51
|
Chalyavi F, Hogle DG, Tucker MJ. Tyrosine as a Non-perturbing Site-Specific Vibrational Reporter for Protein Dynamics. J Phys Chem B 2017; 121:6380-6389. [DOI: 10.1021/acs.jpcb.7b04999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - David G. Hogle
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
52
|
Ortony JH, Qiao B, Newcomb CJ, Keller TJ, Palmer LC, Deiss-Yehiely E, Olvera de la Cruz M, Han S, Stupp SI. Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b02969] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Baofu Qiao
- Department
of Materials Science and Engineering, §Department of Chemistry, ⊥Department of Chemical and Biological
Engineering, and∇Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christina J. Newcomb
- Department
of Materials Science and Engineering, §Department of Chemistry, ⊥Department of Chemical and Biological
Engineering, and∇Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy J. Keller
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | | | - Elad Deiss-Yehiely
- Department
of Materials Science and Engineering, §Department of Chemistry, ⊥Department of Chemical and Biological
Engineering, and∇Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department
of Materials Science and Engineering, §Department of Chemistry, ⊥Department of Chemical and Biological
Engineering, and∇Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Songi Han
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Samuel I. Stupp
- Department
of Materials Science and Engineering, §Department of Chemistry, ⊥Department of Chemical and Biological
Engineering, and∇Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
53
|
Husseini FS, Robinson D, Hunt NT, Parker AW, Hirst JD. Computing infrared spectra of proteins using the exciton model. J Comput Chem 2017; 38:1362-1375. [PMID: 27868210 PMCID: PMC5434914 DOI: 10.1002/jcc.24674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/22/2016] [Accepted: 10/29/2016] [Indexed: 02/02/2023]
Abstract
The ability to compute from first principles the infrared spectrum of a protein in solution phase representing a biological system would provide a useful connection to atomistic models of protein structure and dynamics. Indeed, such calculations are a vital complement to 2DIR experimental measurements, allowing the observed signals to be interpreted in terms of detailed structural and dynamical information. In this article, we have studied nine structurally and spectroscopically well-characterized proteins, representing a range of structural types. We have simulated the equilibrium conformational dynamics in an explicit point charge water model. Using the resulting trajectories based on MD simulations, we have computed the one and two dimensional infrared spectra in the Amide I region, using an exciton approach, in which a local mode basis of carbonyl stretches is considered. The role of solvent in shifting the Amide I band (by 30 to 50 cm-1 ) is clearly evident. Similarly, the conformational dynamics contribute to the broadening of peaks in the spectrum. The inhomogeneous broadening in both the 1D and 2D spectra reflects the significant conformational diversity observed in the simulations. Through the computed 2D cross-peak spectra, we show how different pulse schemes can provide additional information on the coupled vibrations. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fouad S Husseini
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - David Robinson
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Neil T Hunt
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow, G4 0NG, Scotland, United Kingdom
| | - Anthony W Parker
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Harwell Campus, Didcot, OX11 0QX, United Kingdom
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
54
|
Bhattacherjee A, Wategaonkar S. Role of the C(2)–H Hydrogen Bond Donor in Gas-Phase Microsolvation of Imidazole Derivatives with ROH (R = CH3, C2H5). J Phys Chem A 2017; 121:4283-4295. [DOI: 10.1021/acs.jpca.7b03329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aditi Bhattacherjee
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| |
Collapse
|
55
|
Kratochvil HT, Maj M, Matulef K, Annen AW, Ostmeyer J, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. Probing the Effects of Gating on the Ion Occupancy of the K + Channel Selectivity Filter Using Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 2017; 139:8837-8845. [PMID: 28472884 DOI: 10.1021/jacs.7b01594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interplay between the intracellular gate and the selectivity filter underlies the structural basis for gating in potassium ion channels. Using a combination of protein semisynthesis, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we probe the ion occupancy at the S1 binding site in the constricted state of the selectivity filter of the KcsA channel when the intracellular gate is open and closed. The 2D IR spectra resolve two features, whose relative intensities depend on the state of the intracellular gate. By matching the experiment to calculated 2D IR spectra of structures predicted by MD simulations, we identify the two features as corresponding to states with S1 occupied or unoccupied by K+. We learn that S1 is >70% occupied when the intracellular gate is closed and <15% occupied when the gate is open. Comparison of MD trajectories show that opening of the intracellular gate causes a structural change in the selectivity filter, which leads to a change in the ion occupancy. This work reveals the complexity of the conformational landscape of the K+ channel selectivity filter and its dependence on the state of the intracellular gate.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Alvin W Annen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
56
|
Abaskharon RM, Brown SP, Zhang W, Chen J, Smith AB, Gai F. Isotope-Labeled Aspartate Sidechain as a Non-Perturbing Infrared Probe: Application to Investigate the Dynamics of a Carboxylate Buried Inside a Protein. Chem Phys Lett 2017; 683:193-198. [PMID: 29033461 DOI: 10.1016/j.cplett.2017.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Because of their negatively charged carboxylates, aspartate and glutamate are frequently found at the active or binding site of proteins. However, studying a specific carboxylate in proteins that contain multiple aspartates and/or glutamates via infrared spectroscopy is difficult due to spectral overlap. We show, herein, that isotopic-labeling of the aspartate sidechain can overcome this limitation as the resultant 13C=O asymmetric stretching vibration resides in a transparent region of the protein IR spectrum. Applicability of this site-specific vibrational probe is demonstrated by using it to assess the dynamics of an aspartate ion buried inside a small protein via two-dimensional infrared spectroscopy.
Collapse
Affiliation(s)
- Rachel M Abaskharon
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Stephen P Brown
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Wenkai Zhang
- Ultrafast Optical Processes Laboratory, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Jianxin Chen
- Ultrafast Optical Processes Laboratory, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA.,Ultrafast Optical Processes Laboratory, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| |
Collapse
|
57
|
Jin GY, Kim YS. Phase-Resolved Heterodyne-Detected Transient Grating Enhances the Capabilities of 2D IR Echo Spectroscopy. J Phys Chem A 2017; 121:1007-1011. [DOI: 10.1021/acs.jpca.6b12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geun Young Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| |
Collapse
|
58
|
Arya S, Singh AK, Khan T, Bhattacharya M, Datta A, Mukhopadhyay S. Water Rearrangements upon Disorder-to-Order Amyloid Transition. J Phys Chem Lett 2016; 7:4105-4110. [PMID: 27689394 DOI: 10.1021/acs.jpclett.6b02088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water plays a critical role in governing the intricate balance between chain-chain and chain-solvent interactions during protein folding, misfolding, and aggregation. Previous studies have indicated the presence of different types of water in folded (globular) proteins. In this work, using femtosecond and picosecond time-resolved fluorescence measurements, we have characterized the solvation dynamics from ultrafast to ultraslow time scale both in the monomeric state and in the amyloid state of an intrinsically disordered protein, namely κ-casein. Monomeric κ-casein adopts a compact disordered state under physiological conditions and is capable of spontaneously aggregating into highly ordered β-rich amyloid fibrils. Our results indicate that the mobility of "biological water" (type I) gets restrained as a result of conformational sequestration during amyloid formation. Additionally, a significant decrease in the bulk water component with a concomitant increase in the ultraslow component revealed the ordering of trapped interstitial water (type II) upon disorder-to-order amyloid transition. Our results provide an experimental underpinning of significant water rearrangements associated with both chain desolvation and water confinement upon amyloid formation.
Collapse
Affiliation(s)
| | - Avinash K Singh
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai, Maharashtra 400076, India
| | - Tuhin Khan
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai, Maharashtra 400076, India
| | | | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai, Maharashtra 400076, India
| | | |
Collapse
|
59
|
Kratochvil HT, Carr JK, Matulef K, Annen AW, Li H, Maj M, Ostmeyer J, Serrano AL, Raghuraman H, Moran SD, Skinner JL, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 2016; 353:1040-1044. [PMID: 27701114 PMCID: PMC5544905 DOI: 10.1126/science.aag1447] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/03/2016] [Indexed: 11/02/2022]
Abstract
Potassium channels are responsible for the selective permeation of K+ ions across cell membranes. K+ ions permeate in single file through the selectivity filter, a narrow pore lined by backbone carbonyls that compose four K+ binding sites. Here, we report on the two-dimensional infrared (2D IR) spectra of a semisynthetic KcsA channel with site-specific heavy (13C18O) isotope labels in the selectivity filter. The ultrafast time resolution of 2D IR spectroscopy provides an instantaneous snapshot of the multi-ion configurations and structural distributions that occur spontaneously in the filter. Two elongated features are resolved, revealing the statistical weighting of two structural conformations. The spectra are reproduced by molecular dynamics simulations of structures with water separating two K+ ions in the binding sites, ruling out configurations with ions occupying adjacent sites.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua K Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alvin W Annen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Hui Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Arnaldo L Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Raghuraman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J L Skinner
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
60
|
Schmitz AJ, Hogle DG, Gai XS, Fenlon EE, Brewer SH, Tucker MJ. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside. J Phys Chem B 2016; 120:9387-94. [PMID: 27510724 DOI: 10.1021/acs.jpcb.6b07212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vibrations in the azide, N3, asymmetric stretching region and nitrile, CN, symmetric stretching region of 2'-azido-5-cyano-2'-deoxyuridine (N3CNdU) are examined by two-dimensional infrared (2D IR) spectroscopy. At earlier waiting times, the 2D IR spectrum shows the presence of both vibrational transitions along the diagonal and off-diagonal cross peaks indicating vibrational coupling. The coupling strength is determined from the off-diagonal anharmonicity to be 66 cm(-1) for the intramolecular distance of ∼7.9 Å, based on a structural map generated for this model system. In addition, the frequency-frequency correlation decay is detected, monitoring the solvent dynamics around each individual probe position. Overall, these vibrational reporters can be utilized in tandem to simultaneously track global structural information and fast structural fluctuations.
Collapse
Affiliation(s)
- Andrew J Schmitz
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| | - David G Hogle
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| | - Xin Sonia Gai
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Edward E Fenlon
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H Brewer
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| |
Collapse
|
61
|
Fritzsch R, Brady O, Adair E, Wright JA, Pickett CJ, Hunt NT. Encapsulating Subsite Analogues of the [FeFe]-Hydrogenases in Micelles Enables Direct Water Interactions. J Phys Chem Lett 2016; 7:2838-2843. [PMID: 27396585 DOI: 10.1021/acs.jpclett.6b01338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Encapsulation of subsite analogues of the [FeFe]-hydrogenase enzymes in supramolecular structures has been shown to dramatically increase their catalytic ability, but the molecular basis for this enhancement remains unclear. We report the results of experiments employing infrared absorption, ultrafast infrared pump-probe, and 2D-IR spectroscopy to investigate the molecular environment of Fe2(pdt)(CO)6 (pdt: propanedithiolate) [1] encapsulated in the dispersed alkane phase of a heptane-dodecyltrimethylammonium bromide-water microemulsion. It is demonstrated that 1 is partitioned between two molecular environments, one that closely resembles bulk heptane solution and a second that features direct hydrogen-bonding interactions with water molecules that penetrate the surfactant shell. Our results demonstrate that the extent of water access to the normally water-insoluble subsite analogue 1 can be tuned with micelle size, while IR spectroscopy provides a straightforward tool that can be used to measure and fine-tune the chemical environment of catalyst species in self-assembled structures.
Collapse
Affiliation(s)
- Robby Fritzsch
- Department of Physics, University of Strathclyde, SUPA , 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Owen Brady
- Department of Physics, University of Strathclyde, SUPA , 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Elaine Adair
- Department of Physics, University of Strathclyde, SUPA , 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Joseph A Wright
- Energy Materials Laboratory, School of Chemistry, University of East Anglia , Norwich NR4 7TJ, United Kingdom
| | - Christopher J Pickett
- Energy Materials Laboratory, School of Chemistry, University of East Anglia , Norwich NR4 7TJ, United Kingdom
| | - Neil T Hunt
- Department of Physics, University of Strathclyde, SUPA , 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
62
|
Reppert M, Tokmakoff A. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics. Annu Rev Phys Chem 2016; 67:359-86. [DOI: 10.1146/annurev-physchem-040215-112055] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mike Reppert
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
63
|
Salvi AM, Moscarelli P, Bochicchio B, Lanza G, Castle JE. Combined effects of solvation and aggregation propensity on the final supramolecular structures adopted by hydrophobic, glycine-rich, elastin-like polypeptides. Biopolymers 2016; 99:292-313. [PMID: 23426573 DOI: 10.1002/bip.22160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/11/2012] [Accepted: 09/14/2012] [Indexed: 01/25/2023]
Abstract
Previous work on elastin-like polypeptides (ELPs) made of hydrophobic amino acids of the type XxxGlyGlyZzzGly (Xxx, Zzz = Val, Leu) has consistently shown that differing dominant supramolecular structures were formed when the suspending media were varied: helical, amyloid-like fibers when suspended in water and globules evolving into "string of bead" structures, poly(ValGlyGlyValGly), or cigar-like bundles, poly(ValGlyGlyLeuGly), when suspended in methyl alcohol. Comparative experiments with poly(LeuGlyGlyValGly) have further indicated that the interface energy plays a significant role and that solvation effects act in concomitance with the intrinsic aggregation propensity of the repeat sequence. Continuing our investigation on ELPs using surface (X-ray photoelectron spectroscopy, atomic force microscopy) and bulk (circular dichroism, Fourier transform infrared spectroscopy) techniques for their characterization, here we have compared the effect of suspending solvents (H(2)O, dimethylsulfoxide, ethylene glycol, and MeOH) on poly(ValGlyGlyValGly), the polypeptide most inclined to form long and well-refined helical fibers in water, searching for the signature of intermolecular interactions occurring between the polypeptide chains in the given suspension. The influence of sequence specificities has been studied by comparing poly(ValGlyGlyValGly) and poly(LeuGlyGlyValGly) with a similar degree of polymerization. Deposits on substrates of the polypeptides were characterized taking into account the differing evaporation rate of solvents, and tests on their stability in ultra high vacuum were performed. Finally, combining experimental and computational studies, we have revaluated the three-dimensional modeling previously proposed for the supramolecular assembly in water of poly(ValGlyGlyValGly). The results were discussed and rationalized also in the light of published data.
Collapse
Affiliation(s)
- Anna M Salvi
- Dipartimento di Chimica 'Antonio Mario Tamburro,' Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | | | | | | | | |
Collapse
|
64
|
Koh M, Kim WS, Lee M. Exploration of a New Solvatochromic Dye Bearing the Excited-State Intramolecular Proton Transfer Functionality. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Moonjee Koh
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Won-Suk Kim
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Minyung Lee
- Department of Chemistry and Nanoscience; Ewha Womans University; Seoul 120-750 Republic of Korea
| |
Collapse
|
65
|
Hanson-Heine MWD, Husseini FS, Hirst JD, Besley NA. Simulation of Two-Dimensional Infrared Spectroscopy of Peptides Using Localized Normal Modes. J Chem Theory Comput 2016; 12:1905-18. [DOI: 10.1021/acs.jctc.5b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Fouad S. Husseini
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
66
|
Affiliation(s)
- Juan Zhao
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
67
|
|
68
|
Shaw DJ, Adamczyk K, Frederix PWJM, Simpson N, Robb K, Greetham GM, Towrie M, Parker AW, Hoskisson PA, Hunt NT. Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid. J Chem Phys 2015; 142:212401. [DOI: 10.1063/1.4914097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Daniel J. Shaw
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Katrin Adamczyk
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Pim W. J. M. Frederix
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Niall Simpson
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Kirsty Robb
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Gregory M. Greetham
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Michael Towrie
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Anthony W. Parker
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute for Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Neil T. Hunt
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
69
|
Stevenson P, Tokmakoff A. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons. J Chem Phys 2015; 142:212424. [PMID: 26049444 PMCID: PMC4401804 DOI: 10.1063/1.4917321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/31/2015] [Indexed: 11/14/2022] Open
Abstract
Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D.
Collapse
Affiliation(s)
- Paul Stevenson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
70
|
Do TD, Bowers MT. Diphenylalanine self assembly: novel ion mobility methods showing the essential role of water. Anal Chem 2015; 87:4245-52. [PMID: 25785477 DOI: 10.1021/ac5046774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanism and driving forces behind the formation of diphenylalanine (FF) nanotubes have attracted much attention in the past decades. The hollow structure of the nanotubes suggests a role for water during the self-assembly process. Here, we use novel ion-mobility mass spectrometry methods to probe the early oligomers formed by diphenylalanine peptides. Interestingly, water-bound oligomers are observed in nano-electrospray ionization (ESI) mass spectra in the absence of bulk solvent. In addition, ligated water clusters transit the ion mobility cell but (often) dissociate before detection. These water molecules are shown to be essential for the formation of diphenylalanine oligomers larger than the dimer. The ligated water molecules exist in the solvent free environment either as neutral water or as protonated water clusters, depending on the composition of solvent from which they are sprayed. Water adduction helps stabilize conformers that are otherwise energetically unstable ultimately leading to the assembly of FF nanotubes.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
71
|
Chan GKL, Witkowski A, Gantz DL, Zhang TO, Zanni MT, Jayaraman S, Cavigiolio G. Myeloperoxidase-mediated Methionine Oxidation Promotes an Amyloidogenic Outcome for Apolipoprotein A-I. J Biol Chem 2015; 290:10958-71. [PMID: 25759391 DOI: 10.1074/jbc.m114.630442] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 11/06/2022] Open
Abstract
High plasma levels of apolipoprotein A-I (apoA-I) correlate with cardiovascular health, whereas dysfunctional apoA-I is a cause of atherosclerosis. In the atherosclerotic plaques, amyloid deposition increases with aging. Notably, apoA-I is the main component of these amyloids. Recent studies identified high levels of oxidized lipid-free apoA-I in atherosclerotic plaques. Likely, myeloperoxidase (MPO) secreted by activated macrophages in atherosclerotic lesions is the promoter of such apoA-I oxidation. We hypothesized that apoA-I oxidation by MPO levels similar to those present in the artery walls in atherosclerosis can promote apoA-I structural changes and amyloid fibril formation. ApoA-I was exposed to exhaustive chemical (H2O2) oxidation or physiological levels of enzymatic (MPO) oxidation and incubated at 37 °C and pH 6.0 to induce fibril formation. Both chemically and enzymatically oxidized apoA-I produced fibrillar amyloids after a few hours of incubation. The amyloid fibrils were composed of full-length apoA-I with differential oxidation of the three methionines. Met to Leu apoA-I variants were used to establish the predominant role of oxidation of Met-86 and Met-148 in the fibril formation process. Importantly, a small amount of preformed apoA-I fibrils was able to seed amyloid formation in oxidized apoA-I at pH 7.0. In contrast to hereditary amyloidosis, wherein specific mutations of apoA-I cause protein destabilization and amyloid deposition, oxidative conditions similar to those promoted by local inflammation in atherosclerosis are sufficient to transform full-length wild-type apoA-I into an amyloidogenic protein. Thus, MPO-mediated oxidation may be implicated in the mechanism that leads to amyloid deposition in the atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Gary K L Chan
- From the Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - Andrzej Witkowski
- From the Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - Donald L Gantz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Tianqi O Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Shobini Jayaraman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Giorgio Cavigiolio
- From the Children's Hospital Oakland Research Institute, Oakland, California 94609,
| |
Collapse
|
72
|
Cai K, Du F, Liu J, Su T. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:701-710. [PMID: 25260065 DOI: 10.1016/j.saa.2014.08.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/05/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the CO bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China.
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China
| | - Jia Liu
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China
| | - Tingting Su
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China
| |
Collapse
|
73
|
Fuller FD, Ogilvie JP. Experimental implementations of two-dimensional fourier transform electronic spectroscopy. Annu Rev Phys Chem 2015; 66:667-90. [PMID: 25664841 DOI: 10.1146/annurev-physchem-040513-103623] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-dimensional electronic spectroscopy (2DES) reveals connections between an optical excitation at a given frequency and the signals it creates over a wide range of frequencies. These connections, manifested as cross-peak locations and their lineshapes, reflect the underlying electronic and vibrational structure of the system under study. How these spectroscopic signatures evolve in time reveals the system dynamics and provides a detailed picture of coherent and incoherent processes. 2DES is rapidly maturing and has already found numerous applications, including studies of photosynthetic energy transfer and photochemical reactions and many-body interactions in nanostructured materials. Many systems of interest contain electronic transitions spanning the ultraviolet to the near infrared and beyond. Most 2DES measurements to date have explored a relatively small frequency range. We discuss the challenges of implementing 2DES and compare and contrast different approaches in terms of their information content, ease of implementation, and potential for broadband measurements.
Collapse
Affiliation(s)
- Franklin D Fuller
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
74
|
Mora AK, Murudkar S, Singh PK, Nath S. Effect of fibrillation on the excited state dynamics of tryptophan in serum protein – A time-resolved fluorescence study. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
Abstract
Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.
Collapse
|
76
|
Maiti KS. Broadband two dimensional infrared spectroscopy of cyclic amide 2-Pyrrolidinone. Phys Chem Chem Phys 2015; 17:24998-5003. [DOI: 10.1039/c5cp04272k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past one-and-a-half decade there has been a significant methodological and technological development of two dimensional infrared (2DIR) spectroscopy, which unfolds many underlying physical and chemical processes of complex molecules, especially for biological molecules.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Lehrstuhl für Physikalische Chemie
- Technische Universität München
- D-85747 Garching
- Germany
| |
Collapse
|
77
|
Adamczyk K, Simpson N, Greetham GM, Gumiero A, Walsh MA, Towrie M, Parker AW, Hunt NT. Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site. Chem Sci 2014; 6:505-516. [PMID: 28936306 PMCID: PMC5588449 DOI: 10.1039/c4sc02752c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 11/24/2022] Open
Abstract
Ultrafast infrared spectroscopy provides insights into the dynamic nature of water in the active sites of catalase and peroxidase enzymes.
Understanding the impact of fast dynamics upon the chemical processes occurring within the active sites of proteins and enzymes is a key challenge that continues to attract significant interest, though direct experimental insight in the solution phase remains sparse. Similar gaps in our knowledge exist in understanding the role played by water, either as a solvent or as a structural/dynamic component of the active site. In order to investigate further the potential biological roles of water, we have employed ultrafast multidimensional infrared spectroscopy experiments that directly probe the structural and vibrational dynamics of NO bound to the ferric haem of the catalase enzyme from Corynebacterium glutamicum in both H2O and D2O. Despite catalases having what is believed to be a solvent-inaccessible active site, an isotopic dependence of the spectral diffusion and vibrational lifetime parameters of the NO stretching vibration are observed, indicating that water molecules interact directly with the haem ligand. Furthermore, IR pump–probe data feature oscillations originating from the preparation of a coherent superposition of low-frequency vibrational modes in the active site of catalase that are coupled to the haem ligand stretching vibration. Comparisons with an exemplar of the closely-related peroxidase enzyme family shows that they too exhibit solvent-dependent active-site dynamics, supporting the presence of interactions between the haem ligand and water molecules in the active sites of both catalases and peroxidases that may be linked to proton transfer events leading to the formation of the ferryl intermediate Compound I. In addition, a strong, water-mediated, hydrogen bonding structure is suggested to occur in catalase that is not replicated in peroxidase; an observation that may shed light on the origins of the different functions of the two enzymes.
Collapse
Affiliation(s)
- Katrin Adamczyk
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK .
| | - Niall Simpson
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK .
| | - Gregory M Greetham
- Central Laser Facility , Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford , Didcot, Oxon , OX11 0QX , UK
| | - Andrea Gumiero
- Diamond Light Source , Diamond House, Harwell Science and Innovation Campus , Didcot, Oxfordshire , OX11 0DE , UK
| | - Martin A Walsh
- Diamond Light Source , Diamond House, Harwell Science and Innovation Campus , Didcot, Oxfordshire , OX11 0DE , UK
| | - Michael Towrie
- Central Laser Facility , Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford , Didcot, Oxon , OX11 0QX , UK
| | - Anthony W Parker
- Central Laser Facility , Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford , Didcot, Oxon , OX11 0QX , UK
| | - Neil T Hunt
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK .
| |
Collapse
|
78
|
Huy PDQ, Li MS. Binding of fullerenes to amyloid beta fibrils: size matters. Phys Chem Chem Phys 2014; 16:20030-40. [DOI: 10.1039/c4cp02348j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proc Natl Acad Sci U S A 2014; 111:8476-81. [PMID: 24912147 DOI: 10.1073/pnas.1403224111] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p-cyano-phenylalanine, to directly probe how TMAO affects the hydration and conformational dynamics of a model peptide and a small protein. By assessing how the lineshape and spectral diffusion properties of this vibration change with cosolvent conditions, we are able to show that TMAO achieves its protein-stabilizing ability through the combination of (at least) two mechanisms: (i) It decreases the hydrogen bonding ability of water and hence the stability of the unfolded state, and (ii) it acts as a molecular crowder, as suggested by a recent computational study, that can increase the stability of the folded state via the excluded volume effect.
Collapse
|
80
|
Matos JO, Goldblatt G, Jeon J, Chen B, Tatulian SA. Pyroglutamylated amyloid-β peptide reverses cross β-sheets by a prion-like mechanism. J Phys Chem B 2014; 118:5637-43. [PMID: 24802697 PMCID: PMC4216196 DOI: 10.1021/jp412743s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The amyloid hypothesis causatively
relates the fibrillar deposits
of amyloid β peptide (Aβ) to Alzheimer’s disease
(AD). More recent data, however, identify the soluble oligomers as
the major cytotoxic entities. Pyroglutamylated Aβ (pE-Aβ)
is present in AD brains and exerts augmented neurotoxicity, which
is believed to result from its higher β-sheet propensity and
faster fibrillization. While this concept is based on a set of experimental
results, others have reported similar β-sheet contents in unmodified
and pyroglutamylated Aβ, and slower aggregation of pE-Aβ
as compared to unmodified Aβ, leaving the issue unresolved.
Here, we assess the structural differences between Aβ and pE-Aβ
peptides that may underlie their distinct cytotoxicities. Transmission
electron microscopy identifies a larger number of prefibrillar aggregates
of pE-Aβ at early stages of aggregation and suggests that pE-Aβ
affects the fibrillogenesis even at low molar fractions. Circular
dichroism and FTIR data indicate that while the unmodified Aβ
readily forms β-sheet fibrils in aqueous media, pE-Aβ
displays increased α-helical and decreased β-sheet propensity.
Moreover, isotope-edited FTIR spectroscopy shows that pE-Aβ
reverses β-sheet formation and hence fibrillogenesis of the
unmodified Aβ peptide via a prion-like mechanism. These data
provide a novel structural mechanism for pE-Aβ hypertoxicity;
pE-Aβ undergoes faster formation of prefibrillar aggregates
due to its increased hydrophobicity, thus shifting the initial stages
of fibrillogenesis toward smaller, hypertoxic oligomers of partial
α-helical structure.
Collapse
Affiliation(s)
- Jason O Matos
- Biotechnology Graduate Program, University of Central Florida , 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | | | | | | | | |
Collapse
|
81
|
Ghosh A, Tucker MJ, Gai F. 2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations. J Phys Chem B 2014; 118:7799-805. [PMID: 24712671 PMCID: PMC4317052 DOI: 10.1021/jp411901m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrational transition. Specifically, for the histidine dipeptide studied, the amide unit of the histidine gives rise to three spectrally resolvable amide I features at approximately 1630, 1644, and 1656 cm(-1), respectively, which, based on measurements at different pH values and frequency calculations, are assigned to a τ tautomer (1630 cm(-1) component) and a π tautomer with a hydrated (1644 cm(-1) component) or dehydrated (1656 cm(-1) component) amide. Because of the intrinsic ultrafast time resolution of 2D IR spectroscopy, we believe that the current approach, when combined with the isotope editing techniques, will be useful in revealing the structural dynamics of key histidine residues in proteins that are important for function.
Collapse
Affiliation(s)
- Ayanjeet Ghosh
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | | | | |
Collapse
|
82
|
Lee MW, Carr JK, Göllner M, Hamm P, Meuwly M. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations. J Chem Phys 2014; 139:054506. [PMID: 23927269 DOI: 10.1063/1.4815969] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN(-) solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN(-) molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN(-) and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN(-) is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm(-1) vs. 14.9 cm(-1)) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Myung Won Lee
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
83
|
Abstract
This Perspective discusses applications of ultrafast transient 2D-IR spectroscopy methods to the study of inorganic excited states.
Collapse
Affiliation(s)
- N. T. Hunt
- Department of Physics
- University of Strathclyde
- Glasgow, UK
| |
Collapse
|
84
|
Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proc Natl Acad Sci U S A 2013; 110:19285-90. [PMID: 24218609 DOI: 10.1073/pnas.1314481110] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.
Collapse
|
85
|
Chuntonov L, Ma J. Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton. J Phys Chem B 2013; 117:13631-8. [PMID: 24079417 DOI: 10.1021/jp4075493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantum coherence has been a subject of great interest in many scientific disciplines. However, detailed characterization of the quantum coherence in molecular systems, especially its transfer and relaxation mechanisms, still remains a major challenge. The difficulties arise in part because the spectroscopic signatures of the coherence transfer are typically overwhelmed by other excitation-relaxation processes. We use quantum process tomography (QPT) via two-dimensional infrared spectroscopy to quantify the rate of the elusive coherence transfer between two vibrational exciton states. QPT retrieves the dynamics of the dissipative quantum system directly from the experimental observables. It thus serves as an experimental alternative to theoretical models of the system-bath interaction and can be used to validate these theories. Our results for coupled carbonyl groups of a diketone molecule in chloroform, used as a benchmark system, reveal the nonsecular nature of the interaction between the exciton and the Markovian bath and open the door for the systematic studies of the dissipative quantum systems dynamics in detail.
Collapse
Affiliation(s)
- Lev Chuntonov
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania , Philadelphia, PA 19104, United States
| | | |
Collapse
|
86
|
Gruebele M, Thirumalai D. Perspective: Reaches of chemical physics in biology. J Chem Phys 2013; 139:121701. [PMID: 24089712 PMCID: PMC5942441 DOI: 10.1063/1.4820139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023] Open
Abstract
Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.
Collapse
Affiliation(s)
- Martin Gruebele
- Departments of Chemistry and Physics, and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
87
|
Moran SD, Zhang TO, Decatur SM, Zanni MT. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage. Biochemistry 2013; 52:6169-81. [PMID: 23957864 DOI: 10.1021/bi4008353] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γD-Crystallin is an abundant structural protein of the lens that is found in native and modified forms in cataractous aggregates. We establish that UV-B irradiation of γD-Crystallin leads to structurally specific modifications and precipitation via two mechanisms: amorphous aggregates and amyloid fibers. UV-B radiation causes cleavage of the backbone, in large measure near the interdomain interface, where side chain oxidations are also concentrated. 2D IR spectroscopy and expressed protein ligation localize fiber formation exclusively to the C-terminal domain of γD-Crystallin. The native β-sandwich domains are not retained upon precipitation by either mechanism. The similarities between the amyloid forming pathways when induced by either UV-B radiation or low pH suggest that the propensity for the C-terminal β-sandwich domain to form amyloid β-sheets determines the misfolding pathway independent of the mechanism of denaturation.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, WI, United States 53706
| | | | | | | |
Collapse
|
88
|
Ma J, Komatsu H, Kim YS, Liu L, Hochstrasser RM, Axelsen PH. Intrinsic structural heterogeneity and long-term maturation of amyloid β peptide fibrils. ACS Chem Neurosci 2013; 4:1236-43. [PMID: 23701594 DOI: 10.1021/cn400092v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyloid β peptides form fibrils that are commonly assumed to have a dry, homogeneous, and static internal structure. To examine these assumptions, fibrils under various conditions and different ages have been examined with multidimensional infrared spectroscopy. Each peptide in the fibril had a ¹³C═¹⁸O label in the backbone of one residue to disinguish the amide I' absorption due to that residue from the amide I' absorption of other residues. Fibrils examined soon after they formed, and reexamined after 1 year in the dry state, exhibited spectral changes confirming that structurally significant water molecules were present in the freshly formed fibrils. Results from fibrils incubated in solution for 4 years indicate that water molecules remained trapped within fibrils and mobile over the 4 year time span. These water molecules are structurally significant because they perturb the parallel β-sheet hydrogen bonding pattern at frequent intervals and at multiple points within individual fibrils, creating structural heterogeneity along the length of a fibril. These results show that the interface between β-sheets in an amyloid fibril is not a "dry zipper", and that the internal structure of a fibril evolves while it remains in a fibrillar state. These features, water trapping, structural heterogeneity, and structural evolution within a fibril over time, must be accommodated in models of amyloid fibril structure and formation.
Collapse
Affiliation(s)
- Jianqiang Ma
- Ultrafast Optical Processes Laboratory,
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hiroaki Komatsu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Yung Sam Kim
- School of Nano-Bioscience
and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Liu Liu
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Robin M. Hochstrasser
- Ultrafast Optical Processes Laboratory,
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul H. Axelsen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
- Departments
of Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
89
|
Hamm P, Zewail AH, Fleming GR. A tribute to Robin Hochstrasser. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Chandrakesan M, Sarkar B, Mithu VS, Abhyankar R, Bhowmik D, Nag S, Sahoo B, Shah R, Gurav S, Banerjee R, Dandekar S, Jose JC, Sengupta N, Madhu PK, Maiti S. The basic structural motif and major biophysical properties of Amyloid-β are encoded in the fragment 18–35. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
91
|
Chuntonov L, Kuroda DG, Ghosh A, Ma J, Hochstrasser RM. Quantum Beats and Coherence Decay in Degenerate States Split by Solvation. J Phys Chem Lett 2013; 4:1866-1871. [PMID: 23956817 PMCID: PMC3743118 DOI: 10.1021/jz400826a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Coherent dynamics of degenerate quantum states symmetry-broken on the femtosecond timescale is found to exhibit the phenomenon of quantum beats. Frequency-resolved and polarization-selective heterodyned transient grating spectroscopy enabled us to retrieve the oscillation pattern characteristic of the beating in systems undergoing ultrafast dynamical processes. This methodology applies to the general phenomena of coherence dynamics which is important in any ultrafast multidimensional spectroscopy. A particular application to the vibrational spectroscopy of coherence in the degenerate normal modes of the tricyanomethanide anion solvated in water is explored in this study. The relaxation of the cross-polarization transient grating anisotropy is shown to reflect the loss of the vibrational coherence, which is caused by ultrafast dynamics of the water solvation shell.
Collapse
Affiliation(s)
- Lev Chuntonov
- Corresponding author, , phone: 215-898-8247, fax: 215-898-0590
| | | | | | | | | |
Collapse
|
92
|
Kim H, Cho M. Infrared Probes for Studying the Structure and Dynamics of Biomolecules. Chem Rev 2013; 113:5817-47. [DOI: 10.1021/cr3005185] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Heejae Kim
- Department of Chemistry, Korea University, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-713, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute,
Seoul 136-713, Korea
| |
Collapse
|
93
|
Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 2013; 5:174-81. [PMID: 23422558 PMCID: PMC3607437 DOI: 10.1038/nchem.1559] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/17/2012] [Indexed: 12/26/2022]
Abstract
The anti-AIDS drug rilpivirine undergoes conformational changes to bind HIV-1 reverse transcriptase (RT), which is an essential enzyme for the replication of HIV. These changes allow it to retain potency against mutations that otherwise would render the enzyme resistant. Here we report that water molecules play an essential role in this binding process. Femtosecond experiments and theory expose the molecular level dynamics of rilpivirine bound to HIV-1 RT. Two nitrile substituents, one on each arm of the drug, are used as vibrational probes of the structural dynamics within the binding pocket. Two-dimensional vibrational echo spectroscopy reveals that one nitrile group is unexpectedly hydrogen-bonded to a mobile water molecule, not identified in previous X-ray structures. Ultrafast nitrile-water dynamics are confirmed by simulations. A higher (1.51 Å) resolution X-ray structure also reveals a water-drug interaction network. Maintenance of a crucial anchoring hydrogen bond may help retain the potency of rilpivirine against pocket mutations despite the structural variations they cause.
Collapse
|
94
|
Studying Biomacromolecules with Two-Dimensional Infrared Spectroscopy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 93:1-36. [DOI: 10.1016/b978-0-12-416596-0.00001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
95
|
Tatulian SA. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol Biol 2013; 974:177-218. [PMID: 23404277 DOI: 10.1007/978-1-62703-275-9_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is widely used in structural characterization of proteins or peptides. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or upon intermolecular interactions. Sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as (13)C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, and molecular architecture of membrane pore or channel forming proteins and peptides. The purpose of this article was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, are also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
96
|
Woys AM, Almeida AM, Wang L, Chiu CC, McGovern M, de Pablo JJ, Skinner JL, Gellman SH, Zanni MT. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra. J Am Chem Soc 2012; 134:19118-28. [PMID: 23113791 DOI: 10.1021/ja3074962] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent protected inside the macrocycle. This work provides calculated and experimentally verified couplings for parallel β-sheets that can be used in structure-based models to simulate and interpret the infrared spectra of β-sheet containing proteins and protein assemblies, such as amyloid fibers.
Collapse
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Charge-separated excited states in platinum(II) chromophores: Photophysics, formation, stabilization and utilization in solar energy conversion. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
98
|
Guo Y, Wang J. Spectroscopic evidence for polymorphic aggregates formed by amyloid-β fragments. Chemphyschem 2012; 13:3901-8. [PMID: 23112008 DOI: 10.1002/cphc.201200611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/30/2012] [Indexed: 12/26/2022]
Abstract
Understanding the structure of amyloid-β (Aβ) aggregates is a key step towards elucidating the pathology of Alzheimer's disease. In this work, three fragments of the Aβ(1-42) protein, Aβ(1-25) (DAEFRHDSGYEVHHQKLVFFAEDVG), Aβ(25-35) (GSNKGAIIGLM), and Aβ(33-42) (GLMVGGVVIA), were synthesized, and their aggregated structures were examined by linear infrared spectroscopy in the amide-I (mainly the C=O stretching) region. The structures of the formed aggregates were found to be both sequence and pH dependent. The results suggest that instead of forming matured fibrils, as in the case of full-length Aβ(1-42), both Aβ(1-25) and Aβ(33-42) form a mixture of threadlike β-sheet fibril, soluble β-sheet oligomer, and random coil structures. The β-sheet conformations were found to be mainly antiparallel for the former and both parallel and antiparallel for the latter. However, the Aβ(25-35) fragment was found to form assembled fibrils containing predominantly parallel β-sheets. The conformation and morphology of the aggregates were also confirmed by circular dichroism measurements and transmission electron microscopy. Factors influencing the structures of the aggregates formed by the Aβ fragments were discussed.
Collapse
Affiliation(s)
- Yangmei Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P R China
| | | |
Collapse
|
99
|
Moran SD, Decatur SM, Zanni MT. Structural and sequence analysis of the human γD-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry. J Am Chem Soc 2012; 134:18410-6. [PMID: 23082813 DOI: 10.1021/ja307898g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identifying the sequence and structural content of residues that compose the core of amyloid fibrils is important because core regions likely control the process of fibril extension and provide potential drug targets. Human γD-crystallin is an eye lens protein that aggregates into amyloid fibrils under acidic conditions. In this manuscript, we use a pepsin enzymatic digest to isolate the core of the amyloid fibrils. The sequence of the core is identified with MALDI MS/MS and its structure is probed with 2D IR spectroscopy and (13)C isotope labeling. Mass spectrometry of the digest identifies residues 80-163 as the amyloid core, which spans most of the C-terminal domain, the linker, and a small portion of the N-terminal domain. From 2D IR spectroscopy of the digested fibrils, we learn that only the C-terminal domain contributes to the amyloid β-sheets while the N-terminal and linker residues are disordered. A comparison to the native crystal structure reveals that loops and α-helices in the native state must undergo conformational transitions to β-strands upon aggregation. These locations may be good drug binding targets. Besides providing new information about γD-crystallin, this study demonstrates the complementarity of mass spectrometry and 2D IR spectroscopy to obtain both sequence and structure information that neither technique provides individually, which will be especially useful for samples only available in microgram quantities.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
100
|
Kwak KW. Extracting Frequency-Frequency Correlation Function from Two-Dimensional Infrared Spectroscopy: Peak Shift Measurement. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.10.3391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|