpretation of FRET and PRE data that the apo state was able to sample the fully closed conformation for "ligand selection". The closed state ensemble is found to be kinetically heterogeneous; multiple pathways and time scales are associated with the open/close transition, providing new clues to the disparate time scales observed in different experiments. Besides interdomain interactions, a novel mutual information analysis identifies specific intradomain interactions that correlate strongly to transition kinetics, supporting observations from previous chimera experiments. While our results underscore the role of internal domain properties in determining the kinetics of open/close transition in apo AK, no evidence is observed for any significant degree of local unfolding during the transition. These observations about AK have general implications to our view of conformational states, transition pathways, and time scales of conformational changes in proteins. The key features and time scales of observed transition pathways are robust and similar from simulations using two popular fixed charge force fields.
Collapse
Affiliation(s)
- Yuqing Zheng
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Qiang Cui
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
54
|
Zhu L, Sheong FK, Zeng X, Huang X. Elucidation of the conformational dynamics of multi-body systems by construction of Markov state models. Phys Chem Chem Phys 2018; 18:30228-30235. [PMID: 27314275 DOI: 10.1039/c6cp02545e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Constructing Markov State Models (MSMs) based on short molecular dynamics simulations is a powerful computational technique to complement experiments in predicting long-time kinetics of biomolecular processes at atomic resolution. Even though the MSM approach has been widely applied to study one-body processes such as protein folding and enzyme conformational changes, the majority of biological processes, e.g. protein-ligand recognition, signal transduction, and protein aggregation, essentially involve multiple entities. Here we review the attempts at constructing MSMs for multi-body systems, point out the challenges therein and discuss recent algorithmic progresses that alleviate these challenges. In particular, we describe an automatic kinetics based partitioning method that achieves optimal definition of the conformational states in a multi-body system, and discuss a novel maximum-likelihood approach that efficiently estimates the slow uphill kinetics utilizing pre-computed equilibrium populations of all states. We expect that these new algorithms and their combinations may boost investigations of important multi-body biological processes via the efficient construction of MSMs.
Collapse
Affiliation(s)
- Lizhe Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. and Centre of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Xiangze Zeng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. and Centre of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. and Centre of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
55
|
Zhao L, Lu HP, Wang J. Exploration of Multistate Conformational Dynamics upon Ligand Binding of a Monomeric Enzyme Involved in Pyrophosphoryl Transfer. J Phys Chem B 2018; 122:1885-1897. [PMID: 29385349 DOI: 10.1021/acs.jpcb.7b12562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase) is a monomeric protein with 158 residues, which undergoes large-scale conformational changes between apo, open, and holo states responding to ligand binding for its function. It has been explored widely as an excellent target for potential antibacterial drug development. However, little is known about how conformational dynamics between the native states influences the substrate recognition and the functionality of enzymatic catalysis. Here, we report a coarse-grained triple-basin structure-based model upon ligand binding to describe such multiple-state system by the molecular dynamics simulation. With our model, we have made theoretical predictions that are in good agreement with the experimental measurements. Our results revealed the intrinsic conformational fluctuations between apo and open states without ligand binding. We found that HPPK can switch to the activated holo state upon the ordered binding of the two ligands (ATP and HP). We uncovered the underlying mechanism by which major induced fit and minor population shift pathways coexist upon ligand binding by quantitative flux analysis. Additionally, we pointed out the structural origin for the conformational changes and identified the key residues as well as contact interactions. We further explored the temperature effect on the conformational distributions and pathway weights. It gave strong support that higher temperatures promote population shift, while the induced fit pathway is always the predominant activation route of the HPPK system. These findings will provide significant insights of the mechanisms of the multistate conformational dynamics of HPPK upon ligand binding.
Collapse
Affiliation(s)
- Lingci Zhao
- College of Physics, Jilin University , Changchun, Jilin 130012, People's Republic of China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | - Jin Wang
- College of Physics, Jilin University , Changchun, Jilin 130012, People's Republic of China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China.,Department of Chemistry and Physics, State University of New York , Stony Brook, New York 11794-3400, United States
| |
Collapse
|
56
|
Mehaffey MR, Cammarata MB, Brodbelt JS. Tracking the Catalytic Cycle of Adenylate Kinase by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2018; 90:839-846. [PMID: 29188992 PMCID: PMC5750083 DOI: 10.1021/acs.analchem.7b03591] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex interplay of dynamic protein plasticity and specific side-chain interactions with substrate molecules that allows enzymes to catalyze reactions has yet to be fully unraveled. Top-down ultraviolet photodissociation (UVPD) mass spectrometry is used to track snapshots of conformational fluctuations in the phosphotransferase adenylate kinase (AK) throughout its active reaction cycle by characterization of complexes containing AK and each of four different adenosine phosphate ligands. Variations in efficiencies of UVPD backbone cleavages were consistently observed for three α-helices and the adenosine binding regions for AK complexes representing different steps of the catalytic cycle, implying that these stretches of the protein sample various structural microstates as the enzyme undergoes global open-to-closed transitions. Focusing on the conformational impact of recruiting or releasing the Mg2+ cofactor highlights two loop regions for which fragmentation increases upon UVPD, signaling an increase in loop flexibility as the metal cation disrupts the loop interactions with the substrate ligands. Additionally, the observation of holo ions and variations in UVPD backbone cleavage efficiency at R138 implicate this conserved active site residue in stabilizing the donor phosphoryl group during catalysis. This study showcases the utility of UVPD-MS to provide insight into conformational fluctuations of single residues for active enzymes.
Collapse
Affiliation(s)
- M. Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | | | | |
Collapse
|
57
|
Wang Y, Makowski L. Fine structure of conformational ensembles in adenylate kinase. Proteins 2017; 86:332-343. [DOI: 10.1002/prot.25443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Yujing Wang
- Department of BioengineeringNortheastern UniversityBoston Massachusetts
| | - Lee Makowski
- Department of BioengineeringNortheastern UniversityBoston Massachusetts
| |
Collapse
|
58
|
Ekimoto T, Ikeguchi M. Multiscale molecular dynamics simulations of rotary motor proteins. Biophys Rev 2017; 10:605-615. [PMID: 29204882 DOI: 10.1007/s12551-017-0373-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.
Collapse
Affiliation(s)
- Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
59
|
Kar P, Feig M. Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields. J Chem Theory Comput 2017; 13:5753-5765. [PMID: 28992696 DOI: 10.1021/acs.jctc.7b00840] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hybrid all-atom/coarse-grained (AA/CG) simulations of proteins offer a computationally efficient compromise where atomistic details are only applied to biologically relevant regions while benefiting from the speedup of treating the remaining parts of a given system at the CG level. The recently developed CG model, PRIMO, allows a direct coupling with an atomistic force field with no additional modifications or coupling terms and the ability to carry out dynamic simulations without any restraints on secondary or tertiary structures. A hybrid AA/CG scheme based on combining all-atom CHARMM and coarse-grained PRIMO representations was validated via molecular dynamics and replica exchange simulations of soluble and membrane proteins. The AA/CG scheme was also tested in the calculation of the free energy profile for the transition from the closed to the open state of adenylate kinase via umbrella sampling molecular dynamics method. The overall finding is that the AA/CG scheme generates dynamics and energetics that are qualitatively and quantitatively comparable to AA simulations while offering the computational advantages of coarse-graining. This model opens the door to challenging applications where high accuracy is required only in parts of large biomolecular complexes.
Collapse
Affiliation(s)
- Parimal Kar
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
60
|
Onuk E, Badger J, Wang YJ, Bardhan J, Chishti Y, Akcakaya M, Brooks DH, Erdogmus D, Minh DDL, Makowski L. Effects of Catalytic Action and Ligand Binding on Conformational Ensembles of Adenylate Kinase. Biochemistry 2017; 56:4559-4567. [PMID: 28767234 DOI: 10.1021/acs.biochem.7b00351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Crystal structures of adenylate kinase (AdK) from Escherichia coli capture two states: an "open" conformation (apo) obtained in the absence of ligands and a "closed" conformation in which ligands are bound. Other AdK crystal structures suggest intermediate conformations that may lie on the transition pathway between these two states. To characterize the transition from open to closed states in solution, X-ray solution scattering data were collected from AdK in the apo form and with progressively increasing concentrations of five different ligands. Scattering data from apo AdK are consistent with scattering predicted from the crystal structure of AdK in the open conformation. In contrast, data from AdK samples saturated with Ap5A do not agree with that calculated from AdK in the closed conformation. Using cluster analysis of available structures, we selected representative structures in five conformational states: open, partially open, intermediate, partially closed, and closed. We used these structures to estimate the relative abundances of these states for each experimental condition. X-ray solution scattering data obtained from AdK with AMP are dominated by scattering from AdK in the open conformation. For AdK in the presence of high concentrations of ATP and ADP, the conformational ensemble shifts to a mixture of partially open and closed states. Even when AdK is saturated with Ap5A, a significant proportion of AdK remains in a partially open conformation. These results are consistent with an induced-fit model in which the transition of AdK from an open state to a closed state is initiated by ATP binding.
Collapse
Affiliation(s)
- Emre Onuk
- Radiation Oncology Department, University of California , Los Angeles, California 90095, United States
| | - John Badger
- DeltaG Technologies , San Diego, California 92122, United States
| | - Yu Jing Wang
- Department of Bioengineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - Jaydeep Bardhan
- Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - Yasmin Chishti
- Department of Bioengineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - Murat Akcakaya
- Department of Electrical and Computer Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Dana H Brooks
- Department of Electrical and Computer Engineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - Deniz Erdogmus
- Department of Electrical and Computer Engineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - David D L Minh
- Department of Chemistry, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | - Lee Makowski
- Department of Bioengineering, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
61
|
Halder R, Manna RN, Chakraborty S, Jana B. Modulation of the Conformational Dynamics of Apo-Adenylate Kinase through a π–Cation Interaction. J Phys Chem B 2017; 121:5699-5708. [DOI: 10.1021/acs.jpcb.7b01736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ritaban Halder
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rabindra Nath Manna
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
62
|
Zheng L, Lin VC, Mu Y. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics. PLoS One 2016; 11:e0165824. [PMID: 27824891 PMCID: PMC5100906 DOI: 10.1371/journal.pone.0165824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022] Open
Abstract
Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Valerie Chunling Lin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- * E-mail:
| |
Collapse
|
63
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
64
|
Kurkcuoglu Z, Bahar I, Doruker P. ClustENM: ENM-Based Sampling of Essential Conformational Space at Full Atomic Resolution. J Chem Theory Comput 2016; 12:4549-62. [PMID: 27494296 DOI: 10.1021/acs.jctc.6b00319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate sampling of conformational space and, in particular, the transitions between functional substates has been a challenge in molecular dynamic (MD) simulations of large biomolecular systems. We developed an Elastic Network Model (ENM)-based computational method, ClustENM, for sampling large conformational changes of biomolecules with various sizes and oligomerization states. ClustENM is an iterative method that combines ENM with energy minimization and clustering steps. It is an unbiased technique, which requires only an initial structure as input, and no information about the target conformation. To test the performance of ClustENM, we applied it to six biomolecular systems: adenylate kinase (AK), calmodulin, p38 MAP kinase, HIV-1 reverse transcriptase (RT), triosephosphate isomerase (TIM), and the 70S ribosomal complex. The generated ensembles of conformers determined at atomic resolution show good agreement with experimental data (979 structures resolved by X-ray and/or NMR) and encompass the subspaces covered in independent MD simulations for TIM, p38, and RT. ClustENM emerges as a computationally efficient tool for characterizing the conformational space of large systems at atomic detail, in addition to generating a representative ensemble of conformers that can be advantageously used in simulating substrate/ligand-binding events.
Collapse
Affiliation(s)
- Zeynep Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University , Bebek 34342, Istanbul, Turkey
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University , Bebek 34342, Istanbul, Turkey
| |
Collapse
|
65
|
Substrate Binding Specifically Modulates Domain Arrangements in Adenylate Kinase. Biophys J 2016; 109:1978-85. [PMID: 26536274 DOI: 10.1016/j.bpj.2015.08.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 11/21/2022] Open
Abstract
The enzyme adenylate kinase (ADK) features two substrate binding domains that undergo large-scale motions during catalysis. In the apo state, the enzyme preferentially adopts a globally open state with accessible binding sites. Binding of two substrate molecules (AMP + ATP or ADP + ADP) results in a closed domain conformation, allowing efficient phosphoryl-transfer catalysis. We employed molecular dynamics simulations to systematically investigate how the individual domain motions are modulated by the binding of substrates. Two-dimensional free-energy landscapes were calculated along the opening of the two flexible lid domains for apo and holo ADK as well as for all single natural substrates bound to one of the two binding sites of ADK. The simulations reveal a strong dependence of the conformational ensembles on type and binding position of the bound substrates and a nonsymmetric behavior of the lid domains. Altogether, the ensembles suggest that, upon initial substrate binding to the corresponding lid site, the opposing lid is maintained open and accessible for subsequent substrate binding. In contrast, ATP binding to the AMP-lid induces global domain closing, preventing further substrate binding to the ATP-lid site. This might constitute a mechanism by which the enzyme avoids the formation of a stable but enzymatically unproductive state.
Collapse
|
66
|
Thieulin-Pardo G, Schramm A, Lignon S, Lebrun R, Kojadinovic M, Gontero B. The intriguing CP12-like tail of adenylate kinase 3 fromChlamydomonas reinhardtii. FEBS J 2016; 283:3389-407. [DOI: 10.1111/febs.13814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Antoine Schramm
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Sabrina Lignon
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Régine Lebrun
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Mila Kojadinovic
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Brigitte Gontero
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| |
Collapse
|
67
|
Perkett MR, Mirijanian DT, Hagan MF. The allosteric switching mechanism in bacteriophage MS2. J Chem Phys 2016; 145:035101. [PMID: 27448905 PMCID: PMC4947040 DOI: 10.1063/1.4955187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/16/2023] Open
Abstract
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Dina T Mirijanian
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
68
|
Li D, Liu MS, Ji B. Mapping the Dynamics Landscape of Conformational Transitions in Enzyme: The Adenylate Kinase Case. Biophys J 2016; 109:647-60. [PMID: 26244746 DOI: 10.1016/j.bpj.2015.06.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
Conformational transition describes the essential dynamics and mechanism of enzymes in pursuing their various functions. The fundamental and practical challenge to researchers is to quantitatively describe the roles of large-scale dynamic transitions for regulating the catalytic processes. In this study, we tackled this challenge by exploring the pathways and free energy landscape of conformational changes in adenylate kinase (AdK), a key ubiquitous enzyme for cellular energy homeostasis. Using explicit long-timescale (up to microseconds) molecular dynamics and bias-exchange metadynamics simulations, we determined at the atomistic level the intermediate conformational states and mapped the transition pathways of AdK in the presence and absence of ligands. There is clearly chronological operation of the functional domains of AdK. Specifically in the ligand-free AdK, there is no significant energy barrier in the free energy landscape separating the open and closed states. Instead there are multiple intermediate conformational states, which facilitate the rapid transitions of AdK. In the ligand-bound AdK, the closed conformation is energetically most favored with a large energy barrier to open it up, and the conformational population prefers to shift to the closed form coupled with transitions. The results suggest a perspective for a hybrid of conformational selection and induced fit operations of ligand binding to AdK. These observations, depicted in the most comprehensive and quantitative way to date, to our knowledge, emphasize the underlying intrinsic dynamics of AdK and reveal the sophisticated conformational transitions of AdK in fulfilling its enzymatic functions. The developed methodology can also apply to other proteins and biomolecular systems.
Collapse
Affiliation(s)
- Dechang Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China.
| | - Ming S Liu
- CSIRO - Digital Productivity Flagship, Clayton South, Victoria, Australia; Monash Institute of Medical Research, Clayton, Victoria, Australia.
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
69
|
Barman A, Hamelberg D. Coupled Dynamics and Entropic Contribution to the Allosteric Mechanism of Pin1. J Phys Chem B 2016; 120:8405-15. [DOI: 10.1021/acs.jpcb.6b02123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arghya Barman
- Department
of Chemistry and
the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department
of Chemistry and
the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
70
|
Matsunaga Y, Komuro Y, Kobayashi C, Jung J, Mori T, Sugita Y. Dimensionality of Collective Variables for Describing Conformational Changes of a Multi-Domain Protein. J Phys Chem Lett 2016; 7:1446-51. [PMID: 27049936 DOI: 10.1021/acs.jpclett.6b00317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Collective variables (CVs) are often used in molecular dynamics simulations based on enhanced sampling algorithms to investigate large conformational changes of a protein. The choice of CVs in these simulations is essential because it affects simulation results and impacts the free-energy profile, the minimum free-energy pathway (MFEP), and the transition-state structure. Here we examine how many CVs are required to capture the correct transition-state structure during the open-to-close motion of adenylate kinase using a coarse-grained model in the mean forces string method to search the MFEP. Various numbers of large amplitude principal components are tested as CVs in the simulations. The incorporation of local coordinates into CVs, which is possible in higher dimensional CV spaces, is important for capturing a reliable MFEP. The Bayesian measure proposed by Best and Hummer is sensitive to the choice of CVs, showing sharp peaks when the transition-state structure is captured. We thus evaluate the required number of CVs needed in enhanced sampling simulations for describing protein conformational changes.
Collapse
Affiliation(s)
- Yasuhiro Matsunaga
- RIKEN Advanced Institute for Computational Science , 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuaki Komuro
- RIKEN, Theoretical Molecular Science Laboratory , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Chigusa Kobayashi
- RIKEN Advanced Institute for Computational Science , 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jaewoon Jung
- RIKEN Advanced Institute for Computational Science , 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN, iTHES , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takaharu Mori
- RIKEN, Theoretical Molecular Science Laboratory , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN, iTHES , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yuji Sugita
- RIKEN Advanced Institute for Computational Science , 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN, Theoretical Molecular Science Laboratory , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN, iTHES , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Quantitative Biology Center , Integrated Innovation Building 7F, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
71
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
72
|
Pranami G, Lamm MH. Estimating error in diffusion coefficients derived from molecular dynamics simulations. J Chem Theory Comput 2016; 11:4586-92. [PMID: 26889517 DOI: 10.1021/acs.jctc.5b00574] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The computationally expensive nature of molecular dynamics simulation limits the access to length (nanometer) and time scales (nanosecond) that are orders of magnitude smaller than the experiment it models. This limitation warrants a careful estimation of statistical uncertainty associated with the properties calculated from these simulations. The assumption that a simulation is long enough so that the ergodic hypothesis applies is often invoked in the literature for the computation of properties of interest from a single molecular dynamics simulation. Here, we demonstrate that making this assumption without validation results in poor estimates of the self-diffusion coefficient from a single molecular dynamics simulation of Lennard-Jones fluid. This problem is shown to be even more severe when the diffusion coefficient of macromolecules is calculated from a single molecular dynamics simulation. We have shown that conducting multiple independent simulations is necessary to obtain reliable estimates of diffusion coefficients and their associated statistical uncertainties. We show that even a “routine” calculation of the self-diffusion coefficient for a Lennard-Jones fluid, as determined from a linear fit of the mean squared displacement of particles as a function of time, violates the key assumptions of linear regression. A rigorous approach for addressing these issues is presented.
Collapse
Affiliation(s)
- Gaurav Pranami
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | | |
Collapse
|
73
|
Cui D, Ren W, Li W, Wang W. Molecular simulations of substrate release and coupled conformational motions in adenylate kinase. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conformational opening coupled substrate release is believed to be related to the rate limiting step in the catalysis cycle of the adenylate kinase. However, it is still unclear how the substrate dissociates from its active site and how the substrate release is coupled to conformational changes of the kinase. In this work, by using metadynamics simulations, we investigated the ADP release process and the coupled protein dynamics. We found that the ADP release involves overcoming a high free energy barrier, and protonation of the [Formula: see text]-phosphate of the ADP molecules can drastically reduce the barrier height, therefore, promote the ADP release. We identified several key residues contributing to the high free energy barrier. We also showed that the ADP attached to LID domain leaves the binding pocket earlier than the one attached to the NMP domain. We further observed that the ADP release is accompanied by almost fully opening of the LID domain and partially opening of the NMP domain. Our results provide insight into the molecular mechanism of the substrate release of adenylate kinase and the coupled conformational motions.
Collapse
Affiliation(s)
- Dachao Cui
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Weitong Ren
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wenfei Li
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
74
|
Subnanometre enzyme mechanics probed by single-molecule force spectroscopy. Nat Commun 2016; 7:10848. [PMID: 26906294 PMCID: PMC4770092 DOI: 10.1038/ncomms10848] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/26/2016] [Indexed: 01/01/2023] Open
Abstract
Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. Adenylate kinase catalyses the interconversion of adenosine phosphates, and plays a crucial role in maintaining cellular energy homeostasis. Here, the authors use single molecule optical tweezers to understand how the enzyme's conformation dynamics modulates catalysis.
Collapse
|
75
|
Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016; 116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Papaleo
- Computational
Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giorgio Saladino
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Lambrughi
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, National Cancer Institute Frederick, Frederick, Maryland 21702, United States
- Sackler Institute
of Molecular Medicine, Department of Human Genetics and Molecular
Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
76
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
77
|
Shao Q. Enhanced conformational sampling technique provides an energy landscape view of large-scale protein conformational transitions. Phys Chem Chem Phys 2016; 18:29170-29182. [DOI: 10.1039/c6cp05634b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel in silico approach (NMA–ITS) is introduced to rapidly and effectively sample the configuration space and give quantitative data for exploring the conformational changes of proteins.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
78
|
Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations. Biophys J 2015; 108:85-97. [PMID: 25564855 DOI: 10.1016/j.bpj.2014.11.1853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.
Collapse
|
79
|
Abstract
INTRODUCTION Molecular docking has become a popular method for virtual screening. Docking small molecules to a rigid biological receptor is fast but could produce many false negatives and identify less diverse compounds. Flexible receptor docking has alleviated this problem. AREAS COVERED This article focuses on reviewing ensemble docking as an approximate but inexpensive method to incorporate receptor flexibility in molecular docking. It outlines key features and recent advances of this method and points out problem areas that need to be addressed to make it even more useful in drug discovery. EXPERT OPINION Among the different methods introduced for flexible receptor docking, ensemble docking represents one of the most popular approaches, especially for high-throughput virtual screening. One can generate structural ensembles by using experimental structures, by structural modeling and by various types of molecular simulations. In building a structural ensemble, a judicious choice of the structures to be included can improve performance. Furthermore, reducing the size of the structural ensemble can cut computational costs, and removing the structures that can bind few ligands well could enrich the number of true actives identified by ensemble docking. The ability of ensemble docking to identify more true positives at the top of a rank-ordered list also depends on the choice of the methods to score and rank compounds, an area that needs further research.
Collapse
Affiliation(s)
- Chung F Wong
- a University of Missouri-St. Louis, Department of Chemistry and Biochemistry , 1 University Boulevard, St. Louis, MO 63121, USA +1 31 4516 5318 ;
| |
Collapse
|
80
|
Moritsugu K, Koike R, Yamada K, Kato H, Kidera A. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation. PLoS One 2015; 10:e0131583. [PMID: 26148295 PMCID: PMC4492737 DOI: 10.1371/journal.pone.0131583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/02/2015] [Indexed: 01/16/2023] Open
Abstract
Molecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a “Motion Tree”, to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC) transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.
Collapse
Affiliation(s)
- Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- * E-mail:
| | - Ryotaro Koike
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kouki Yamada
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46–29 Shimoadachi-cho, Sakyo-ku, Kyoto, Japan
- RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Akinori Kidera
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
81
|
Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nat Commun 2015; 6:7653. [PMID: 26134632 PMCID: PMC4506540 DOI: 10.1038/ncomms8653] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the structural mechanisms of protein–ligand binding and their dependence on protein sequence and conformation is of fundamental importance for biomedical research. Here we investigate the interplay of conformational change and ligand-binding kinetics for the serine protease Trypsin and its competitive inhibitor Benzamidine with an extensive set of 150 μs molecular dynamics simulation data, analysed using a Markov state model. Seven metastable conformations with different binding pocket structures are found that interconvert at timescales of tens of microseconds. These conformations differ in their substrate-binding affinities and binding/dissociation rates. For each metastable state, corresponding solved structures of Trypsin mutants or similar serine proteases are contained in the protein data bank. Thus, our wild-type simulations explore a space of conformations that can be individually stabilized by adding ligands or making suitable changes in protein sequence. These findings provide direct evidence of conformational plasticity in receptors. Conformational plasticity influences several aspects of protein function. Here the authors combine extensive MD simulations with Markov state models—using trypsin as model—to reveal new mechanistic details of how conformational plasticity influence ligand-receptors interactions.
Collapse
|
82
|
Lee J, Joo K, Brooks BR, Lee J. The Atomistic Mechanism of Conformational Transition of Adenylate Kinase Investigated by Lorentzian Structure-Based Potential. J Chem Theory Comput 2015; 11:3211-24. [PMID: 26575758 DOI: 10.1021/acs.jctc.5b00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a new all-atom structure-based method to study protein conformational transitions using Lorentzian attractive interactions based on native structures. The variability of each native contact is estimated based on evolutionary information using a machine learning method. To test the validity of this approach, we have investigated the conformational transition of adenylate kinase (ADK). The intrinsic boundedness of the Lorentzian attractive interactions facilitated frequent conformational transitions, and consequently we were able to observe more than 1000 structural interconversions between the open and closed states of ADK out of a total of 6 μs MD simulations. ADK has three domains: the nucleoside monophosphate (NMP) binding domain, the LID-domain, and the CORE domain, which catalyze the interconversion between ATP and ADP. We identified two transition states: a more frequent LID-closed-NMP-open (TS1) state and a less frequent LID-open-NMP-closed (TS2) state. The transition was found to be symmetric in both directions via TS1. We also obtained an off-pathway metastable state that was previously observed with physics-based all-atom simulations but not with coarse-grained models. In the metastable state, the LID domain was slightly twisted and formed contacts with the NMP domain. Our model correctly identified a total of 14 out of the top 16 residues with highest fluctuation by NMR experiment, thus showing excellent agreement with experimental NMR relaxation data and overwhelmingly better results than existing models.
Collapse
Affiliation(s)
- Juyong Lee
- School of Computational Sciences, Korea Institute for Advanced Study , Dongdaemun-gu, Seoul 130-722, Korea.,Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20852, United States
| | - Keehyoung Joo
- Center for In Silico Protein Science, Korea Institute for Advanced Study , Dongdaemun-gu, Seoul 130-722, Korea.,Center for Advanced Computation, Korea Institute for Advanced Study , Dongdaemun-gu, Seoul 130-722, Korea
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20852, United States
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study , Dongdaemun-gu, Seoul 130-722, Korea.,Center for In Silico Protein Science, Korea Institute for Advanced Study , Dongdaemun-gu, Seoul 130-722, Korea
| |
Collapse
|
83
|
Ono J, Takada S, Saito S. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase. J Chem Phys 2015; 142:212404. [DOI: 10.1063/1.4914328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Junichi Ono
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Shoji Takada
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
84
|
Unan H, Yildirim A, Tekpinar M. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field. J Comput Aided Mol Des 2015; 29:655-65. [DOI: 10.1007/s10822-015-9849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022]
|
85
|
Wales DJ. Perspective: Insight into reaction coordinates and dynamics from the potential energy landscape. J Chem Phys 2015; 142:130901. [DOI: 10.1063/1.4916307] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
86
|
Yu Y, Wang J, Shao Q, Shi J, Zhu W. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation. J Chem Phys 2015; 142:125105. [PMID: 25833612 DOI: 10.1063/1.4916118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.
Collapse
Affiliation(s)
- Yuqi Yu
- ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jinan Wang
- ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qiang Shao
- ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jiye Shi
- UCB Pharma, 216 Bath Road, Slough SL1 4EN, United Kingdom
| | - Weiliang Zhu
- ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
87
|
Formoso E, Limongelli V, Parrinello M. Energetics and structural characterization of the large-scale functional motion of adenylate kinase. Sci Rep 2015; 5:8425. [PMID: 25672826 PMCID: PMC4325324 DOI: 10.1038/srep08425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.
Collapse
Affiliation(s)
- Elena Formoso
- 1] Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, via G. Buffi 13, CH-6900 Lugano, Switzerland [2] Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia, Euskadi, Spain
| | - Vittorio Limongelli
- 1] Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science, via G. Buffi 13, CH-6900 Lugano, Switzerland [2] Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I-80131 Naples, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, via G. Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
88
|
Ruvinsky AM, Vakser IA, Rivera M. Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins. J Chem Phys 2014; 140:115104. [PMID: 24655206 DOI: 10.1063/1.4868229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ferritin-like molecules show a remarkable combination of the evolutionary conserved activity of iron uptake and release that engage different pores in the conserved ferritin shell. It was hypothesized that pore selection and iron traffic depend on dynamic allostery with no conformational changes in the backbone. In this study, we detect the allosteric networks in Pseudomonas aeruginosa bacterioferritin (BfrB), bacterial ferritin (FtnA), and bullfrog M and L ferritins (Ftns) by a network-weaving algorithm (NWA) that passes threads of an allosteric network through highly correlated residues using hierarchical clustering. The residue-residue correlations are calculated in the packing-on elastic network model that introduces atom packing into the common packing-off model. Applying NWA revealed that each of the molecules has an extended allosteric network mostly buried inside the ferritin shell. The structure of the networks is consistent with experimental observations of iron transport: The allosteric networks in BfrB and FtnA connect the ferroxidase center with the 4-fold pores and B-pores, leaving the 3-fold pores unengaged. In contrast, the allosteric network directly links the 3-fold pores with the 4-fold pores in M and L Ftns. The majority of the network residues are either on the inner surface or buried inside the subunit fold or at the subunit interfaces. We hypothesize that the ferritin structures evolved in a way to limit the influence of functionally unrelated events in the cytoplasm on the allosteric network to maintain stability of the translocation mechanisms. We showed that the residue-residue correlations and the resultant long-range cooperativity depend on the ferritin shell packing, which, in turn, depends on protein sequence composition. Switching from the packing-on to the packing-off model reduces correlations by 35%-38% so that no allosteric network can be found. The influence of the side-chain packing on the allosteric networks explains the diversity in mechanisms of iron traffic suggested by experimental approaches.
Collapse
Affiliation(s)
- Anatoly M Ruvinsky
- Infection Innovative Medicine, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, USA
| | - Ilya A Vakser
- Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Mario Rivera
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
89
|
Gabba M, Poblete S, Rosenkranz T, Katranidis A, Kempe D, Züchner T, Winkler RG, Gompper G, Fitter J. Conformational state distributions and catalytically relevant dynamics of a hinge-bending enzyme studied by single-molecule FRET and a coarse-grained simulation. Biophys J 2014; 107:1913-1923. [PMID: 25418172 PMCID: PMC4213667 DOI: 10.1016/j.bpj.2014.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/20/2022] Open
Abstract
Over the last few decades, a view has emerged showing that multidomain enzymes are biological machines evolved to harness stochastic kicks of solvent particles into highly directional functional motions. These intrinsic motions are structurally encoded, and Nature makes use of them to catalyze chemical reactions by means of ligand-induced conformational changes and states redistribution. Such mechanisms align reactive groups for efficient chemistry and stabilize conformers most proficient for catalysis. By combining single-molecule Förster resonance energy transfer measurements with normal mode analysis and coarse-grained mesoscopic simulations, we obtained results for a hinge-bending enzyme, namely phosphoglycerate kinase (PGK), which support and extend these ideas. From single-molecule Förster resonance energy transfer, we obtained insight into the distribution of conformational states and the dynamical properties of the domains. The simulations allowed for the characterization of interdomain motions of a compact state of PGK. The data show that PGK is intrinsically a highly dynamic system sampling a wealth of conformations on timescales ranging from nanoseconds to milliseconds and above. Functional motions encoded in the fold are performed by the PGK domains already in its ligand-free form, and substrate binding is not required to enable them. Compared to other multidomain proteins, these motions are rather fast and presumably not rate-limiting in the enzymatic reaction. Ligand binding slightly readjusts the orientation of the domains and feasibly locks the protein motions along a preferential direction. In addition, the functionally relevant compact state is stabilized by the substrates, and acts as a prestate to reach active conformations by means of Brownian motions.
Collapse
Affiliation(s)
- Matteo Gabba
- Institute of Complex Systems (ICS-5) Molecular Biophysics, Forschungszentrum Jülich, Jülich, Germany.
| | - Simón Poblete
- Institute of Complex Systems (ICS-2): Theoretical Soft Matter and Biophysics, Forschungszentrum Jülich, Jülich, Germany
| | - Tobias Rosenkranz
- Institute of Complex Systems (ICS-5) Molecular Biophysics, Forschungszentrum Jülich, Jülich, Germany
| | - Alexandros Katranidis
- Institute of Complex Systems (ICS-5) Molecular Biophysics, Forschungszentrum Jülich, Jülich, Germany
| | - Daryan Kempe
- I. Physikalisches Institut (IA), Arbeitsgruppe Biophysik, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany
| | - Tina Züchner
- Institute of Complex Systems (ICS-5) Molecular Biophysics, Forschungszentrum Jülich, Jülich, Germany
| | - Roland G Winkler
- Institute of Complex Systems (ICS-2): Theoretical Soft Matter and Biophysics, Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Gompper
- Institute of Complex Systems (ICS-2): Theoretical Soft Matter and Biophysics, Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Fitter
- Institute of Complex Systems (ICS-5) Molecular Biophysics, Forschungszentrum Jülich, Jülich, Germany; I. Physikalisches Institut (IA), Arbeitsgruppe Biophysik, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany.
| |
Collapse
|
90
|
Sampoli Benítez B, Barbati ZR, Arora K, Bogdanovic J, Schlick T. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template. Biophys J 2014; 105:2559-68. [PMID: 24314086 DOI: 10.1016/j.bpj.2013.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/16/2022] Open
Abstract
The modified base 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxoG) is a common DNA adduct produced by the oxidation of DNA by reactive oxygen species. Kinetic data reveal that DNA polymerase X (pol X) from the African swine fever virus incorporates adenine (dATP) opposite to oxoG with higher efficiency than the non-damaged G:C basepair. To help interpret the kinetic data, we perform molecular dynamics simulations of pol X/DNA complexes, in which the template base opposite to the incoming dNTP (dCTP, dATP, dGTP) is oxoG. Our results suggest that pol X accommodates the oxoGsyn:A mispair by sampling closed active conformations that mirror those observed in traditional Watson-Crick complexes. Moreover, for both the oxoGsyn:A and oxoG:C ternary complexes, conformational sampling of the polymerase follows previously described large subdomain movements, local residue motions, and active site reorganization. Interestingly, the oxoGsyn:A system exhibits superior active site geometry in comparison to the oxoG:C system. Simulations for the other mismatch basepair complexes reveal large protein subdomain movement for all systems, except for oxoG:G, which samples conformations close to the open state. In addition, active site geometry and basepairing of the template base with the incoming nucleotide, reveal distortions and misalignments that range from moderate (i.e., oxoG:Asyn) to extreme (i.e., oxoGanti/syn:G). These results agree with the available kinetic data for pol X and provide structural insights regarding the mechanism by which this polymerase can accommodate incoming nucleotides opposite oxoG. Our simulations also support the notion that α-helix E is involved both in DNA binding and active site stabilization. Our proposed mechanism by which pol X can preferentially accommodate dATP opposite template oxoG further underscores the role that enzyme dynamics and conformational sampling operate in polymerase fidelity and function.
Collapse
|
91
|
Gu S, Silva DA, Meng L, Yue A, Huang X. Quantitatively characterizing the ligand binding mechanisms of choline binding protein using Markov state model analysis. PLoS Comput Biol 2014; 10:e1003767. [PMID: 25101697 PMCID: PMC4125059 DOI: 10.1371/journal.pcbi.1003767] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/22/2014] [Indexed: 01/05/2023] Open
Abstract
Protein-ligand recognition plays key roles in many biological processes. One of the most fascinating questions about protein-ligand recognition is to understand its underlying mechanism, which often results from a combination of induced fit and conformational selection. In this study, we have developed a three-pronged approach of Markov State Models, Molecular Dynamics simulations, and flux analysis to determine the contribution of each model. Using this approach, we have quantified the recognition mechanism of the choline binding protein (ChoX) to be ∼90% conformational selection dominant under experimental conditions. This is achieved by recovering all the necessary parameters for the flux analysis in combination with available experimental data. Our results also suggest that ChoX has several metastable conformational states, of which an apo-closed state is dominant, consistent with previous experimental findings. Our methodology holds great potential to be widely applied to understand recognition mechanisms underlining many fundamental biological processes.
Collapse
Affiliation(s)
- Shuo Gu
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Daniel-Adriano Silva
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Luming Meng
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Alexander Yue
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Biomedical Engineering, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|
92
|
Wang J, Peng S, Cossins BP, Liao X, Chen K, Shao Q, Zhu X, Shi J, Zhu W. Mapping central α-helix linker mediated conformational transition pathway of calmodulin via simple computational approach. J Phys Chem B 2014; 118:9677-85. [PMID: 25120210 DOI: 10.1021/jp507186h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of intrinsic structural flexibility of calmodulin protein on the mechanism of its allosteric conformational transition are investigated in this article. Using a novel in silico approach, the conformational transition pathways of intact calmodulin as well as the isolated N- and C- terminal domains are identified and energetically characterized. It is observed that the central α-helix linker amplifies the structural flexibility of intact Ca(2+)-free calmodulin, which might facilitate the transition of the two domains. As a result, the global conformational transition of Ca(2+)-free calmodulin is initiated by the barrierless transition of two domains and proceeds through the barrier associated unwinding and bending of the central α-helix linker. The binding of Ca(2+) cations to calmodulin further increases the structural flexibility of the C-terminal domain and results in a downhill transition pathway of which all regions transit in a concerted manner. On the other hand, the separation of the N- and C-terminal domains from calmodulin protein loses the mediating function of central α-helix linker, leading to more difficult conformational transitions of both domains. The present study provides novel insights into the correlation of the integrity of protein, the structural flexibility, and the mechanism of conformational transition of proteinlike calmodulin.
Collapse
Affiliation(s)
- Jinan Wang
- Drug Discovery and Design Center, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Esteban-Martín S, Fenwick RB, Ådén J, Cossins B, Bertoncini CW, Guallar V, Wolf-Watz M, Salvatella X. Correlated inter-domain motions in adenylate kinase. PLoS Comput Biol 2014; 10:e1003721. [PMID: 25078441 PMCID: PMC4117416 DOI: 10.1371/journal.pcbi.1003721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs) measured under steric alignment by nuclear magnetic resonance (NMR). We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.
Collapse
Affiliation(s)
- Santiago Esteban-Martín
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
- * E-mail: (SEM); (XS)
| | - Robert Bryn Fenwick
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
| | - Jörgen Ådén
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Benjamin Cossins
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
| | - Carlos W. Bertoncini
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats - ICREA, Barcelona, Spain
| | - Magnus Wolf-Watz
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Xavier Salvatella
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats - ICREA, Barcelona, Spain
- * E-mail: (SEM); (XS)
| |
Collapse
|
94
|
Chauvot de Beauchêne I, Allain A, Panel N, Laine E, Trouvé A, Dubreuil P, Tchertanov L. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLoS Comput Biol 2014; 10:e1003749. [PMID: 25079768 PMCID: PMC4117417 DOI: 10.1371/journal.pcbi.1003749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/12/2014] [Indexed: 12/03/2022] Open
Abstract
Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. Receptor tyrosine kinase KIT plays a crucial role in the regulation of cell signaling. This allosterically controlled activity may be affected by gain-of-function mutations that promote the development of several cancers. Identification of the molecular basis of KIT constitutive activation and allosteric regulation has inspired computational study of KIT hotspot mutations. In the present contribution, we investigated the mutation-induced effects on KIT conformational dynamics and intra-protein communication conditionally on the mutation location and the nature of the substituting amino acid. Our data elucidate that all studied mutations stabilize an inactive non-autoinhibited state of KIT over the inactive auto-inhibited state prevalent for the native protein. This shift in the protein conformational landscape promotes KIT constitutive activation. Our in silico analysis established correlations between the structural and dynamical effects induced by oncogenic mutations and the mutants auto-activation rates and drug sensitivities measured in vitro and in vivo. Particularly, the A-loop mutations stabilize the drug-resistant forms, while the JMR mutations may facilitate inhibitors binding to the active site. Cross-correlations established between local and long-range structural and dynamical effects demonstrate the allosteric character of the gain-of-function mutations mode of action.
Collapse
Affiliation(s)
- Isaure Chauvot de Beauchêne
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ariane Allain
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Nicolas Panel
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Alain Trouvé
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Patrice Dubreuil
- Inserm, U1068, Signaling, Hematopoiesis and Mechanism of Oncogenesis (CRCM); Institut Paoli-Calmettes; Aix-Marseille University; CNRS, UMR7258, Marseille, France
| | - Luba Tchertanov
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
95
|
|
96
|
Both protein dynamics and ligand concentration can shift the binding mechanism between conformational selection and induced fit. Proc Natl Acad Sci U S A 2014; 111:10197-202. [PMID: 24982141 DOI: 10.1073/pnas.1407545111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study aimed to shed light on the long debate over whether conformational selection (CS) or induced fit (IF) is the governing mechanism for protein-ligand binding. The main difference between the two scenarios is whether the conformational transition of the protein from the unbound form to the bound form occurs before or after encountering the ligand. Here we introduce the IF fraction (i.e., the fraction of binding events achieved via IF), to quantify the binding mechanism. Using simulations of a model protein-ligand system, we demonstrate that both the rate of the conformational transition and the concentration of ligand molecules can affect the IF fraction. CS dominates at slow conformational transition and low ligand concentration. An increase in either quantity results in a higher IF fraction. Despite the many-body nature of the system and the involvement of multiple, disparate types of dynamics (i.e., ligand diffusion, protein conformational transition, and binding reaction), the overall binding kinetics over wide ranges of parameters can be fit to a single exponential, with the apparent rate constant exhibiting a linear dependence on ligand concentration. The present study may guide future kinetics experiments and dynamics simulations in determining the IF fraction.
Collapse
|
97
|
Li Y, Li X, Ma W, Dong Z. Conformational Transition Pathways of Epidermal Growth Factor Receptor Kinase Domain from Multiple Molecular Dynamics Simulations and Bayesian Clustering. J Chem Theory Comput 2014; 10:3503-3511. [PMID: 25136273 PMCID: PMC4132868 DOI: 10.1021/ct500162b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 01/15/2023]
Abstract
![]()
The
epidermal growth factor receptor (EGFR) is aberrantly activated
in various cancer cells and an important target for cancer treatment.
Deep understanding of EGFR conformational changes between the active
and inactive states is of pharmaceutical interest. Here we present
a strategy combining multiply targeted molecular dynamics simulations,
unbiased molecular dynamics simulations, and Bayesian clustering to
investigate transition pathways during the activation/inactivation
process of EGFR kinase domain. Two distinct pathways between the active
and inactive forms are designed, explored, and compared. Based on
Bayesian clustering and rough two-dimensional free energy surfaces,
the energy-favorable pathway is recognized, though DFG-flip happens
in both pathways. In addition, another pathway with different intermediate
states appears in our simulations. Comparison of distinct pathways
also indicates that disruption of the Lys745-Glu762 interaction is
critically important in DFG-flip while movement of the A-loop significantly
facilitates the conformational change. Our simulations yield new insights
into EGFR conformational transitions. Moreover, our results verify
that this approach is valid and efficient in sampling of protein conformational
changes and comparison of distinct pathways.
Collapse
Affiliation(s)
- Yan Li
- The Hormel Institute, University of Minnesota , Austin, Minnesota 55912, United States
| | - Xiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Zhengzhou University , 450001 Zhengzhou, Henan, China
| | - Weiya Ma
- The Hormel Institute, University of Minnesota , Austin, Minnesota 55912, United States
| | - Zigang Dong
- The Hormel Institute, University of Minnesota , Austin, Minnesota 55912, United States
| |
Collapse
|
98
|
Seyler SL, Beckstein O. Sampling large conformational transitions: adenylate kinase as a testing ground. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.919497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
99
|
RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis. PLoS Biol 2014; 12:e1001860. [PMID: 24823650 PMCID: PMC4019466 DOI: 10.1371/journal.pbio.1001860] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/04/2014] [Indexed: 11/22/2022] Open
Abstract
The structure of a ribosome assembly factor in complex bound to a ribosomal protein uncovers a chaperoning function that uses RNA mimicry and is regulated by ATP hydrolysis. During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53–MDM2 pathway. This work presents the functional and structural characterization of the Fap7–Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation. Ribosomes are the cellular machines responsible for all protein synthesis. In eukaryotes, the assembly of ribosomes from their protein and RNA components is extremely complicated and involves more than 200 nonribosomal factors—three times the number of proteins in the mature complex. Among these factors, the Fap7 protein is particularly intriguing because it interacts with the small subunit ribosomal protein Rps14 and it exhibits adenylate kinase activity—a molecular function more commonly associated with regulating ATP/ADP levels than assembling protein–RNA complexes. Combining structural and biochemical analysis of the Rps14–Fap7 complex, we show that Fap7 uses protein side chains to mimic RNA contacts, rendering the interaction of Rps14 with ribosomal RNA or with Fap7 competitive and mutually exclusive. Once bound, Rps14 blocks the substrate-binding cavity of Fap7, and ATP hydrolysis will then break the Fap7–Rps14 complex apart. At the same time, the ribosome structure at the location where Rps14 binds is disrupted when the Fap7/Rps14 complex is formed, and this process is regulated by ATP binding and hydrolysis. Our model is thus that Fap7 temporarily removes Rps14 from the ribosome to enable a conformational change of the ribosomal RNA that is needed for the final maturation step of the small ribosomal subunit.
Collapse
|
100
|
Gur M, Madura JD, Bahar I. Global transitions of proteins explored by a multiscale hybrid methodology: application to adenylate kinase. Biophys J 2014; 105:1643-52. [PMID: 24094405 DOI: 10.1016/j.bpj.2013.07.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/19/2022] Open
Abstract
Efficient and accurate mapping of transition pathways is a challenging problem in allosteric proteins. We propose here a to our knowledge new methodology called collective molecular dynamics (coMD). coMD takes advantage of the collective modes of motions encoded by the fold, simultaneously evaluating the interactions and energetics via a full-atomic MD simulation protocol. The basic approach is to deform the structure collectively along the modes predicted by the anisotropic network model, upon selecting them via a Monte Carlo/Metropolis algorithm from among the complete pool of all accessible modes. Application to adenylate kinase, an allosteric enzyme composed of three domains, CORE, LID, and NMP, shows that both open-to-closed and closed-to-open transitions are readily sampled by coMD, with large-scale motions of the LID dominating. An energy-barrier crossing occurs during the NMP movements. The energy barrier originates from a switch between the salt bridges K136-D118 at the LID-CORE interface and K57-E170 and D33-R156 at the CORE-NMP and LID-NMP interfaces, respectively. Despite its simplicity and computing efficiency, coMD yields ensembles of transition pathways in close accord with detailed full atomic simulations, lending support to its utility as a multiscale hybrid method for efficiently exploring the allosteric transitions of multidomain or multimeric proteins.
Collapse
Affiliation(s)
- Mert Gur
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|