51
|
Abstract
Wilms' tumour is a paediatric malignancy of the kidneys and is one of the most common solid childhood cancers. The Wilms' tumour 1 protein (WT1) is a transcription factor that can either activate or repress genes involved in growth, apoptosis and differentiation. It is frequently mutated or aberrantly expressed in Wilms' tumour, where the wild type protein would normally act as a tumour suppressor. Several studies, however, have found that wild type WT1 acts as an oncogene in adult tumours, primarily through the inhibition of apoptosis. The expression of WT1 correlates with the aggressiveness of several adult cancers, and its continued expression following treatment is indicative of a poor outcome.We recently found that the treatment of tumour cell lines with cytotoxic drugs leads to the cleavage of WT1 by the serine protease HtrA2. HtrA2 binds to a specific region of WT1, the suppression domain, and then cleaves WT1 at multiple sites. The HtrA2-mediated proteolysis of WT1 leads to its removal from gene promoter regions and changes in gene expression. Cleavage of WT1 by HtrA2 enhances apoptosis. This event is advantageous to the treatment of adult tumours where WT1 acts as an oncogene. However, when WT1 is acting as a tumour suppressor in paediatric malignancies, proteolysis by HtrA2 would be antagonistic to therapy.
Collapse
Affiliation(s)
- Jörg Hartkamp
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Manchester, UK
| | | |
Collapse
|
52
|
von Gise A, Zhou B, Honor LB, Ma Q, Petryk A, Pu WT. WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways. Dev Biol 2011; 356:421-31. [PMID: 21663736 DOI: 10.1016/j.ydbio.2011.05.668] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
An epithelial sheet, the epicardium, lines the surface of the heart. In the developing embryo, the epicardium expresses the transcriptional regulator Wilm's Tumor Gene 1 (Wt1). Through incompletely understood mechanisms, Wt1 inactivation derails normal heart development. We investigated mechanisms by which Wt1 regulates heart development and epicardial epithelial to mesenchymal transition (EMT). We used genetic lineage tracing approaches to track and isolate epicardium and epicardium derivatives in hearts lacking Wt1 (Wt1(KO)). Wt1(KO) hearts had diminished proliferation of compact myocardium and impaired coronary plexus formation. Wt1(KO) epicardium failed to undergo EMT. Wt1(KO) epicardium expressed reduced Lef1 and Ctnnb1 (β-catenin), key components of the canonical Wnt/β-catenin signaling pathway. Wt1(KO) epicardium expressed decreased levels of canonical Wnt downstream targets Axin2, Cyclin D1, and Cyclin D2 and exhibited decreased activity of the Batgal Wnt/β-catenin reporter transgene, suggestive of diminished canonical Wnt signaling. Hearts with epicardium-restricted Ctnnb1 loss of function resembled Wt1(KO) hearts and also failed to undergo epicardial EMT. However, Ctnnb1 inactivation did not alter WT1 expression, positioning Wt1 upstream of canonical Wnt/β-catenin signaling. Wnt5a, a prototypic non-canonical Wnt with enriched epicardial expression, and Raldh2, a key regulator of retinoic acid signaling confined to the epicardium, were also markedly downregulated in Wt1(KO) epicardium. Hearts lacking Wnt5a or Raldh2 shared phenotypic features with Wt1(KO). Although Wt1 has been proposed to regulate EMT by repressing E-cadherin, we detected no change in E-cadherin in Wt1(KO) epicardium. Collectively, our study shows that Wt1 regulates epicardial EMT and heart development through canonical Wnt, non-canonical Wnt, and retinoic acid signaling pathways.
Collapse
Affiliation(s)
- Alexander von Gise
- Department of Cardiology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
53
|
WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line. Biochem J 2011; 435:113-25. [PMID: 21269271 PMCID: PMC3062854 DOI: 10.1042/bj20101734] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Wilms' tumour suppressor WT1 (Wilms' tumour 1) is a transcriptional regulator that plays a central role in organogenesis, and is mutated or aberrantly expressed in several childhood and adult malignancies. We previously identified BASP1 (brain acid-soluble protein 1) as a WT1 cofactor that suppresses the transcriptional activation function of WT1. In the present study we have analysed the dynamic between WT1 and BASP1 in the regulation of gene expression in myelogenous leukaemia K562 cells. Our findings reveal that BASP1 is a significant regulator of WT1 that is recruited to WT1-binding sites and suppresses WT1-mediated transcriptional activation at several WT1 target genes. We find that WT1 and BASP1 can divert the differentiation programme of K562 cells to a non-blood cell type following induction by the phorbol ester PMA. WT1 and BASP1 co-operate to induce the differentiation of K562 cells to a neuronal-like morphology that exhibits extensive arborization, and the expression of several genes involved in neurite outgrowth and synapse formation. Functional analysis revealed the relevance of the transcriptional reprogramming and morphological changes, in that the cells elicited a response to the neurotransmitter ATP. Taken together, the results of the present study reveal that WT1 and BASP1 can divert the lineage potential of an established blood cell line towards a cell with neuronal characteristics.
Collapse
|
54
|
|
55
|
Functional characterization of Wilms tumor-suppressor WTX and tumor-associated mutants. Oncogene 2010; 30:832-42. [PMID: 20956941 DOI: 10.1038/onc.2010.452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The WTX, Wilms tumor-associated tumor-suppressor gene, is present on the X chromosome and a single WTX mutation may be sufficient to promote carcinogenesis. Unlike the WT1 tumor suppressor, a transcription factor, WTX lacks conserved functional protein domains. To study the function of WTX, we constructed inducible cell lines expressing WTX and tumor-associated WTX mutants. Induction of WTX inhibited cell growth and caused G(1)/G(0) arrest. In contrast, a short, tumor-associated truncation mutant of WTX358 only slightly inhibited cell growth without a significant cell-cycle arrest, although expression of a longer truncation mutant WTX565 led to the growth inhibition and cell-cycle arrest to a similar extent as wild-type WTX. Like WT1, WTX slowed growth and caused cell-cycle arrest through p21 induction. Gene expression profiling showed that these two tumor-suppressors regulated genes in similar pathways, including those implicated in control of the cellular growth, cell cycle, cell death, cancer and cardiovascular system development. When gene expression changes mediated by wild-type WTX were compared with those affected by mutant forms, WTX565 showed a 55% overlap (228 genes) in differentially regulated genes, whereas WTX358 regulated only two genes affected by wild-type WTX, implying that amino-acid residues 358-561 are critical for WTX function.
Collapse
|
56
|
Hartwig S, Ho J, Pandey P, Macisaac K, Taglienti M, Xiang M, Alterovitz G, Ramoni M, Fraenkel E, Kreidberg JA. Genomic characterization of Wilms' tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 2010; 137:1189-203. [PMID: 20215353 DOI: 10.1242/dev.045732] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Wilms' tumor suppressor 1 (WT1) gene encodes a DNA- and RNA-binding protein that plays an essential role in nephron progenitor differentiation during renal development. To identify WT1 target genes that might regulate nephron progenitor differentiation in vivo, we performed chromatin immunoprecipitation (ChIP) coupled to mouse promoter microarray (ChIP-chip) using chromatin prepared from embryonic mouse kidney tissue. We identified 1663 genes bound by WT1, 86% of which contain a previously identified, conserved, high-affinity WT1 binding site. To investigate functional interactions between WT1 and candidate target genes in nephron progenitors, we used a novel, modified WT1 morpholino loss-of-function model in embryonic mouse kidney explants to knock down WT1 expression in nephron progenitors ex vivo. Low doses of WT1 morpholino resulted in reduced WT1 target gene expression specifically in nephron progenitors, whereas high doses of WT1 morpholino arrested kidney explant development and were associated with increased nephron progenitor cell apoptosis, reminiscent of the phenotype observed in Wt1(-/-) embryos. Collectively, our results provide a comprehensive description of endogenous WT1 target genes in nephron progenitor cells in vivo, as well as insights into the transcriptional signaling networks controlled by WT1 that might direct nephron progenitor fate during renal development.
Collapse
Affiliation(s)
- Sunny Hartwig
- Department of Medicine, Children's Hospital Boston; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kim MS, Yoon SK, Bollig F, Kitagaki J, Hur W, Whye NJ, Wu YP, Rivera MN, Park JY, Kim HS, Malik K, Bell DW, Englert C, Perantoni AO, Lee SB. A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway. J Biol Chem 2010; 285:14585-93. [PMID: 20220130 DOI: 10.1074/jbc.m109.094334] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian kidney development requires the functions of the Wilms tumor gene WT1 and the WNT/beta-catenin signaling pathway. Recent studies have shown that WT1 negatively regulates WNT/beta-catenin signaling, but the molecular mechanisms by which WT1 inhibits WNT/beta-catenin signaling are not completely understood. In this study, we identified a gene, CXXC5, which we have renamed WID (WT1-induced Inhibitor of Dishevelled), as a novel WT1 transcriptional target that negatively regulates WNT/beta-catenin signaling. WT1 activates WID transcription through the upstream enhancer region. In the developing kidney, Wid and Wt1 are coexpressed in podocytes of maturing nephrons. Structure-function analysis demonstrated that WID interacts with Dishevelled via its C-terminal CXXC zinc finger and Dishevelled binding domains and potently inhibits WNT/beta-catenin signaling in vitro and in vivo. WID is evolutionarily conserved, and ablation of wid in zebrafish embryos with antisense morpholino oligonucleotides perturbs embryonic kidney development. Taken together, our results demonstrate that the WT1 negatively regulates WNT/beta-catenin pathway via its target gene WID and further suggest a role for WID in nephrogenesis.
Collapse
Affiliation(s)
- Myoung Shin Kim
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hartkamp J, Carpenter B, Roberts SGE. The Wilms' tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 2010; 37:159-71. [PMID: 20122399 PMCID: PMC2815029 DOI: 10.1016/j.molcel.2009.12.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/25/2009] [Accepted: 10/27/2009] [Indexed: 10/25/2022]
Abstract
The Wilms' tumor suppressor protein WT1 functions as a transcriptional regulator of genes controlling growth, apoptosis, and differentiation. It has become clear that WT1 can act as an oncogene in many tumors, primarily through the inhibition of apoptosis. Here, we identify the serine protease HtrA2 as a WT1 binding partner and find that it cleaves WT1 at multiple sites following the treatment of cells with cytotoxic drugs. Ablation of HtrA2 activity either by chemical inhibitor or by siRNA prevents the proteolysis of WT1 under apoptotic conditions. Moreover, the apoptosis-dependent cleavage of WT1 is defective in HtrA2 knockout cells. Proteolysis of WT1 by HtrA2 causes the removal of WT1 from its binding sites at gene promoters, leading to alterations in gene regulation that enhance apoptosis. Our findings provide insights into the function of HtrA2 in the regulation of apoptosis and the oncogenic activities of WT1.
Collapse
Affiliation(s)
- Jörg Hartkamp
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
59
|
Royer-Pokora B, Busch M, Beier M, Duhme C, de Torres C, Mora J, Brandt A, Royer HD. Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Hum Mol Genet 2010; 19:1651-68. [DOI: 10.1093/hmg/ddq042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
60
|
KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin. Mol Cell Biol 2009; 30:372-81. [PMID: 19901072 DOI: 10.1128/mcb.00063-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling is crucial in the organization and maintenance of the human intestinal epithelium, and somatic mutations that result in deregulated Wnt signaling are an early event in the development of colorectal cancer. The Wnt ligand ultimately results in the stabilization of cytoplasmic beta-catenin, which is then free to enter the nucleus and activate transcription through its interaction with the transcription factor TCF4. Our laboratory recently found that KLF4, a transcription factor highly expressed in the adult intestine and critical for intestinal differentiation, interacts with beta-catenin and inhibits Wnt signaling. In this study, we characterize the molecular mechanisms of KLF4-mediated inhibition of Wnt/beta-catenin signaling. We find that the KLF4 directly interacts with the C-terminal transactivation domain of beta-catenin and inhibits p300/CBP recruitment by beta-catenin. KLF4 inhibits p300/CBP-mediated beta-catenin acetylation as well as histone acetylation on Wnt target genes. In addition, we observe that KLF4 directly interacts with TCF4 independently of beta-catenin and that KLF4 and TCF4 are expressed in similar patterns within the large intestine, with greatest staining near the epithelial surface. These results provide a deeper understanding of the regulation of beta-catenin in the intestine and will have important implications in cancer and stem cell research.
Collapse
|
61
|
Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 2009; 114:5499-511. [PMID: 19855079 DOI: 10.1182/blood-2009-03-206524] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The t(11;17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RARalpha) and RARalpha-PLZF. Using a combination of chromatin immunoprecipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RARalpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RARalpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RARalpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RARalpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RARalpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RARalpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RARalpha.
Collapse
|