51
|
Mathews AS, Yang H, Montemagno C. Photo-cleavable nucleotides for primer free enzyme mediated DNA synthesis. Org Biomol Chem 2016; 14:8278-88. [PMID: 27527494 DOI: 10.1039/c6ob01371f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, characterization and potential application of eight 3'-O modified 2'-deoxyribonucleoside triphosphates (dNTPs) are discussed. These nucleotide analogues are modified by capping the 3'-OH with a photolabile protecting group which can temporarily cease DNA strand growth and can smoothly reinitiate the growth by the photodecomposition of the protecting group and setting the 3'-OH of dNTPs free to propagate. The synthesis of 3'-O-(2-nitrobenzyl)-2'-deoxyribonucleoside triphosphates (NB-dNTPs) and 3'-O-(4,5-dimethoxy-2-nitrobenzyl)-2'-deoxyribonucleoside triphosphates (DMNB-dNTPs) is discussed in detail with structural confirmation using NMR. The UV-cleaving studies are monitored and quantified using LCMS and (1)H NMR spectral traces. The synthesised nucleotides are employed for terminating and reinitiating template-less DNA synthesis, using primer independent Terminal Deoxynucleotidyl Transferase (TdT) enzyme. The use of this photolabile nucleotide in one step stop-start DNA synthesis is a novel strategy towards the precise assembly of dNTPs with the potential to reinforce present technologies.
Collapse
Affiliation(s)
- Anu Stella Mathews
- Ingenuity Lab, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 3M9, Canada.
| | | | | |
Collapse
|
52
|
Kölmel DK, Barandun LJ, Kool ET. Efficient synthesis of fluorescent alkynyl C-nucleosides via Sonogashira coupling for the preparation of DNA-based polyfluorophores. Org Biomol Chem 2016; 14:6407-12. [PMID: 27296353 PMCID: PMC4935563 DOI: 10.1039/c6ob01199c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and general procedure for the preparation of alkynyl C-nucleosides with varied fluorophores is presented. Sonogashira coupling was used as a key reaction to conjugate the dyes to an easily accessible ethynyl functionalized deoxyribose derivative. The new C-nucleosides were used for the preparation of DNA-based polyfluorophores.
Collapse
Affiliation(s)
- Dominik K Kölmel
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | - Luzi J Barandun
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
53
|
Gade CR, Dixit M, Sharma NK. Dideoxy nucleoside triphosphate (ddNTP) analogues: Synthesis and polymerase substrate activities of pyrrolidinyl nucleoside triphosphates (prNTPs). Bioorg Med Chem 2016; 24:4016-4022. [PMID: 27377861 DOI: 10.1016/j.bmc.2016.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
Abstract
The dideoxynucleoside triphosphates (ddNTPs) terminate the bio-polymerization of DNA and become essential chemical component of DNA sequencing technology which is now basic tool for molecular biology research. In this method the radiolabeled or fluorescent dye labeled ddNTP analogues are being used for DNA sequencing by detection of the terminated DNA fragment after single labeled ddNTP incorporation into DNA under PCR conditions. This report describes the syntheses of rationally designed novel amino-functionalized ddNTP analogue such as Pyrrolidine nucleoside triphosphates (prNTPs), and their polymerase activities with DNA polymerase by LC-MS and Gel-electrophoretic techniques. The Mass and PAGE analyses strongly support the incorporation of prNTPs into DNA oligonucleotide with Therminator DNA polymerase as like control substrate ddNTP. As resultant the DNA oligonucleotide are functionalized as amine group by prNTP incorporation with polymerase. Hence prNTPs provide opportunities to prepare demandable conjugated DNA with other biomolecules/dyes/fluorescence molecule without modifying nucleobase structure.
Collapse
Affiliation(s)
- Chandrasekhar Reddy Gade
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Jatni 752050, Odisha, India
| | - Manjusha Dixit
- School of Biological Sciences, NISER, Bhubaneswar, Jatni 752050, Odisha, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Jatni 752050, Odisha, India.
| |
Collapse
|
54
|
Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proc Natl Acad Sci U S A 2016; 113:5233-8. [PMID: 27091962 DOI: 10.1073/pnas.1601782113] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.
Collapse
|
55
|
Li J, Batcha AMN, Grüning B, Mansmann UR. An NGS Workflow Blueprint for DNA Sequencing Data and Its Application in Individualized Molecular Oncology. Cancer Inform 2016; 14:87-107. [PMID: 27081306 PMCID: PMC4827795 DOI: 10.4137/cin.s30793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing (NGS) technologies that have advanced rapidly in the past few years possess the potential to classify diseases, decipher the molecular code of related cell processes, identify targets for decision-making on targeted therapy or prevention strategies, and predict clinical treatment response. Thus, NGS is on its way to revolutionize oncology. With the help of NGS, we can draw a finer map for the genetic basis of diseases and can improve our understanding of diagnostic and prognostic applications and therapeutic methods. Despite these advantages and its potential, NGS is facing several critical challenges, including reduction of sequencing cost, enhancement of sequencing quality, improvement of technical simplicity and reliability, and development of semiautomated and integrated analysis workflow. In order to address these challenges, we conducted a literature research and summarized a four-stage NGS workflow for providing a systematic review on NGS-based analysis, explaining the strength and weakness of diverse NGS-based software tools, and elucidating its potential connection to individualized medicine. By presenting this four-stage NGS workflow, we try to provide a minimal structural layout required for NGS data storage and reproducibility.
Collapse
Affiliation(s)
- Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig Maximilian University of Munich, Munich, Germany.; German Cancer Consortium (DKTK), Heidelberg, Germany.; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aarif Mohamed Nazeer Batcha
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig Maximilian University of Munich, Munich, Germany.; German Cancer Consortium (DKTK), Heidelberg, Germany.; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University, Freiburg, Freiburg, Germany.; Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| | - Ulrich R Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig Maximilian University of Munich, Munich, Germany.; German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
56
|
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc Chem Res 2016; 49:418-27. [PMID: 26947566 DOI: 10.1021/acs.accounts.5b00544] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA polymerase-catalyzed incorporation of modified nucleotides is employed in many biological technologies of prime importance, such as next-generation sequencing, nucleic acid-based diagnostics, transcription analysis, and aptamer selection by systematic enrichment of ligands by exponential amplification (SELEX). Recent studies have shown that 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with modifications at the nucleobase such as dyes, affinity tags, spin and redox labels, or even oligonucleotides are substrates for DNA polymerases, even if modifications of high steric demand are used. The position at which the modification is introduced in the nucleotide has been identified as crucial for retaining substrate activity for DNA polymerases. Modifications are usually attached at the C5 position of pyrimidines and the C7 position of 7-deazapurines. Furthermore, it has been shown that the nature of the modification may impact the efficiency of incorporation of a modified nucleotide into the nascent DNA strand by a DNA polymerase. This Account places functional data obtained in studies of the incorporation of modified nucleotides by DNA polymerases in the context of recently obtained structural data. Crystal structure analysis of a Thermus aquaticus (Taq) DNA polymerase variant (namely, KlenTaq DNA polymerase) in ternary complex with primer-template DNA and several modified nucleotides provided the first structural insights into how nucleobase-modified triphosphates are tolerated. We found that bulky modifications are processed by KlenTaq DNA polymerase as a result of cavities in the protein that enable the modification to extend outside the active site. In addition, we found that the enzyme is able to adapt to different modifications in a flexible manner and adopts different amino acid side-chain conformations at the active site depending on the nature of the nucleotide modification. Different "strategies" (i.e., hydrogen bonding, cation-π interactions) enable the protein to stabilize the respective protein-substrate complex without significantly changing the overall structure of the complex. Interestingly, it was also discovered that a modified nucleotide may be more efficiently processed by KlenTaq DNA polymerase when the 3'-primer terminus is also a modified nucleotide instead of a nonmodified natural one. Indeed, the modifications of two modified nucleotides at adjacent positions can interact with each other (i.e., by π-π interactions) and thereby stabilize the enzyme-substrate complex, resulting in more efficient transformation. Several studies have indicated that archeal DNA polymerases belonging to sequence family B are better suited for the incorporation of nucleobase-modified nucleotides than enzymes from family A. However, significantly less structural data are available for family B DNA polymerases. In order to gain insights into the preference for modified substrates by members of family B, we succeeded in obtaining binary structures of 9°N and KOD DNA polymerases bound to primer-template DNA. We found that the major groove of the archeal family B DNA polymerases is better accessible than in family A DNA polymerases. This might explain the observed superiority of family B DNA polymerases in polymerizing nucleotides that bear bulky modifications located in the major groove, such as modification at C5 of pyrimidines and C7 of 7-deazapurines. Overall, this Account summarizes our recent findings providing structural insight into the mechanism by which modified nucleotides are processed by DNA polymerases. It provides guidelines for the design of modified nucleotides, thus supporting future efforts based on the acceptance of modified nucleotides by DNA polymerases.
Collapse
Affiliation(s)
- Audrey Hottin
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
57
|
Kuznetsova VE, Spitsyn MA, Shershov VE, Guseinov TO, Fesenko EE, Lapa SA, Ikonnikova AY, Avdonina MA, Nasedkina TV, Zasedatelev AS, Chudinov AV. Novel fluorescently labeled nucleotides: synthesis, spectral properties and application in polymerase chain reaction. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
58
|
Tan L, Liu Y, Li X, Wu XY, Gong B, Shen YM, Shao Z. Synthesis and evaluations of an acid-cleavable, fluorescently labeled nucleotide as a reversible terminator for DNA sequencing. Chem Commun (Camb) 2016; 52:2549-52. [PMID: 26744748 DOI: 10.1039/c5cc09578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An acid-cleavable linker based on a dimethylketal moiety was synthesized and used to connect a nucleotide with a fluorophore to produce a 3'-OH unblocked nucleotide analogue as an excellent reversible terminator for DNA sequencing by synthesis.
Collapse
Affiliation(s)
- Lianjiang Tan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | | | |
Collapse
|
59
|
Cozens C, Mutschler H, Nelson GM, Houlihan G, Taylor AI, Holliger P. Enzymatische Synthese von Nukleinsäuren mit definierten regioisomeren 2′-5′-Verknüpfungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
60
|
Cozens C, Mutschler H, Nelson GM, Houlihan G, Taylor AI, Holliger P. Enzymatic Synthesis of Nucleic Acids with Defined Regioisomeric 2'-5' Linkages. Angew Chem Int Ed Engl 2015; 54:15570-3. [PMID: 26527364 PMCID: PMC4736440 DOI: 10.1002/anie.201508678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 11/20/2022]
Abstract
Information‐bearing nucleic acids display universal 3′‐5′ linkages, but regioisomeric 2′‐5′ linkages occur sporadically in non‐enzymatic RNA synthesis and may have aided prebiotic RNA replication. Herein we report on the enzymatic synthesis of both DNA and RNA with site‐specific 2′‐5′ linkages by an engineered polymerase using 3′‐deoxy‐ or 3′‐O‐methyl‐NTPs as substrates. We also report the reverse transcription of the resulting modified nucleic acids back to 3′‐5′ linked DNA with good fidelity. This enables a fast and simple method for “structural mutagenesis” by the position‐selective incorporation of 2′‐5′ linkages, whereby nucleic acid structure and function may be probed through local distortion by regioisomeric linkages while maintaining the wild‐type base sequence as we demonstrate for the 10–23 RNA endonuclease DNAzyme.
Collapse
Affiliation(s)
- Christopher Cozens
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| | - Hannes Mutschler
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| | - Geoffrey M Nelson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| | - Gillian Houlihan
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| | - Alexander I Taylor
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK).
| |
Collapse
|
61
|
Abstract
The human genome sequence has profoundly altered our understanding of biology, human diversity, and disease. The path from the first draft sequence to our nascent era of personal genomes and genomic medicine has been made possible only because of the extraordinary advancements in DNA sequencing technologies over the past 10 years. Here, we discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them, as well as the challenges facing current sequencing platforms and their clinical application.
Collapse
Affiliation(s)
- Jason A Reuter
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Damek V Spacek
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
62
|
Chen Z, Duan H, Qiao S, Zhou W, Qiu H, Kang L, Xie XS, Huang Y. Fluorogenic sequencing using halogen-fluorescein-labeled nucleotides. Chembiochem 2015; 16:1153-7. [PMID: 25846104 DOI: 10.1002/cbic.201500117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/23/2023]
Abstract
Fluorogenic sequencing is a sequencing-by-synthesis technology that combines the advantages of pyrosequencing and fluorescence detection. With native duplex DNA as the major product, we employ polymerase to incorporate the complement- arily matched terminal phosphate-labeled fluorogenic nucleotides into the DNA template and release halogen-fluorescein as the reporter. This red-emitting fluorophore successfully avoids spectral overlap with the autofluorescence background of the flow chip. We fully characterized the enzymatic reaction kinetics of the new substrates, and performed a 35-base sequencing experiment with 60 reaction cycles. Our achievement expands the substrate repertoire for fluorogenic sequencing, and extends the spectral range to obtain better signal-to-background performance.
Collapse
Affiliation(s)
- Zitian Chen
- College of Engineering, Peking University, Beijing 100871 (China) http://www.gene.pku.edu.cn.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Haifeng Duan
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China).
| | - Shuo Qiao
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Wenxiong Zhou
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Haiwei Qiu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - Li Kang
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China)
| | - X Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China).,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (USA)
| | - Yanyi Huang
- College of Engineering, Peking University, Beijing 100871 (China) http://www.gene.pku.edu.cn. .,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871 (China).
| |
Collapse
|
63
|
Abstract
The "$1000 Genome" project has been drawing increasing attention since its launch a decade ago. Nanopore sequencing, the third-generation, is believed to be one of the most promising sequencing technologies to reach four gold standards set for the "$1000 Genome" while the second-generation sequencing technologies are bringing about a revolution in life sciences, particularly in genome sequencing-based personalized medicine. Both of protein and solid-state nanopores have been extensively investigated for a series of issues, from detection of ionic current blockage to field-effect-transistor (FET) sensors. A newly released protein nanopore sequencer has shown encouraging potential that nanopore sequencing will ultimately fulfill the gold standards. In this review, we address advances, challenges, and possible solutions of nanopore sequencing according to these standards.
Collapse
Affiliation(s)
- Yue Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Qiuping Yang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Zhimin Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
64
|
Anandhakumar C, Kizaki S, Bando T, Pandian GN, Sugiyama H. Advancing Small-Molecule-Based Chemical Biology with Next-Generation Sequencing Technologies. Chembiochem 2014; 16:20-38. [DOI: 10.1002/cbic.201402556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/24/2022]
|
65
|
Abstract
High-throughput sequencing (HTS) methods for analyzing RNA populations (RNA-Seq) are gaining rapid application to many experimental situations. The steps in an RNA-Seq experiment require thought and planning, especially because the expense in time and materials is currently higher and the protocols are far less routine than those used for other high-throughput methods, such as microarrays. As always, good experimental design will make analysis and interpretation easier. Having a clear biological question, an idea about the best way to do the experiment, and an understanding of the number of replicates needed will make the entire process more satisfying. Whether the goal is capturing transcriptome complexity from a tissue or identifying small fragments of RNA cross-linked to a protein of interest, conversion of the RNA to cDNA followed by direct sequencing using the latest methods is a developing practice, with new technical modifications and applications appearing every day. Even more rapid are the development and improvement of methods for analysis of the very large amounts of data that arrive at the end of an RNA-Seq experiment, making considerations regarding reproducibility, validation, visualization, and interpretation increasingly important. This introduction is designed to review and emphasize a pathway of analysis from experimental design through data presentation that is likely to be successful, with the recognition that better methods are right around the corner.
Collapse
|
66
|
Abstract
The demand for rapid and accurate diagnosis of plant diseases has risen in the last decade. On-site diagnosis of single or multiple pathogens using portable devices is the first step in this endeavour. Despite extensive attempts to develop portable devices for pathogen detection, current technologies are still restricted to detecting known pathogens with limited detection accuracy. Developing new detection techniques for rapid and accurate detection of multiple plant pathogens and their associated variants is essential. Recent single DNA sequencing technologies are a promising new avenue for developing future portable devices for plant pathogen detection. In this review, we detail the current progress in portable devices and technologies used for detecting plant pathogens, the current position of emerging sequencing technologies for analysis of plant genomics, and the future of portable devices for rapid pathogen diagnosis.
Collapse
Affiliation(s)
- Amir Sanati Nezhad
- McGill University and Genome Quebec Innovation Centre, Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
67
|
Chen CY. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 2014; 5:305. [PMID: 25009536 PMCID: PMC4068291 DOI: 10.3389/fmicb.2014.00305] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.
Collapse
|
68
|
De S, Groaz E, Herdewijn P. Tailoring Peptide-Nucleotide Conjugates (PNCs) for Nucleotide Delivery in Bacterial Cells. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
69
|
Palla M, Guo W, Shi S, Li Z, Wu J, Jockusch S, Guo C, Russo JJ, Turro NJ, Ju J. DNA sequencing by synthesis using 3'- O-azidomethyl nucleotide reversible terminators and surface-enhanced Raman spectroscopic detection. RSC Adv 2014; 4:49342-49346. [PMID: 25396047 DOI: 10.1039/c4ra08398a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As an alternative to fluorescence-based DNA sequencing by synthesis (SBS), we report here an approach using an azido moiety (N3) that has an intense, narrow and unique Raman shift at 2125 cm-1, where virtually all biological molecules are transparent, as a label for SBS. We first demonstrated that the four 3'-O-azidomethyl nucleotide reversible terminators (3'-O-azidomethyl-dNTPs) displayed surface enhanced Raman scattering (SERS) at 2125 cm-1. Using these 4 nucleotide analogues as substrates, we then performed a complete 4-step SBS reaction. We used SERS to monitor the appearance of the azide-specific Raman peak at 2125 cm-1 as a result of polymerase extension by a single 3'-O-azidomethyl-dNTP into the growing DNA strand and disappearance of this Raman peak with cleavage of the azido label to permit the next nucleotide incorporation, thereby continuously determining the DNA sequence. Due to the small size of the azido label, the 3'-O-azidomethyl-dNTPs are efficient substrates for the DNA polymerase. In the SBS cycles, the natural nucleotides are restored after each incorporation and cleavage, producing a growing DNA strand that bears no modifications and will not impede further polymerase reactions. Thus, with further improvements in SERS for the azido moiety, this approach has the potential to provide an attractive alternative to fluorescence-based SBS.
Collapse
Affiliation(s)
- Mirkó Palla
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Mechanical Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Wenjing Guo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Chemical Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Shundi Shi
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Chemical Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Zengmin Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Chemical Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Jian Wu
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Cheng Guo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Chemical Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Chemical Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Nicholas J Turro
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Chemical Engineering, Columbia University, 3000 Broadway, New York, NY 10027, USA ; Department of Pharmacology, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
70
|
Obeid S, Bußkamp H, Welte W, Diederichs K, Marx A. Snapshot of a DNA polymerase while incorporating two consecutive C5-modified nucleotides. J Am Chem Soc 2013; 135:15667-9. [PMID: 24090271 DOI: 10.1021/ja405346s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional nucleotides are important in many cutting-edge biomolecular techniques. Often several modified nucleotides have to be incorporated consecutively. This structural study of KlenTaq DNA polymerase, a truncated form of Thermus aquaticus DNA polymerase, gives first insights how multiple modifications are processed by a DNA polymerase and, therefore, contribute to the understanding of these enzymes in their interplay with artificial substrates.
Collapse
Affiliation(s)
- Samra Obeid
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz , Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
71
|
Chen F, Dong M, Ge M, Zhu L, Ren L, Liu G, Mu R. The history and advances of reversible terminators used in new generations of sequencing technology. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:34-40. [PMID: 23414612 PMCID: PMC4357665 DOI: 10.1016/j.gpb.2013.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 02/06/2023]
Abstract
DNA sequencing using reversible terminators, as one sequencing by synthesis strategy, has garnered a great deal of interest due to its popular application in the second-generation high-throughput DNA sequencing technology. In this review, we provided its history of development, classification, and working mechanism of this technology. We also outlined the screening strategies for DNA polymerases to accommodate the reversible terminators as substrates during polymerization; particularly, we introduced the "REAP" method developed by us. At the end of this review, we discussed current limitations of this approach and provided potential solutions to extend its application.
Collapse
Affiliation(s)
- Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | |
Collapse
|
72
|
Deshayes S, Divita G. Fluorescence technologies for monitoring interactions between biological molecules in vitro. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:109-43. [PMID: 23244790 DOI: 10.1016/b978-0-12-386932-6.00004-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last two centuries, the discovery and understanding of the principle of fluorescence have provided new means of characterizing physical/biological/chemical processes in a noninvasive manner. Fluorescence spectroscopy has become one of the most powerful and widely applied methods in the life sciences, from fundamental research to clinical applications. In vitro, fluorescence approaches offer the potential to sense in real-time extra and intracellular molecular interactions and enzymatic reactions, which constitutes a major advantage over other approaches to the study of biomolecular interactions. This technology has been used for the characterization of protein/protein, protein/nucleic acid, protein/substrate, and biomembrane/biomolecule interactions, which play crucial roles in the regulation of cellular pathways. This chapter reviews the different fluorescence strategies that have been developed for sensing molecular interactions in vitro at both steady- and pre-steady-state levels.
Collapse
Affiliation(s)
- Sebastien Deshayes
- Centre de Recherches de Biochimie Macromoléculaire, Department of Chemical Biology and Nanotechnology for Therapeutics, CRBM-CNRS, UMR-5237, UM1-UM2, University of Montpellier, 1919 Route de Mende, Montpellier, France
| | | |
Collapse
|
73
|
Efficient method for the synthesis of dideoxyuridine-5′-triphosphate fluorescent derivative. Russ Chem Bull 2012. [DOI: 10.1007/s11172-012-0059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
74
|
Kaiser A, Spies S, Lommel T, Richert C. Template-Directed Synthesis in 3′- and 5′-Direction with Reversible Termination. Angew Chem Int Ed Engl 2012; 51:8299-303. [DOI: 10.1002/anie.201203859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Indexed: 01/21/2023]
|
75
|
Kaiser A, Spies S, Lommel T, Richert C. Template-Directed Synthesis in 3′- and 5′-Direction with Reversible Termination. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
76
|
Obeid S, Busskamp H, Welte W, Diederichs K, Marx A. Interactions of non-polar and "Click-able" nucleotides in the confines of a DNA polymerase active site. Chem Commun (Camb) 2012; 48:8320-2. [PMID: 22766607 DOI: 10.1039/c2cc34181f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modified nucleotides play a paramount role in many cutting-edge biomolecular techniques. The present structural study highlights the plasticity and flexibility of the active site of a DNA polymerase while incorporating non-polar "Click-able" nucleotide analogs and emphasizes new insights into rational design guidelines for modified nucleotides.
Collapse
Affiliation(s)
- Samra Obeid
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
77
|
Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Nucleic Acids Res 2012; 40:7404-15. [PMID: 22570423 PMCID: PMC3424534 DOI: 10.1093/nar/gks330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.
Collapse
|
78
|
Qiu C, Kumar S, Guo J, Yu L, Guo W, Shi S, Russo JJ, Ju J. Design and synthesis of cleavable biotinylated dideoxynucleotides for DNA sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 2012; 427:193-201. [PMID: 22543091 DOI: 10.1016/j.ab.2012.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/17/2012] [Indexed: 01/03/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based methods have been widely explored for DNA sequencing. We report here the design, synthesis, and evaluation of a novel set of chemically cleavable biotinylated dideoxynucleotides, ddNTPs-N₃-biotin, for the DNA polymerase extension reaction and its application in DNA sequencing by mass spectrometry (MS). These nucleotide analogs have a biotin moiety attached to the 5 position of the pyrimidines (C and U) or the 7 position of the purines (A and G) via a chemically cleavable azido-based linker, with different length linker arms serving as mass tags that contribute to large mass differences among the nucleotides. We demonstrate that these modified nucleotides are efficiently incorporated by DNA polymerase, and the DNA strand bearing biotinylated nucleotides is captured by streptavidin-coated beads and efficiently released using tris(2-carboxyethyl)phosphine in aqueous solution, which is compatible with DNA and downstream procedures. We performed Sanger sequencing reactions using these nucleotides to generate DNA fragments for MALDI-TOF MS analysis. Both synthetic DNA and polymerase chain reaction (PCR) products were accurately decoded, and a read length of approximately 37 bases was achieved using these nucleotides in MS sequencing.
Collapse
Affiliation(s)
- Chunmei Qiu
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Bergen K, Steck AL, Strütt S, Baccaro A, Welte W, Diederichs K, Marx A. Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. J Am Chem Soc 2012; 134:11840-3. [PMID: 22475415 DOI: 10.1021/ja3017889] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The capability of DNA polymerases to accept chemically modified nucleotides is of paramount importance for many biotechnological applications. Although these analogues are widely used, the structural basis for the acceptance of the unnatural nucleotide surrogates has been only sparsely explored. Here we present in total six crystal structures of modified 2'-deoxynucleoside-5'-O-triphosphates (dNTPs) carrying modifications at the C5 positions of pyrimidines or C7 positions of 7-deazapurines in complex with a DNA polymerase and a primer/template complex. The modified dNTPs are in positions poised for catalysis leading to incorporation. These structural data provide insight into the mechanism of incorporation and acceptance of modified dNTPs. Our results open the door for rational design of modified nucleotides, which should offer great opportunities for future applications.
Collapse
Affiliation(s)
- Konrad Bergen
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Guo J, Ju J, Turro NJ. Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 2012; 402:3115-25. [PMID: 22086400 PMCID: PMC6609299 DOI: 10.1007/s00216-011-5526-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/19/2011] [Indexed: 01/09/2023]
Abstract
Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.
Collapse
Affiliation(s)
- Jia Guo
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
81
|
Egan AN, Schlueter J, Spooner DM. Applications of next-generation sequencing in plant biology. AMERICAN JOURNAL OF BOTANY 2012; 99:175-85. [PMID: 22312116 DOI: 10.3732/ajb.1200020] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The last several years have seen revolutionary advances in DNA sequencing technologies with the advent of next-generation sequencing (NGS) techniques. NGS methods now allow millions of bases to be sequenced in one round, at a fraction of the cost relative to traditional Sanger sequencing. As costs and capabilities of these technologies continue to improve, we are only beginning to see the possibilities of NGS platforms, which are developing in parallel with online availability of a wide range of biological data sets and scientific publications and allowing us to address a variety of questions not possible before. As techniques and data sets continue to improve and grow, we are rapidly moving to the point where every organism, not just select "model organisms", is open to the power of NGS. This volume presents a brief synopsis of NGS technologies and the development of exemplary applications of such methods in the fields of molecular marker development, hybridization and introgression, transcriptome investigations, phylogenetic and ecological studies, polyploid genetics, and applications for large genebank collections.
Collapse
Affiliation(s)
- Ashley N Egan
- East Carolina University, Department of Biology, Howell Science Complex N303a, Mailstop 551, Greenville, North Carolina 27858, USA.
| | | | | |
Collapse
|
82
|
Stupi BP, Li H, Wang J, Wu W, Morris SE, Litosh VA, Muniz J, Hersh MN, Metzker ML. Stereochemistry of benzylic carbon substitution coupled with ring modification of 2-nitrobenzyl groups as key determinants for fast-cleaving reversible terminators. Angew Chem Int Ed Engl 2012; 51:1724-7. [PMID: 22231919 PMCID: PMC3326374 DOI: 10.1002/anie.201106516] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 01/20/2023]
|
83
|
Stupi BP, Li H, Wang J, Wu W, Morris SE, Litosh VA, Muniz J, Hersh MN, Metzker ML. Stereochemischer Verlauf einer Benzyl-Kohlenstoff-Substitution kombiniert mit Ringmodifikation der 2-Nitrobenzylgruppen als Schlüsselfaktoren für schnell spaltende, reversible Terminatoren. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201106516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
84
|
Ethanol-tolerant gene identification in Clostridium thermocellum using pyro-resequencing for metabolic engineering. Methods Mol Biol 2012; 834:111-36. [PMID: 22144357 DOI: 10.1007/978-1-61779-483-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Classic strain development that combines random mutagenesis and selection has a long history of success in generation of biocatalysts with industrially designed traits. However, the genetic loci contributing to the phenotypic strain changes are difficult to identify prior to genome sequencing technology advancement. In this chapter, we present the approach using Roche 454 next-generation pyro-resequencing to identify the genotypic changes such as single nucleotide polymorphisms (SNP) associated with an ethanol-tolerant strain of Clostridium thermocellum. The parameters used to filter the pyro-resequencing output for SNP identification are also discussed. These can help researchers to identify the genotypic change of other biocatalysts for strain improvement through metabolic engineering.
Collapse
|
85
|
Riedl J, Pohl R, Rulíšek L, Hocek M. Synthesis and photophysical properties of biaryl-substituted nucleos(t)ides. Polymerase synthesis of DNA probes bearing solvatochromic and pH-sensitive dual fluorescent and 19F NMR labels. J Org Chem 2011; 77:1026-44. [PMID: 22148188 DOI: 10.1021/jo202321g] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design of four new fluorinated biaryl fluorescent labels and their attachment to nucleosides and nucleoside triphosphates (dNTPs) by the aqueous cross-coupling reactions of biarylboronates is reported. The modified dNTPs were good substrates for KOD XL polymerase and were enzymatically incorporated into DNA probes. The photophysical properties of the biaryl-modified nucleosides, dNTPs, and DNA were studied systematically. The different substitution pattern of the biaryls was used for tuning of emission maxima in the broad range of 366-565 nm. Using methods of computational chemistry the emission maxima were reproduced with a satisfactory degree of accuracy, and it was shown that the large solvatochromic shifts observed for the studied probes are proportional to the differences in dipole moments of the ground (S(0)) and excited (S(1)) states that add on top of smaller shifts predicted already for these systems in vacuo. Thus, we present a set of compounds that may serve as multipurpose base-discriminating fluorophores for sensing of hairpins, deletions, and mismatches by the change of emission maxima and intensities of fluorescence and that can be also conviently studied by (19)F NMR spectroscopy. In addition, aminobenzoxazolyl-fluorophenyl-labeled nucleotides and DNA also exert dual pH-sensitive and solvatochromic fluorescence, which may imply diverse applications.
Collapse
Affiliation(s)
- Jan Riedl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
86
|
Hutter D, Kim MJ, Karalkar N, Leal NA, Chen F, Guggenheim E, Visalakshi V, Olejnik J, Gordon S, Benner SA. Labeled nucleoside triphosphates with reversibly terminating aminoalkoxyl groups. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 29:879-95. [PMID: 21128174 DOI: 10.1080/15257770.2010.536191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleoside triphosphates having a 3'-ONH₂ blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3'-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3'-ONH₂ group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3'-ONH₂ blocking group in "next generation sequencing."
Collapse
Affiliation(s)
- Daniel Hutter
- Foundation for Applied Molecular Evolution, Gainesville, FL 32604, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Knapp DC, Serva S, D'Onofrio J, Keller A, Lubys A, Kurg A, Remm M, Engels JW. Fluoride-cleavable, fluorescently labelled reversible terminators: synthesis and use in primer extension. Chemistry 2011; 17:2903-15. [PMID: 21294195 PMCID: PMC3110862 DOI: 10.1002/chem.201001952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/18/2010] [Indexed: 11/08/2022]
Abstract
Fluorescent 2′-deoxynucleotides containing a protecting group at the 3′-O-position are reversible terminators that enable array-based DNA sequencing-by-synthesis (SBS) approaches. Herein, we describe the synthesis and full characterisation of four reversible terminators bearing a 3′-blocking moiety and a linker-dye system that is removable under the same fluoride-based treatment. Each nucleotide analogue has a different fluorophore attached to the base through a fluoride-cleavable linker and a 2-cyanoethyl moiety as the 3′-blocking group, which can be removed by using a fluoride treatment as well. Furthermore, we identified a DNA polymerase, namely, RevertAid M-MuLV reverse transcriptase, which can incorporate the four modified reversible terminators. The synthesised nucleotides and the optimised DNA polymerase were used on CodeLink slides spotted with hairpin oligonucleotides to demonstrate their potential in a cyclic reversible terminating approach.
Collapse
Affiliation(s)
- Diana C Knapp
- Institut für Organische Chemie und Chemische Biologie, J.W. Goethe Universität Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Sanmiguel P. Next-generation sequencing and potential applications in fungal genomics. Methods Mol Biol 2011; 722:51-60. [PMID: 21590412 DOI: 10.1007/978-1-61779-040-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the first fungal genome was sequenced in 1996, sequencing technologies have advanced dramatically. In recent years, it has become possible to cost-effectively generate vast amounts of DNA sequence data using a number of cell- and electrophoresis-free sequencing technologies, commonly known as "next" or "second" generation. In this chapter, we present a brief overview of next-generation sequencers that are commercially available now. Their potential applications in fungal genomics studies are discussed.
Collapse
Affiliation(s)
- Phillip Sanmiguel
- Purdue Genomics Core Facility, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
89
|
Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 2010; 107:21327-31. [PMID: 21123743 DOI: 10.1073/pnas.1013804107] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Numerous 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with spacious modifications such as dyes and affinity tags like biotin are substrates for DNA polymerases. They are widely employed in many cutting-edge technologies like advanced DNA sequencing approaches, microarrays, and single molecule techniques. Modifications attached to the nucleobase are accepted by many DNA polymerases, and thus, dNTPs bearing nucleobase modifications are predominantly employed. When pyrimidines are used the modifications are almost exclusively at the C5 position to avoid disturbing of Watson-Crick base pairing ability. However, the detailed molecular mechanism by which C5 modifications are processed by a DNA polymerase is poorly understood. Here, we present the first crystal structures of a DNA polymerase from Thermus aquaticus processing two C5 modified substrates that are accepted by the enzyme with different efficiencies. The structures were obtained as ternary complex of the enzyme bound to primer/template duplex with the respective modified dNTP in position poised for catalysis leading to incorporation. Thus, the study provides insights into the incorporation mechanism of the modified nucleotides elucidating how bulky modifications are accepted by the enzyme. The structures show a varied degree of perturbation of the enzyme substrate complexes depending on the nature of the modifications suggesting design principles for future developments of modified substrates for DNA polymerases.
Collapse
|
90
|
Ustinov AV, Stepanova IA, Dubnyakova VV, Zatsepin TS, Nozhevnikova EV, Korshun VA. Modification of nucleic acids using [3 + 2]-dipolar cycloaddition of azides and alkynes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:437-81. [DOI: 10.1134/s1068162010040011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
91
|
Chowdhury MH, Ray K, Johnson ML, Gray SK, Pond J, Lakowicz JR. On the Feasibility of Using the Intrinsic Fluorescence of Nucleotides for DNA Sequencing. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2010; 114:7448-7461. [PMID: 20436924 PMCID: PMC2860747 DOI: 10.1021/jp911229c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
There is presently a worldwide effort to increase the speed and decrease the cost of DNA sequencing as exemplified by the goal of the National Human Genome Research Institute (NHGRI) to sequence a human genome for under $1000. Several high throughput technologies are under development. Among these, single strand sequencing using exonuclease appear very promising. However, this approach requires complete labeling of at least two bases at a time, with extrinsic high quantum yield probes. This is necessary because nucleotides absorb in the deep ultra-violet (UV) and emit with extremely low quantum yields. Hence intrinsic emission from DNA and nucleotides is not being exploited for DNA sequencing. In the present paper we consider the possibility of identifying single nucleotides using their intrinsic emission. We used the finite-difference time-domain (FDTD) method to calculate the effects of aluminum nanoparticles on nearby fluorophores that emit in the UV. We find that the radiated power of UV fluorophores is significantly increased when they are in close proximity to aluminum nanostructures. We show that there will be increased localized excitation near aluminum particles at wavelengths used to excite intrinsic nucleotide emission. Using FDTD simulation we show that a typical DNA base when coupled to appropriate aluminum nanostructures leads to highly directional emission. Additionally we present experimental results showing that a thin film of nucleotides show enhanced emission when in close proximity to aluminum nanostructures. Finally we provide Monte Carlo simulations that predict high levels of base calling accuracy for an assumed number of photons that is derived from the emission spectra of the intrinsic fluorescence of the bases. Our results suggest that single nucleotides can be detected and identified using aluminum nanostructures that enhance their intrinsic emission. This capability would be valuable for the ongoing efforts towards the $1000 genome.
Collapse
Affiliation(s)
- Mustafa H. Chowdhury
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA
| | - Michael L. Johnson
- Departments of Pharmacology and Internal Medicine, University of Virginia Health System, Box 800735, Charlottesville, VA 22908, USA
| | - Stephen K. Gray
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - James Pond
- Lumerical Solutions Inc., 201 – 1290 Homer Street, Vancouver, BC, Canada, V6B 2Y5
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA
| |
Collapse
|
92
|
Guo J, Yu L, Turro NJ, Ju J. An integrated system for DNA sequencing by synthesis using novel nucleotide analogues. Acc Chem Res 2010; 43:551-63. [PMID: 20121268 DOI: 10.1021/ar900255c] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Human Genome Project has concluded, but its successful completion has increased, rather than decreased, the need for high-throughput DNA sequencing technologies. The possibility of clinically screening a full genome for an individual's mutations offers tremendous benefits, both for pursuing personalized medicine and for uncovering the genomic contributions to diseases. The Sanger sequencing method, although enormously productive for more than 30 years, requires an electrophoretic separation step that, unfortunately, remains a key technical obstacle for achieving economically acceptable full-genome results. Alternative sequencing approaches thus focus on innovations that can reduce costs. The DNA sequencing by synthesis (SBS) approach has shown great promise as a new sequencing platform, with particular progress reported recently. The general fluorescent SBS approach involves (i) incorporation of nucleotide analogs bearing fluorescent reporters, (ii) identification of the incorporated nucleotide by its fluorescent emissions, and (iii) cleavage of the fluorophore, along with the reinitiation of the polymerase reaction for continuing sequence determination. In this Account, we review the construction of a DNA-immobilized chip and the development of novel nucleotide reporters for the SBS sequencing platform. Click chemistry, with its high selectivity and coupling efficiency, was explored for surface immobilization of DNA. The first generation (G-1) modified nucleotides for SBS feature a small chemical moiety capping the 3'-OH and a fluorophore tethered to the base through a chemically cleavable linker; the design ensures that the nucleotide reporters are good substrates for the polymerase. The 3'-capping moiety and the fluorophore on the DNA extension products, generated by the incorporation of the G-1 modified nucleotides, are cleaved simultaneously to reinitiate the polymerase reaction. The sequence of a DNA template immobilized on a surface via click chemistry is unambiguously identified with this chip-SBS system. The second generation (G-2) SBS system was developed based on the concept that the closer the structures of the added nucleotide and the primer are to their natural counterparts, the more faithfully the polymerase would incorporate the nucleotide. In this approach, the polymerase reaction is performed with the combination of 3'-capped nucleotide reversible terminators (NRTs) and cleavable fluorescent dideoxynucleotides (ddNTPs). By sacrifice of a small amount of the primers permanently terminated by ddNTPs, the majority of the primers extended by the reversible terminators are reverted to the natural ones after each sequencing cycle. We have also developed the 3'-capped nucleotide reversible terminators to solve the problem of deciphering the homopolymeric regions of the template in conventional pyrosequencing. The 3'-capping moiety on the DNA extension product temporarily terminates the polymerase reaction, which allows only one nucleotide to be incorporated during each sequencing cycle. Thus, the number of nucleotides in the homopolymeric regions are unambiguously determined using the 3'-capped NRTs. It has been established that millions of DNA templates can be immobilized on a chip surface through a variety of approaches. Therefore, the integration of these high-density DNA chips with the molecular-level SBS approaches described in this Account is expected to generate a high-throughput and accurate DNA sequencing system with wide applications in biological research and health care.
Collapse
Affiliation(s)
- Jia Guo
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Chemical Engineering
- Department of Chemistry
| | - Lin Yu
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Chemical Engineering
| | | | - Jingyue Ju
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Chemical Engineering
| |
Collapse
|
93
|
Jia Y, Osborne A, Rice JE, Wangh LJ. Dilute-'N'-Go dideoxy sequencing of all DNA strands generated in multiplex LATE-PCR assays. Nucleic Acids Res 2010; 38:e119. [PMID: 20189962 PMCID: PMC2887968 DOI: 10.1093/nar/gkq111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have recently described a Dilute-'N'-Go protocol that greatly simplifies preparation and sequencing of both strands of an amplicon generated using linear-after-the-exponential (LATE)-PCR, an advanced form of asymmetric PCR . The same protocol can also be used to sequence all limiting primer strands in a multiplex LATE-PCR, by adding back each of the depleted limiting primers to a separate aliquot of the multiplex reaction. But, Dilute-'N'-Go sequencing cannot be used directly to sequence each of the excess primer strands in the same multiplex reaction, because all of the excess primers are still present at high concentration. This report demonstrates for the first time that it is possible to sequence each of the excess primer strands using a modified Dilute-'N'-Go protocol in which blockers are added to prevent all but one of the excess primers serving as the sequencing primer in separate aliquots. The optimal melting temperatures, positions and concentrations of blockers relative to their corresponding excess primers are defined in detail. We are using these technologies to measure DNA sequence changes in mitochondrial genomes that accompany aging and exposure to certain drugs.
Collapse
Affiliation(s)
- Yanwei Jia
- Biology Department, Brandeis University, 415 South St., Waltham, MA 02155, USA
| | | | | | | |
Collapse
|
94
|
Crich D, Yang F. Phenylthiomethyl glycosides: convenient synthons for the formation of azidomethyl and glycosylmethyl glycosides and their derivatives. Angew Chem Int Ed Engl 2010; 48:8896-9. [PMID: 19856360 DOI: 10.1002/anie.200904168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Crich
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Centre Nationale de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
95
|
Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection. Proc Natl Acad Sci U S A 2010; 107:1948-53. [PMID: 20080675 DOI: 10.1073/pnas.0908463107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Any system, natural or human-made, is better understood if we analyze both its history and its structure. Here we combine structural analyses with a "Reconstructed Evolutionary Adaptive Path" (REAP) analysis that used the evolutionary and functional history of DNA polymerases to replace amino acids to enable polymerases to accept a new class of triphosphate substrates, those having their 3'-OH ends blocked as a 3(')-ONH(2) group (dNTP-ONH(2)). Analogous to widely used 2',3'-dideoxynucleoside triphosphates (ddNTPs), dNTP-ONH(2)s terminate primer extension. Unlike ddNTPs, however, primer extension can be resumed by cleaving an O-N bond to restore an -OH group to the 3'-end of the primer. REAP combined with crystallographic analyses identified 35 sites where replacements might improve the ability of Taq to accept dNTP-ONH(2)s. A library of 93 Taq variants, each having replacements at three or four of these sites, held eight variants having improved ability to accept dNTP-ONH(2) substrates. Two of these (A597T, L616A, F667Y, E745H, and E520G, K540I, L616A) performed notably well. The second variant incorporated both dNTP-ONH(2)sand ddNTPs faithfully and efficiently, supporting extension-cleavage-extension cycles applicable in parallel sequencing and in SNP detection through competition between reversible and irreversible terminators. Dissecting these results showed that one replacement (L616A), not previously identified, allows Taq to incorporate both reversible and irreversible terminators. Modeling showed how L616A might open space behind Phe-667, allowing it to move to accommodate the larger 3'-substituent. This work provides polymerases for DNA analyses and shows how evolutionary analyses help explore relationships between structure and function in proteins.
Collapse
|
96
|
|
97
|
Synthesis and Enzymatic Incorporation of Allyl-Based DNA Sequencing-By-Synthesis Probes for 3'-O-Mass Tag Analysis. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.11.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
98
|
Crich D, Yang F. Phenylthiomethyl Glycosides: Convenient Synthons for the Formation of Azidomethyl and Glycosylmethyl Glycosides and Their Derivatives. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
99
|
Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, Jovanovich SB, Nelson JR, Schloss JA, Schwartz DC, Vezenov DV. The challenges of sequencing by synthesis. Nat Biotechnol 2009; 27:1013-23. [PMID: 19898456 DOI: 10.1038/nbt.1585] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA sequencing-by-synthesis (SBS) technology, using a polymerase or ligase enzyme as its core biochemistry, has already been incorporated in several second-generation DNA sequencing systems with significant performance. Notwithstanding the substantial success of these SBS platforms, challenges continue to limit the ability to reduce the cost of sequencing a human genome to $100,000 or less. Achieving dramatically reduced cost with enhanced throughput and quality will require the seamless integration of scientific and technological effort across disciplines within biochemistry, chemistry, physics and engineering. The challenges include sample preparation, surface chemistry, fluorescent labels, optimizing the enzyme-substrate system, optics, instrumentation, understanding tradeoffs of throughput versus accuracy, and read-length/phasing limitations. By framing these challenges in a manner accessible to a broad community of scientists and engineers, we hope to solicit input from the broader research community on means of accelerating the advancement of genome sequencing technology.
Collapse
Affiliation(s)
- Carl W Fuller
- GE Healthcare Life Sciences, Piscataway, New Jersey, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Gao L, Lu Z. The removal of fluorescence in sequencing-by-synthesis. Biochem Biophys Res Commun 2009; 387:421-4. [PMID: 19616513 DOI: 10.1016/j.bbrc.2009.07.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
Abstract
Fluorescent oligonucleotides provide useful way to study DNA during the sequencing-by-synthesis process. They allow researchers to determine the sequence of a short DNA strand. Fluorescence created by these chemicals must be removed after a few based pairs are read in order to continue reading the DNA sequence. Researchers have developed a variety of methods to solve this problem. This paper reviews the development of fluorescence removal in DNA sequencing and summarizes several methods of removing the fluorescence.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | |
Collapse
|