51
|
Ye S, Yu C, Zhang G, Shi F, Chen Y, Yang J, Wu W, Zhou Y. Downregulation of microRNA-126 is inversely correlated with insulin receptor substrate-1 protein expression in colorectal cancer and is associated with advanced stages of disease. Oncol Lett 2020; 20:2411-2419. [PMID: 32782558 PMCID: PMC7400408 DOI: 10.3892/ol.2020.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common human malignant tumor, and the fourth most common cause of cancer-associated mortality in China. However, the pathogenesis of CRC is not yet fully understood. The present study aimed to investigate the expression and clinical significance of microRNA (miR)-126 and insulin receptor substrate-1 (IRS-1), as well as the role of miR-126 in the prognosis of patients with CRC. A total of 86 colorectal tissue specimens, including 40 CRC and adjacent normal tissue, 26 colorectal adenoma tissue and 20 normal colorectal tissue samples, were collected for the present study. Reverse transcription-quantitative PCR analysis was performed to determine miR-126 and IRS-1 mRNA expression levels, while western blotting and immunohistochemistry (IHC) analyses were performed to determine IRS-1 protein expression levels. The correlation between miR-126 and IRS-1 expression, as well as the association between altered miR-126 and IRS-1 expression levels and clinicopathological characteristics, and the overall survival time of patients with CRC were assessed. The results demonstrated that miR-126 expression was significantly downregulated, while IRS-1 protein expression was upregulated in CRC tissues compared with that in adjacent normal tissues, colorectal adenoma tissues and normal colorectal tissues, respectively. IHC analysis exhibited strong positive staining of IRS-1 protein in CRC tissues, while absent or weak staining of IRS-1 protein was detected in adjacent normal tissues, colorectal adenoma tissues and normal colorectal tissues. miR-126 expression was inversely correlated with IRS-1 protein expression in CRC tissues (r=−0.420; P<0.05). Furthermore, downregulated miR-126 expression was associated with advanced clinicopathological characteristics of the disease and a shorter overall survival time in patients with CRC. Taken together, the results of the present study suggest that miR-126 downregulation may be a candidate molecular marker predictive of poor prognosis of patients with CRC.
Collapse
Affiliation(s)
- Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Guixia Zhang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Feixiong Shi
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yongze Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianyun Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Weiyun Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
52
|
Lin HD, Wang FZ, Lee CY, Nien CY, Tseng YK, Yao CL, Chen SC. 4-Aminobiphenyl inhibits the DNA homologous recombination repair in human liver cells: The role of miR-630 in downregulating RAD18 and MCM8. Toxicology 2020; 440:152441. [DOI: 10.1016/j.tox.2020.152441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023]
|
53
|
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, Hahne JC. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Target Oncol 2020; 15:261-278. [PMID: 32451752 PMCID: PMC7283209 DOI: 10.1007/s11523-020-00717-x] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs represent a significant proportion of the human genome. After having been considered as 'junk' for a long time, non-coding RNAs are now well established as playing important roles in maintaining cellular homeostasis and functions. Some non-coding RNAs show cell- and tissue-specific expression patterns and are specifically deregulated under pathological conditions (e.g. cancer). Therefore, non-coding RNAs have been extensively studied as potential biomarkers in the context of different diseases with a focus on microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for several years. Since their discovery, miRNAs have attracted more attention than lncRNAs in research studies; however, both families of non-coding RNAs have been established to play an important role in gene expression control, either as transcriptional or post-transcriptional regulators. Both miRNAs and lncRNAs can regulate key genes involved in the development of cancer, thus influencing tumour growth, invasion, and metastasis by increasing the activation of oncogenic pathways and limiting the expression of tumour suppressors. Furthermore, miRNAs and lncRNAs are also emerging as important mediators in drug-sensitivity and drug-resistance mechanisms. In the light of these premises, a number of pre-clinical and early clinical studies are exploring the potential of non-coding RNAs as new therapeutics. The aim of this review is to summarise the latest knowledge of the use of miRNAs and lncRNAs as therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Salati
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Milko B Mirchev
- Clinic of Gastroenterology, Medical University, Varna, Bulgaria
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
54
|
Circulating MicroRNAs Regulating DNA Damage Response and Responsiveness to Cisplatin in the Prognosis of Patients with Non-Small Cell Lung Cancer Treated with First-Line Platinum Chemotherapy. Cancers (Basel) 2020; 12:cancers12051282. [PMID: 32438598 PMCID: PMC7281609 DOI: 10.3390/cancers12051282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The expression of microRNA (miR)-21, miR-128, miR-155, and miR-181a involved in DNA damage response (DDR) and tumor responsiveness to platinum was assessed by RT-qPCR in the plasma of patients with non-small cell lung cancer (NSCLC; n = 128) obtained prior to initiation of first-line platinum chemotherapy. U6 small nuclear RNA (snRNA) was used for normalization, and fold change of each miRNA expression relative to the expression in healthy controls was calculated by the 2−ΔΔCt method. MicroRNA expression levels were correlated with patients’ outcomes. Integrated function and pathway enrichment analysis was performed to identify putative target genes. MiR-128, miR-155, and miR-181a expressions were higher in patients compared to healthy donors. MiRNA expression was not associated with response to treatment. High miR-128 and miR-155 were correlated with shorter overall survival (OS), whereas performance status (PS) 2 and high miR-128 independently predicted for decreased OS. In the squamous (SqCC) subgroup (n = 41), besides miR-128 and miR-155, high miR-21 and miR-181a expressions were also associated with worse survival and high miR-155 independently predicted for shorter OS. No associations of miRNA expression with clinical outcomes were observed in patients with non-SqCC (n = 87). Integrated function and pathway analysis on miRNA targets revealed significant enrichments in hypoxia-related pathways. Our study shows for the first time that plasma miR-128 and miR-155 hold independent prognostic implications in NSCLC patients treated with platinum-based chemotherapy possibly related to their involvement in tumor response to hypoxia. Further studies are needed to investigate the potential functional role of these miRNAs in an effort to exploit their therapeutic potential.
Collapse
|
55
|
Wang H, Cao Q, Zhao Q, Arfan M, Liu W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. CHEMOSPHERE 2020; 246:125614. [PMID: 31883478 DOI: 10.1016/j.chemosphere.2019.125614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is found widely in soil and is severely toxic for plants, causing oxidative damage in plant cells because of its heavy metal characteristics. The DNA damage response (DDR) is triggered in plants to cope with the Cd stress. The DNA mismatch repair (MMR) system known for its mismatch repair function determines DDR, as mispairs are easily generated by a translesional synthesis under Cd-induced genomic instability. Cd-induced mismatches are recognized by three heterodimeric complexes including MutSα (MSH2/MSH6), MutSβ (MSH2/MSH3), and MutSγ (MSH2/MSH7). MutLα (MLH1/PMS1), PCNA/RFC, EXO1, DNA polymerase δ and DNA ligase participate in mismatch repair in turn. Meanwhile, ATR is preferentially activated by MSH2 to trigger DDR including the regulation of the cell cycle, endoreduplication, cell death, and recruitment of other DNA repair, which enhances plant tolerance to Cd. However, plants with deficient MutS will bypass MMR-mediated DDR and release the multiple-effect MLH1 from requisition of the MMR system, which leads to weak tolerance to Cd in plants. In this review, we systematically illustrate how the plant DNA MMR system works in a Cd-induced DDR, and how MMR genes regulate plant tolerance to Cd. Additionally, we also reviewed multiple epigenetic regulation systems acting on MMR genes under stress.
Collapse
Affiliation(s)
- Hetong Wang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qijiang Cao
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qiang Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Muhammad Arfan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
56
|
Raza Y, Ahmed A, Khan A, Chishti AA, Akhter SS, Mubarak M, Bernstein C, Zaitlin B, Kazmi SU. Helicobacter pylori severely reduces expression of DNA repair proteins PMS2 and ERCC1 in gastritis and gastric cancer. DNA Repair (Amst) 2020; 89:102836. [PMID: 32143126 DOI: 10.1016/j.dnarep.2020.102836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
Gastric cancers are the third leading cause of cancer mortality in the world. Helicobacter pylori causes over 60 % of all stomach cancers. Colonization of the gastric mucosa by H. pylori results in increased DNA damage. Repair of DNA damage may also be reduced by H. pylori infection. Reduced DNA repair in combination with increased DNA damage can cause carcinogenic mutations. During progression to gastric cancer, gastric epithelium goes through stages of increasing pathology. Determining the levels of DNA repair enzymes during progression to gastric cancer could illuminate treatment approaches. Our aim is to determine the level of gastric expression of DNA repair proteins ERCC1 (a nucleotide excision repair enzyme) and PMS2 (a mismatch repair enzyme) in the presence of H. pylori infection at successive stages of gastric pathology and in gastric cancers. We analyzed gastric tissues of 300 individuals, including 30 without dyspepsia, 200 with dyspepsia and 70 with gastric cancers. The presence of H. pylori, gastric pathology and expression of DNA repair proteins ERCC1 and PMS2 were evaluated. Infection by H. pylori carrying the common cagA gene reduced median nuclear expression of ERCC1 and PMS2 to less than 20 % and 15 % of normal, respectively, in all pathologic stages preceding cancer. ERCC1 and PMS2 nuclear expression was 0-5 % of normal in gastric cancers. H. pylori can cause deficiency of ERCC1 and PMS2 protein expression. These deficiencies are associated with gastric pathology and cancer. This reduction in DNA repair likely causes carcinogenic mutations. Substantially reduced ERCC1 and PMS2 expression appears to be an early step in progression to H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Yasir Raza
- Department of Microbiology, University of Karachi, Karachi, Pakistan; Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine & Drug Research, University of Karachi, Karachi, Pakistan.
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi, Pakistan.
| | | | | | - Muhammad Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan.
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Beryl Zaitlin
- Zaitlin Geoconsulting Ltd., Calgary, Alberta, Canada.
| | | |
Collapse
|
57
|
Doukas SG, Vageli DP, Lazopoulos G, Spandidos DA, Sasaki CT, Tsatsakis A. The Effect of NNK, A Tobacco Smoke Carcinogen, on the miRNA and Mismatch DNA Repair Expression Profiles in Lung and Head and Neck Squamous Cancer Cells. Cells 2020; 9:E1031. [PMID: 32326378 PMCID: PMC7226174 DOI: 10.3390/cells9041031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/04/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Tobacco smoking is a common risk factor for lung cancer and head and neck cancer. Molecular changes such as deregulation of miRNA expression have been linked to tobacco smoking in both types of cancer. Dysfunction of the Mismatch DNA repair (MMR) mechanism has also been associated with a poor prognosis of these cancers, while a cross-talk between specific miRNAs and MMR genes has been previously proposed. We hypothesized that exposure of lung and head and neck squamous cancer cells (NCI and FaDu, respectively) to tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is capable of altering the expression of MSH2 and MLH1, key MMR components, by promoting specific miRNA deregulation. We found that either a low (1 μM) or high (2 μM) dose of NNK induced significant upregulation of "oncomirs" miR-21 and miR-155 and downregulation of "tumor suppressor" miR-422a, as well as the reduction of MMR protein and mRNA expression, in NCI and FaDu, compared to controls. Inhibition of miR-21 restored the NNK-induced reduced MSH2 phenotype in both NCI and FaDu, indicating that miR-21 might contribute to MSH2 regulation. Finally, NNK exposure increased NCI and FaDu survival, promoting cancer cell progression. We provide novel findings that deregulated miR-21, miR-155, and miR-422a and MMR gene expression patterns may be valuable biomarkers for lung and head and neck squamous cell cancer progression in smokers.
Collapse
Affiliation(s)
- Sotirios G. Doukas
- Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.G.D.); (A.T.)
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - Dimitra P. Vageli
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, Medical School, University of Crete, 71110 Heraklion, Greece;
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece;
| | - Clarence T. Sasaki
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.G.D.); (A.T.)
| |
Collapse
|
58
|
Dragomir MP, Kopetz S, Ajani JA, Calin GA. Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 2020; 69:748-763. [PMID: 32034004 DOI: 10.1136/gutjnl-2019-318279] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
One of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks. Non-coding RNAs represent the most abundant type of hormones that contribute significantly to cell-to cell communication, revealing a complex interplay between tumour cells, tumour microenvironment cells and immune cells. Consequently, profiling their abundance in bodily fluids became a mainstream of biomarker identification. Therapeutic targeting of non-coding RNAs represents a new option for clinicians that is currently under development. This review will present the biology and translational value of three of the most studied categories on non-coding RNAs, the microRNAs, the long non-coding RNAs and the circular RNAs. We will also focus on some aspirational concepts that can help in the development of clinical applications related to non-coding RNAs, including using pyknons to discover new non-coding RNAs, targeting human-specific transcripts which are expressed specifically in the tumour cell and using non-coding RNAs to increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Mihnea Paul Dragomir
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George Adrian Calin
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
59
|
Prinz C, Weber D. MicroRNA (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: critical importance of miR-155. Oncotarget 2020; 11:894-904. [PMID: 32206186 PMCID: PMC7075464 DOI: 10.18632/oncotarget.27520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 02/06/2020] [Indexed: 02/03/2023] Open
Abstract
Dysregulation of noncoding microRNA molecules has been associated with immune cell activation in the context of Helicobacter pylori induced gastric inflammation as well as carcinogenesis, but also with downregulation of mismatch repair genes, and may interfere with immune checkpoint proteins that lead to the overexpression of antigens on gastric tumor cells. Numerous miR-molecules have been described as important tools and markers in gastric inflammation and cancer development -including miR-21, miR-143, miR-145, miR-201, and miR-335- all of which are downregulated in gastric tumors, and involved in cell cycle growth or tumor invasion. Among the many microRNAs involved in gastric inflammation, adenocarcinoma development and immune checkpoint regulation, miR-155 is notable in that its upregulation is considered a key marker of chronic gastric inflammation that predisposes a patient to gastric carcinogenesis. Among various other miRs, miR-155 is highly expressed in activated B and T cells and in monocytes/macrophages present in chronic gastric inflammation. Notably, miR-155 was shown to downregulate the expression of certain MMR genes, such as MLH1, MSH2, and MSH6. In tumor-infiltrating miR-155-deficient CD8+ T cells, antibodies against immune checkpoint proteins restored the expression of several derepressed miR-155 targets, suggesting that miR-155 may regulate overlapping pathways to promote antitumor immunity. It may thus be of high clinical impact that gastric pathologies mediated by miR-155 result from its overexpression. This suggests that it may be possible to therapeutically attenuate miR-155 levels for gastric cancer treatment and/or to prevent the progression of chronic gastric inflammation into cancer.
Collapse
Affiliation(s)
- Christian Prinz
- Lehrstuhl für Innere Medizin1, University of Witten gGmbH, Helios Universitätsklinikum, D-42283 Wuppertal, Germany
| | - David Weber
- Lehrstuhl für Innere Medizin1, University of Witten gGmbH, Helios Universitätsklinikum, D-42283 Wuppertal, Germany
| |
Collapse
|
60
|
Rojas E, Martinez-Pacheco M, Rodriguez-Sastre MA, Ramos-Espinosa P, Valverde M. Post-transcriptional regulation of Rad51c by miR-222 contributes cellular transformation. PLoS One 2020; 15:e0221681. [PMID: 31923208 PMCID: PMC6953820 DOI: 10.1371/journal.pone.0221681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
DNA repair inhibition has been described as an essential event leading to the initiation of carcinogenesis. In a previous study, we observed that the exposure to metal mixture induces changes in the miR-nome of the cells that was correlated with the sub-expression of mRNA involved in processes and diseases associated with metal exposure. From this analysis, one of the miRNAs that shows changes in its expression is miR-222, which is overexpressed in various cancers associated with exposure to metals. In silico studies showed that a possible target for the microRNA-222 could be Rad 51c, a gene involved in the double-stranded DNA repair. We could appreciate that up-regulation of miR-222 reduces the expression both gene and as a protein expression of Rad51c by RT-PCR and immunoblot, respectively. A luciferase assay was performed to validate Rad51c as miR-222 target. Neutral comet assay was performed in order to evaluate DNA double-strand breaks under experimental conditions. Here, we demonstrate that miR-222 up-regulation, directly regulates Rad51c expression negatively, and impairs homologous recombination of double-strand break DNA repair during the initiation stage of cell transformation. This inhibition triggers morphological transformation in a two-stage Balb/c 3T3 cell assay, suggesting that this small RNA acts as an initiator of the carcinogenesis process.
Collapse
Affiliation(s)
- Emilio Rojas
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| | | | - Maria Alexandra Rodriguez-Sastre
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| | - Paulina Ramos-Espinosa
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| | - Mahara Valverde
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México
| |
Collapse
|
61
|
Bansal P, Arora M. RNA Binding Proteins and Non-coding RNA's in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:105-118. [PMID: 32285407 DOI: 10.1007/978-981-15-1671-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality as well as morbidity worldwide. The disease has been reported to be chronic in nature and the symptoms of the disease worsen progressively over a long period of time. Inspite of noteworthy achievements have been made in the therapy of CVD yet the available drugs are associated with various undesirable factors including drug toxicity, complexity, resistance and many more. The versatility of RNAs makes them crucial therapeutics candidate for many human diseases. Deeper understanding of RNA biology, exploring new classes of RNA that possess therapeutic potential will help in its successful translation to the clinic. Understanding the mode of action of various RNAs such as miRNA, RNA binding proteins and siRNA in CVD will help in improved therapeutics among patients. Multiple strategies are being planned to determine the future potential of miRNAs to treat a disease. This review embodies the recent work done in the field of miRNA and its role in cardiovascular disease as diagnostic biomarker as well as therapeutic agents. In addition the review highlights the future of miRNAs as a potential therapeutic target and need of designing micronome that may reveal potential predictive targets of miRNA-mRNA interaction.
Collapse
Affiliation(s)
- Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Malika Arora
- Multidisciplinary Research Unit, Guru Gobind Singh Medical College, Faridkot, Punjab, India
| |
Collapse
|
62
|
Ting CY, Liew SM, Price A, Gan GG, Bee-Lan Ong D, Tan SY, Bee PC. Clinical significance of aberrant microRNAs expression in predicting disease relapse/refractoriness to treatment in diffuse large B-cell lymphoma: A meta-analysis. Crit Rev Oncol Hematol 2019; 144:102818. [PMID: 31733445 DOI: 10.1016/j.critrevonc.2019.102818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
The clinical significance of aberrantly expressed microRNAs in predicting treatment response to chemotherapy in diffuse large B-cell lymphoma patients (DLBCL) remains uncertain. Feasibility of microRNA testing to predict treatment outcome was evaluated. Twenty-two types of aberrantly expressed microRNAs were associated with poor treatment response; pooled hazard ratio (HR) was 2.14 [95%CI:1.78-2.57, P < 0.00001]. DLBCL patients with aberrant expression of miR-155, miR-17/92 clusters, miR-21, miR-224, or miR-146b-5p had a higher risk of treatment resistance or shorter period of disease relapse/progression free survival, with HR = 2.71 (95%CI:1.66-4.42, P < 0.0001), HR = 2.70 (95%CI:1.50-4.85, P = 0.0010), HR = 2.20 (95%CI:1.31-3.69, P = 0.003), HR = 2.07 (95%CI:1.50-2.86, P < 0.00001), HR = 2.26 (95%CI:1.40-3.65, P = 0.0009), respectively. The association between aberrant expression of microRNAs and treatment response appears to be stronger in formalin-fixed-paraffin-embedded tissue (HR = 2.41, 95%CI:1.79-3.25, P < 0.00001) than in fresh-frozen samples (HR = 1.94, 95%CI: 1.22-3.08, P = 0.005) and peripheral blood samples (HR = 1.94, 95%CI:1.53-2.46, P < 0.00001). Mir-155, miR-17/92 clusters, miR-21, miR-224, and mir-146b-5p have value in predicting treatment response to chemotherapy in DLBCL.
Collapse
Affiliation(s)
- Choo-Yuen Ting
- Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia
| | - Su-May Liew
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Malaysia
| | - Amy Price
- University of Oxford, Centre for Evidence Based Medicine, England, United Kingdom
| | - Gin-Gin Gan
- Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia
| | - Diana Bee-Lan Ong
- Department of Pathology, Faculty of Medicine, University of Malaya, Malaysia
| | - Soo-Yong Tan
- Department of Pathology, National University of Singapore, Singapore
| | - Ping-Chong Bee
- Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia.
| |
Collapse
|
63
|
Shen AJJ, King J, Scott H, Colman P, Yates CJ. Insights into pituitary tumorigenesis: from Sanger sequencing to next-generation sequencing and beyond. Expert Rev Endocrinol Metab 2019; 14:399-418. [PMID: 31793361 DOI: 10.1080/17446651.2019.1689120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Introduction: This review explores insights provided by next-generation sequencing (NGS) of pituitary tumors and the clinical implications.Areas covered: Although syndromic forms account for just 5% of pituitary tumours, past Sanger sequencing studies pragmatically focused on them. These studies identified mutations in MEN1, CDKN1B, PRKAR1A, GNAS and SDHx causing Multiple Endocrine Neoplasia-1 (MEN1), MEN4, Carney Complex-1, McCune Albright Syndrome and 3P association syndromes, respectively. Furthermore, linkage analysis of single-nucleotide polymorphisms identified AIP mutations in 20% with familial isolated pituitary adenomas (FIPA). NGS has enabled further investigation of sporadic tumours. Thus, mutations of USP8 and CABLES1 were identified in corticotrophinomas, BRAF in papillary craniopharyngiomas and CTNNB1 in adamantinomatous craniopharyngiomas. NGS also revealed that pituitary tumours occur in the DICER1 syndrome, due to DICER1 mutations, and CDH23 mutations occur in FIPA. These discoveries revealed novel therapeutic targets and studies are underway of BRAF inhibitors for papillary craniopharyngiomas, and EGFR and USP8 inhibitors for corticotrophinomas.Expert opinion: It has become apparent that single-nucleotide variants and small insertion/deletion DNA mutations cannot explain all pituitary tumorigenesis. Integrated and improved analyses including whole-genome sequencing, copy number, and structural variation analyses, RNA sequencing and epigenomic analyses, with improved genomic technologies, are likely to further define the genomic landscape.
Collapse
Affiliation(s)
| | - James King
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Peter Colman
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher J Yates
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
64
|
Asadi M, Talesh ST, Gjerstorff MF, Shanehbandi D, Baradaran B, Hashemzadeh S, Zafari V. Identification of miRNAs correlating with stage and progression of colorectal cancer. COLORECTAL CANCER 2019. [DOI: 10.2217/crc-2018-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: miRNAs control biological processes that are implicated in carcinogenesis, and have been researched as potential biomarkers for colorectal cancer (CRC). The aim of the current study was to evaluate the miRNA expression profile in CRC patients to determine their potential to be used as biomarkers in the disease. Materials & methods: Total 47 tissues and their matched marginal tissues, as control group, were obtained from CRC patients. The transcript levels of a selected panel of 15 cancer-associated miRNAs were quantified via real-time gene expression method. Results: miR-155, miR130a, miR-181b, miR-196a, miR-200c and miR-224 were significantly upregulated, while miR122, miR-132, miR-203b, miR330, miR-323, miR-378a-3p and miR-598 we significantly downregulated in CRC. Conclusion: We identified a panel of miRNAs that may be involved in the etiology and pathogenesis of CRC, and may be used for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Milad Asadi
- Liver & Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shoan Taheri Talesh
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten Frier Gjerstorff
- Department of Cancer & Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Thoracic Surgery, Tabriz University of Medical Sciences, Imam Reza Hospital, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
65
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
66
|
Wan TMH, Iyer DN, Ng L. Roles of microRNAs as non-invasive biomarker and therapeutic target in colorectal cancer. Histol Histopathol 2019; 35:225-237. [PMID: 31617575 DOI: 10.14670/hh-18-171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are endogenous, short non-coding RNA molecules that function as critical regulators of various biological processes. There is a strong functional evidence linking the involvement of dysregulated miRNAs to the occurrence, development and progression of colorectal cancer. Studies indicate that while overexpression of oncomiRs, and repression of tumor suppressor miRNAs tends to drive the overall tumorigenic process, the global picture of aberrant miRNA expression in colorectal cancer can classify the disease into multiple molecular phenotypes. Moreover, the expression pattern of miRNAs in colorectal cancer make them viable disease determinants as well as potential therapeutic targets. Through this review, we will summarize the importance of miRNAs in the etiology and progression of colorectal cancer. Specifically, we will explore the key role played by these RNA molecules as likely therapeutic avenues and the strategies presently available to target them. Finally, we will investigate the role of miRNAs as potential non-invasive diagnostic and prognostic biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Timothy Ming-Hun Wan
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong
| | | | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong.
| |
Collapse
|
67
|
Niu X, Schulert GS. Functional Regulation of Macrophage Phenotypes by MicroRNAs in Inflammatory Arthritis. Front Immunol 2019; 10:2217. [PMID: 31572403 PMCID: PMC6753331 DOI: 10.3389/fimmu.2019.02217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory arthritis including rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) exhibit the shared feature of changes in activation and polarization of circulating monocytes and tissue macrophages. Numerous microRNAs (miRs) have been found to have key functions in regulating inflammation and macrophage polarization. Although there is increasing interest in the roles of miRs in both RA and JIA, less is known regarding how miRs relate to functional properties of immune cells, including monocytes and macrophages. Interestingly, miRs can function both to promote inflammatory phenotypes and pro-inflammatory polarization, as well as through negative-feedback loops to limit inflammation. Here, we review the functional roles of several miRs in macrophages in inflammatory arthritis, with a particular focus on vivo effects of miR alteration in experimental arthritis. We also consider how current efforts to target miRs clinically could modify functional monocyte and macrophage polarization in vivo, and serve as novel therapies for diseases such as RA and JIA.
Collapse
Affiliation(s)
- Xiaoling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, The Children's Hospital of Shanghai Jiaotong University, Pudong, China.,Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
68
|
Wu H, He G, Han H, Xiong W, Song T, Chen H, Chen X, Wu X, Huang G, Zhang Y, Sun C, Zhao C, Chen Y. Analysis of MIR155HG variants and colorectal cancer susceptibility in Han Chinese population. Mol Genet Genomic Med 2019; 7:e778. [PMID: 31228357 PMCID: PMC6687631 DOI: 10.1002/mgg3.778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MIR155HG plays an important role in malignant tumors, but it is rarely reported in the occurrence and development of colorectal cancer (CRC). This study investigated the effects of MIR155HG polymorphisms on CRC susceptibility from the perspective of molecular genetics. METHODS Eight SNPs in MIR155HG were selected and genotyped among 514 CRC cases and 510 healthy controls using the Agena MassARRAY platform. The associations between these SNPs and the CRC risk were evaluated under genetic models using conditional logistic regression analysis. The HaploReg v4.1 database was used for SNPs functional prediction. RESULTS The allele "C" of rs12482371 (p = 0.047), allele "C" of rs1893650 (p = 0.025), and the allele "A" of rs928883 (p = 0.037) in MIR155HG were significantly associated with CRC risk. Genetic model analysis revealed that rs12482371 and rs1893650 increased CRC risk; whereas rs928883 was associated with reduced CRC risk. Stratification analysis showed that rs9383938 was a protective factor in CRC patients under 60 years old. Rs12482371 and rs1893650 were associated with the CRC risk in females. Rs11911469 and rs34904192 may affect the clinical stage and lymph node metastasis. Moreover, the haplotypes CTT and GTC of LD block rs4143370|rs77218221|rs12482371, and the haplotypes CATGA and CACGG of LD block rs77699734|rs11911469|rs1893650|rs34904192|rs928883 were significantly associated with CRC risk. CONCLUSION This study revealed that MIR155HG SNPs were associated with CRC susceptibility and could be predictive biomarkers for CRC risk.
Collapse
Affiliation(s)
- Huangfu Wu
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Guisheng He
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Hua Han
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Wei Xiong
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Tao Song
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Huamin Chen
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Xiuxiu Chen
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Xiaoming Wu
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Guangyue Huang
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Yazhen Zhang
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Chuanwei Sun
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Chaoyang Zhao
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| | - Yunjing Chen
- Surgical OncologyThe Second Affiliated Hospital of Hainan Medical CollegeHaikouHainan ProvinceChina
| |
Collapse
|
69
|
Anandappa G, Lampis A, Cunningham D, Khan KH, Kouvelakis K, Vlachogiannis G, Hedayat S, Tunariu N, Rao S, Watkins D, Starling N, Braconi C, Darvish-Damavandi M, Lote H, Thomas J, Peckitt C, Kalaitzaki R, Khan N, Fotiadis N, Rugge M, Begum R, Rana I, Bryant A, Hahne JC, Chau I, Fassan M, Valeri N. miR-31-3p Expression and Benefit from Anti-EGFR Inhibitors in Metastatic Colorectal Cancer Patients Enrolled in the Prospective Phase II PROSPECT-C Trial. Clin Cancer Res 2019; 25:3830-3838. [PMID: 30952636 DOI: 10.1158/1078-0432.ccr-18-3769] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/11/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Anti-EGFR mAbs are effective in the treatment of metastatic colorectal cancer (mCRC) patients. RAS status and tumor location (sidedness) are predictive markers of patients' response to anti-EGFR mAbs. Recently, low miR-31-3p expression levels have been correlated with clinical benefit from the anti-EGFR mAb cetuximab. Here, we aimed to validate the predictive power of miR-31-3p in a prospective cohort of chemorefractory mCRC patients treated with single-agent anti-EGFR mAbs. EXPERIMENTAL DESIGN miR-31-3p was tested by in situ hybridization (ISH) in 91 pretreatment core biopsies from metastatic deposits of 45 patients with mCRC. Sequential tissue biopsies obtained before treatment, at the time of partial response, and at disease progression were tested to monitor changes in miR-31-3p expression overtreatment. miR-31-3p expression, sidedness, and RAS status in pretreatment cell-free DNA were combined in multivariable regression models to assess the predictive value of each variable alone or in combination. RESULTS Patients with low miR-31-3p expression in pretreatment biopsies showed better overall response rate, as well as better progression-free survival and overall survival, compared to those with high miR-31-3p expression. The prognostic effect of miR-31-3p was independent from age, gender, and sidedness. No significant changes in the expression of miR-31-3p were observed when sequential tissue biopsies were tested in long-term or poor responders to anti-EGFR mAbs. miR-31-3p scores were similar when pretreatment biopsies were compared with treatment-naïve archival tissues (often primary colorectal cancer). CONCLUSIONS Our study validates the role of miR-31-3p as potential predictive biomarker of selection for anti-EGFR mAbs.
Collapse
Affiliation(s)
- Gayathri Anandappa
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - David Cunningham
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Khurum H Khan
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Kyriakos Kouvelakis
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Georgios Vlachogiannis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Nina Tunariu
- Department of Radiology, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Sheela Rao
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - David Watkins
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Naureen Starling
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Chiara Braconi
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London and Sutton, United Kingdom
| | - Mahnaz Darvish-Damavandi
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Hazel Lote
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Janet Thomas
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Clare Peckitt
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Ria Kalaitzaki
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Nasir Khan
- Department of Radiology, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Nicos Fotiadis
- Department of Radiology, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Massimo Rugge
- Department of Medicine and Surgical Pathology, University of Padua, Padua, Italy
| | - Ruwaida Begum
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Isma Rana
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Annette Bryant
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Ian Chau
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom
| | - Matteo Fassan
- Department of Medicine and Surgical Pathology, University of Padua, Padua, Italy
| | - Nicola Valeri
- Department of Medicine, The Royal Marsden NHS Trust, London and Sutton, United Kingdom.
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton, United Kingdom
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
70
|
Chen H, Xu Z, Liu D. Small non-coding RNA and colorectal cancer. J Cell Mol Med 2019; 23:3050-3057. [PMID: 30801950 PMCID: PMC6484298 DOI: 10.1111/jcmm.14209] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignance. Although great efforts have been made to understand the pathogenesis of CRC, the underlying mechanisms are still unclear. It is now clear that more than 90% of the total genome is actively transcribed, but lack of protein-coding potential. The massive amount of RNA can be classified as housekeeping RNAs (such as ribosomal RNAs, transfer RNAs) and regulatory RNAs (such as microRNAs [miRNAs], PIWI-interacting RNA [piRNAs], tRNA-derived stress-induced RNA, tRNA-derived small RNA [tRFs] and long non-coding RNAs [lncRNAs]). Small non-coding RNAs are a group of ncRNAs with the length no more than 200 nt and they have been found to exert important regulatory functions under many pathological conditions. In this review, we summarize the biogenesis and functions of regulatory sncRNAs, such as miRNAs, piRNA and tRFs, and highlight their involvements in cancers, particularly in CRC.
Collapse
Affiliation(s)
- Hui Chen
- Department of GastroenterologyPeople’s Hospital of TaizhouTaizhouJiangsuChina
| | - Zhiying Xu
- Department of GastroenterologyPeople’s Hospital of TaizhouTaizhouJiangsuChina
| | - Deliang Liu
- Department of GastroenterologyThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
71
|
Pagotto S, Veronese A, Soranno A, Balatti V, Ramassone A, Guanciali-Franchi PE, Palka G, Innocenti I, Autore F, Rassenti LZ, Kipps TJ, Mariani-Costantini R, Laurenti L, Croce CM, Visone R. HNRNPL Restrains miR-155 Targeting of BUB1 to Stabilize Aberrant Karyotypes of Transformed Cells in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:575. [PMID: 31018621 PMCID: PMC6520824 DOI: 10.3390/cancers11040575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 11/18/2022] Open
Abstract
Aneuploidy and overexpression of hsa-miR-155-5p (miR-155) characterize most solid and hematological malignancies. We recently demonstrated that miR-155 sustains aneuploidy at early stages of in vitro cellular transformation. During in vitro transformation of normal human fibroblast, upregulation of miR-155 downregulates spindle checkpoint proteins as the mitotic checkpoint serine/threonine kinase budding uninhibited by benzimidazoles 1 (BUB1), the centromere protein F (CENPF) and the zw10 kinetochore protein (ZW10), compromising the chromosome alignment at the metaphase plate and leading to aneuploidy in daughter cells. Here we show that the heterogeneous nuclear ribonucleoprotein L (HNRNPL) binds to the polymorphic marker D2S1888 at the 3'UTR of BUB1 gene, impairs the miR-155 targeting, and restores BUB1 expression in chronic lymphocytic leukemia. This mechanism occurs at advanced passages of cell transformation and allows the expansion of more favorable clones. Our findings have revealed, at least in part, the molecular mechanisms behind the chromosomal stabilization of cell lines and the concept that, to survive, tumor cells cannot continuously change their genetic heritage but need to stabilize the most suitable karyotype.
Collapse
Affiliation(s)
- Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alessandra Soranno
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Paolo E Guanciali-Franchi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Giandomenico Palka
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Idanna Innocenti
- Institute of Hematology, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Francesco Autore
- Institute of Hematology, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Laura Z Rassenti
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
- Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA 92093, USA.
| | - Thomas J Kipps
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
- Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA 92093, USA.
| | - Renato Mariani-Costantini
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Luca Laurenti
- Institute of Hematology, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
- Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA 92093, USA.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
72
|
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58:208-218. [PMID: 30382602 DOI: 10.1002/gcc.22698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté (EA 7270), Dijon, France.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Emily C Fortman
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alexander A Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
73
|
Abstract
MicroRNAs (miRNAs) are naturally occurring, highly conserved families of transcripts (∼22 nucleotides in length) that are processed from larger hairpin precursors. miRNAs primarily regulate gene expression by promoting messenger RNA (mRNA) degradation or repressing mRNA translation. miRNAs have been shown to be important regulators of a variety of cellular processes involving development, differentiation, and signaling. Moreover, various human diseases, including cancer and immune dysfunction, are associated with aberrant expression of miRNAs. This review will focus on how the multifunctional miRNA, miR-155, regulates inflammatory diseases, including cancer and pulmonary disorders, and also how miR-155 expression and biogenesis are regulated. We will also provide examples of miR-155-regulated networks in coordination with other noncoding RNAs, including long noncoding RNAs as well as coding mRNAs acting as competing endogenous RNAs.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
74
|
Mjelle R, Sjursen W, Thommesen L, Sætrom P, Hofsli E. Small RNA expression from viruses, bacteria and human miRNAs in colon cancer tissue and its association with microsatellite instability and tumor location. BMC Cancer 2019; 19:161. [PMID: 30786859 PMCID: PMC6381638 DOI: 10.1186/s12885-019-5330-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNA) and other small RNAs are frequently dysregulated in cancer and are promising biomarkers for colon cancer. Here we profile human, virus and bacteria small RNAs in normal and tumor tissue from early stage colon cancer and correlate the expression with clinical parameters. METHODS Small RNAs from colon cancer tissue and adjacent normal mucosa of 48 patients were sequenced using Illumina high-throughput sequencing. Clinical parameters were correlated with the small RNA expression data using linear models. We performed a meta-analysis by comparing publicly available small RNA sequencing datasets with our original sequencing data to confirm the main findings. RESULTS We identified 331 differentially expressed miRNAs between tumor and normal samples. We found that the major changes in miRNA expression between left and right colon are due to miRNAs located within the Hox-developmental genes, including miR-10b, miR-196b and miR-615. Further, we identified new miRNAs associated with microsatellite instability (MSI), including miR-335, miR-26 and miR-625. We performed a meta-analysis on all publicly available miRNA-seq datasets and identified 117 common miRNAs that were differentially expressed between tumor and normal tissue. The miRNAs miR-135b and miR-31 were the most significant upregulated miRNA in tumor across all datasets. The miRNA miR-133a was the most strongly downregulated miRNA in our dataset and also showed consistent downregulation in the other datasets. The miRNAs associated with MSI and tumor location in our data showed similar changes in the other datasets. Finally, we show that small RNAs from Epstein-Barr virus and Fusobacterium nucleatum are differentially expressed between tumor and normal adjacent tissue. CONCLUSIONS Small RNA profiling in colon cancer tissue revealed novel RNAs associated with MSI and tumor location. We show that Fusobacterium nucleatum are detectable at the RNA-level in colon tissue, and that both Fusobacterium nucleatum and Epstein-Barr virus separate tumor and normal tissue.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Medical Genetics, St Olavs Hospital, Trondheim Norway, Erling Skjalgssons gt 1, 7030, Trondheim, Norway
| | - Liv Thommesen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Computer and Information Science, Norwegian University of Science and Technology, NTNU, Sem Sælandsvei 9, 7491, Trondheim, Norway.,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,The Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
75
|
miR-155 drives oncogenesis by promoting and cooperating with mutations in the c-Kit oncogene. Oncogene 2018; 38:2151-2161. [DOI: 10.1038/s41388-018-0571-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/02/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
|
76
|
Ratti M, Lampis A, Hahne JC, Passalacqua R, Valeri N. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 2018; 75:4151-4162. [PMID: 30173350 PMCID: PMC6182336 DOI: 10.1007/s00018-018-2906-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer is one of the most aggressive malignancies, with limited treatment options in both locally advanced and metastatic setting, resulting in poor prognosis. Based on genomic characterization, stomach tumour has recently been described as a heterogeneous disease composed by different subtypes, each of them with peculiar molecular aspects and specific clinical behaviour. With an incidence of 22% among all western gastric tumour cases, stomach cancer with microsatellite instability was identified as one of these subgroups. Retrospective studies and limited prospective trials reported differences between gastric cancers with microsatellite stability and those with instability, mainly concerning clinical and pathological features, but also in regard to immunological microenvironment, correlation with prognostic value, and responses to treatment. In particular, gastric cancer with microsatellite instability constitutes a small but relevant subgroup associated with older age, female sex, distal stomach location, and lower number of lymph-node metastases. Emerging data attribute to microsatellite instability status a favourable prognostic meaning, whereas the poor outcomes reported after perioperative chemotherapy administration suggest a detrimental role of cytotoxic drugs in this gastric cancer subgroup. The strong immunogenicity and the widespread expression of immune-checkpoint ligands make microsatellite instability subtype more vulnerable to immunotherapeutic approach, e.g., with anti-PD-L1 and anti-CTLA4 antibodies. Since gastric cancer with microsatellite instability shows specific features and clinical behaviour not overlapping with microsatellite stable disease, microsatellite instability test might be suitable for inclusion in a diagnostic setting for all tumour stages to guarantee the most targeted and effective treatment to every patient.
Collapse
Affiliation(s)
- Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Division of Oncology, Medical Department, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| | - Rodolfo Passalacqua
- Division of Oncology, Medical Department, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
77
|
The Dual Role of MicroRNAs in Colorectal Cancer Progression. Int J Mol Sci 2018; 19:ijms19092791. [PMID: 30227605 PMCID: PMC6164944 DOI: 10.3390/ijms19092791] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is responsible for one of the major cancer incidence and mortality worldwide. It is well known that MicroRNAs (miRNAs) play vital roles in maintaining the cell development and other physiological processes, as well as, the aberrant expression of numerous miRNAs involved in CRC progression. MiRNAs are a class of small, endogenous, non-coding, single-stranded RNAs that bind to the 3’-untranslated region (3′-UTR) complementary sequences of their target mRNA, resulting in mRNA degradation or inhibition of its translation as a post-transcriptional regulators. Moreover, miRNAs also can target the long non-coding RNA (lncRNA) to regulate the expression of its target genes involved in proliferation and metastasis of CRC. The functions of these dysregulated miRNAs appear to be context specific, with evidence of having a dual role in both oncogenes and tumor suppression depending on the cellular environment in which they are expressed. Therefore, the unique expression profiles of miRNAs relate to the diagnosis, prognosis, and therapeutic outcome in CRC. In this review, we focused on several oncogenic and tumor-suppressive miRNAs specific to CRC, and assess their functions to uncover the molecular mechanisms of tumor initiation and progression in CRC. These data promised that miRNAs can be used as early detection biomarkers and potential therapeutic target in CRC patients.
Collapse
|
78
|
Thiele JA, Hosek P, Kralovcova E, Ostasov P, Liska V, Bruha J, Vycital O, Rosendorf J, Opattova A, Horak J, Kralickova M, Vodicka P, Pitule P. lncRNAs in Non-Malignant Tissue Have Prognostic Value in Colorectal Cancer. Int J Mol Sci 2018; 19:ijms19092672. [PMID: 30205577 PMCID: PMC6163783 DOI: 10.3390/ijms19092672] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
Although colorectal cancer (CRC) is the third most frequent cause of cancer related death in Europe, clinically relevant biomarkers for therapy guidance and prognosis are insufficiently reliable. Long non-coding RNAs (lncRNAs) are RNAs over 200 nucleotides long that are not translated into proteins but can influence biological processes. There is emerging evidence for their involvement in solid cancer as oncogenes, tumour suppressors or regulators of cell proliferation and metastasis development. The goal of this study was to evaluate the prognostic effect of selected lncRNAs in a retrospective study on CRC patients from the Czech Republic. We used a quantitative PCR approach to measure the expression in paired non-malignant and tumour tissue samples of CRC patients of nine lncRNAs previously shown to be involved in cancer progression—ANRIL, CCAT1, GAS5, linc-ROR, MALAT1, MIR155HG, PCAT1, SPRY4-IT1 and TUG1. Associations between expression and expression ratios and clinical characteristics and survival were assessed by using univariable Cox proportional hazards models, Kaplan-Meier estimations with the Gehan-Wilcoxon test, the Mann-Whitney U test, the Kruskal-Wallis test and Spearman’s correlations. A comparison of expression in tumour tissue (TT) and non-malignant mucosa tissue (MT) showed significant upregulation of CCAT1 and linc-ROR in TT (p < 0.001 and p = 0.001, respectively) and downregulation of ANRIL, MIR155HG and MALAT1 (p = 0.001, p = 0.010, p = 0.001, respectively). Linc-ROR was significantly associated with the presence of synchronous metastases (p = 0.033). For individual tissue types, lower MIR155HG expression in TT was correlated with both shorter overall survival (p = 0.008) and shorter disease-free survival (p = 0.040). In MT, expression ratios of CCAT1/ANRIL and CCAT1/MIR155HG were associated with overall survival (p = 0.005 and p = 0.006, respectively). Our results revealed that changes in expression of lncRNAs between MT and TT hold potential to be used as prognostic biomarkers in CRC patients. Moreover, the ratios of CCAT1 to ANRIL and MIR155HG in MT also exhibit potential for prognosis assessment without tumour sampling. Our results also indicate that cancer progression is associated with detrimental system-wide changes in patient tissue, which might govern patient survival even after successful elimination of tumour or cancerous cells.
Collapse
Affiliation(s)
- Jana-Aletta Thiele
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Petr Hosek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Eva Kralovcova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Pavel Ostasov
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic.
| | - Jan Bruha
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic.
| | - Ondrej Vycital
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic.
| | - Jachym Rosendorf
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic.
| | - Alena Opattova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Albertov 4, Charles University, 12800 Prague, Czech Republic.
| | - Josef Horak
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Albertov 4, Charles University, 12800 Prague, Czech Republic.
| | - Milena Kralickova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 30166 Pilsen, Czech Republic.
| | - Pavel Vodicka
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Albertov 4, Charles University, 12800 Prague, Czech Republic.
| | - Pavel Pitule
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 30166 Pilsen, Czech Republic.
| |
Collapse
|
79
|
Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M, Jackson AL. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 2018; 183:428-444. [PMID: 30125933 DOI: 10.1111/bjh.15547] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
miR-155, a microRNA associated with poor prognosis in lymphoma and leukaemia, has been implicated in the progression of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). In this study, we developed and tested cobomarsen (MRG-106), a locked nucleic acid-modified oligonucleotide inhibitor of miR-155. In MF and human lymphotropic virus type 1 (HTLV-1+) CTCL cell lines in vitro, inhibition of miR-155 with cobomarsen de-repressed direct miR-155 targets, decreased expression of multiple gene pathways associated with cell survival, reduced survival signalling, decreased cell proliferation and activated apoptosis. We identified a set of genes that are significantly regulated by cobomarsen, including direct and downstream targets of miR-155. Using clinical biopsies from MF patients, we demonstrated that expression of these pharmacodynamic biomarkers is dysregulated in MF and associated with miR-155 expression level and MF lesion severity. Further, we demonstrated that miR-155 simultaneously regulates multiple parallel survival pathways (including JAK/STAT, MAPK/ERK and PI3K/AKT) previously associated with the pathogenesis of MF, and that these survival pathways are inhibited by cobomarsen in vitro. A first-in-human phase 1 clinical trial of cobomarsen in patients with CTCL is currently underway, in which the panel of proposed biomarkers will be leveraged to assess pharmacodynamic response to cobomarsen therapy.
Collapse
Affiliation(s)
| | - Xuan Beatty
- miRagen Therapeutics, Inc., Boulder, CO, USA
| | | | | | - Michael Tetzlaff
- Section of Dermatopathology, Department of Pathology, Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
80
|
Prossomariti A, Piazzi G, D'Angelo L, Miccoli S, Turchetti D, Alquati C, Montagna C, Bazzoli F, Ricciardiello L. miR-155 Is Downregulated in Familial Adenomatous Polyposis and Modulates WNT Signaling by Targeting AXIN1 and TCF4. Mol Cancer Res 2018; 16:1965-1976. [DOI: 10.1158/1541-7786.mcr-18-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
|
81
|
Kaina B, Izzotti A, Xu J, Christmann M, Pulliero A, Zhao X, Dobreanu M, Au WW. Inherent and toxicant-provoked reduction in DNA repair capacity: A key mechanism for personalized risk assessment, cancer prevention and intervention, and response to therapy. Int J Hyg Environ Health 2018; 221:993-1006. [PMID: 30041861 DOI: 10.1016/j.ijheh.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
Genomic investigations reveal novel evidence which indicates that genetic predisposition and inherent drug response are key factors for development of cancer and for poor response to therapy. However, mechanisms for these outcomes and interactions with environmental factors have not been well-characterized. Therefore, cancer risk, prevention, intervention and prognosis determinations have still mainly been based on population, rather than on individualized, evaluations. The objective of this review was to demonstrate that a key mechanism which contributes to the determination is inherent and/or toxicant-provoked reduction in DNA repair capacity. In addition, functional and quantitative determination of DNA repair capacity on an individual basis would dramatically change the evaluation and management of health problems from a population to a personalized basis. In this review, justifications for the scenario were delineated. Topics to be presented include assays for detection of functional DNA repair deficiency, mechanisms for DNA repair defects, toxicant-perturbed DNA repair capacity, epigenetic mechanisms (methylation and miRNA expression) for alteration of DNA repair function, and bioinformatics approach to analyze large amount of genomic data. Information from these topics has recently been and will be used for better understanding of cancer causation and of response to therapeutic interventions. Consequently, innovative genomic- and mechanism-based evidence can be increasingly used to develop more precise cancer risk assessment, and target-specific and personalized medicine.
Collapse
Affiliation(s)
| | - Alberto Izzotti
- University of Genoa, Genoa, Italy; IRCCS Policlinico San Martino Genoa, Italy
| | - Jianzhen Xu
- Shantou University Medical College, Shantou, China
| | | | | | - Xing Zhao
- Shantou University Medical College, Shantou, China
| | | | - William W Au
- Shantou University Medical College, Shantou, China; University of Medicine and Pharmacy, Tirgu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
82
|
Pucci P, Rescigno P, Sumanasuriya S, de Bono J, Crea F. Hypoxia and Noncoding RNAs in Taxane Resistance. Trends Pharmacol Sci 2018; 39:695-709. [PMID: 29891252 DOI: 10.1016/j.tips.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Taxanes are chemotherapeutic drugs employed in the clinic to treat a variety of malignancies. Despite their overall efficacy, cancer cells often display resistance to taxanes. Therefore, new strategies to increase the effectiveness of taxane-based chemotherapeutics are urgently needed. Multiple molecular players are linked to taxane resistance; these include efflux pumps, DNA repair mechanisms, and hypoxia-related pathways. In addition, emerging evidence indicates that both non-coding RNAs and epigenetic effectors might also be implicated in taxane resistance. Here we focus on the causes of taxane resistance, with the aim to envisage an integrated model of the 'taxane resistance phenome'. This model could help the development of novel therapeutic strategies to treat taxane-resistant neoplasms.
Collapse
Affiliation(s)
- Perla Pucci
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Pasquale Rescigno
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK; Department of Clinical Medicine, University of Naples 'Federico II', Naples, Italy
| | - Semini Sumanasuriya
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK
| | - Johann de Bono
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK
| | - Francesco Crea
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
83
|
Li XF, Song JK, Cai JW, Zeng YQ, Li M, Zhu J, Niu YM. No Association Between MicroRNA-608 rs4919510 G>C Polymorphism and Digestive System Cancers Susceptibility: A Meta-Analysis Based on 10,836 Individuals. Front Physiol 2018; 9:705. [PMID: 29930517 PMCID: PMC5999779 DOI: 10.3389/fphys.2018.00705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022] Open
Abstract
Previous epidemiologic studies have revealed a possible association between microRNA-608 rs4919510 G>C polymorphism and digestive system cancers (DSCs) risk, but the results were not consistent. We therefore performed an updated meta-analysis to explore the association between microRNA-608 rs4919510 G>C polymorphism and DSCs risk. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the relationship between the microRNA-608 rs4919510 G>C polymorphism and DSCs risk. Heterogeneity, cumulative analyses, sensitivity analyses, and publication bias were also conducted to examine the statistical power. Eight published articles with nine independent case-control studies involving 10,836 individuals were included in this meta-analysis. Overall, no significant association was found between microRNA-608 rs4919510 G>C polymorphism and DSCs risk in general populations. But some significant protective effects were observed in the subgroup of Caucasian population group in three genetic models (C vs. G: OR = 0.82, 95% CI, 0.68–0.99, P = 0.03, I2 = 0%; CC vs. GG: OR = 0.59, 95% CI = 0.36–0.97, P = 0.04, I2 = 0%; GC+CC vs. GG: OR = 0.61, 95% CI = 0.37–0.99, P = 0.05, I2 = 0%). In summary, current evidence indicates that the microRNA-608 rs4919510 G>C polymorphism maybe an important factor of DSCs susceptibility, especially in Caucasian population.
Collapse
Affiliation(s)
- Xue-Feng Li
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ju-Kun Song
- Department of Oral and Maxillary Surgery, Gui Zhou Provincial People's Hospital, Guiyang, China
| | - Jun-Wei Cai
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Qin Zeng
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Li
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Zhu
- Trade Union, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Ming Niu
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Stomatology, Center for Evidence-Based Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
84
|
Emerging roles of microRNAs in the metabolic control of immune cells. Cancer Lett 2018; 433:10-17. [PMID: 29935373 DOI: 10.1016/j.canlet.2018.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
Abstract
Immunometabolism is an emerging field that focuses on the role of cellular metabolism in the regulation of immune cells. Recent studies have revealed an intensive link between the metabolic state and the functions of immune cells. MicroRNAs (miRNAs) are small non-coding, single-stranded RNAs generally consisting of 18-25 nucleotides that exert crucial roles in regulating gene expression at the posttranscriptional level. Although the role of miRNAs in immune regulation has long been recognized, their roles in immunometabolism have not yet been well established. Over the past decade, increasing studies have proven that miRNAs are intensively involved in the metabolic control of immune cells including macrophages, T cells, B cells and dendritic cells. In this review, we highlight recent emerging findings in the miRNA-mediated metabolic control of immune cells.
Collapse
|
85
|
Hahne JC, Valeri N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front Oncol 2018; 8:226. [PMID: 29967761 PMCID: PMC6015885 DOI: 10.3389/fonc.2018.00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial-mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
86
|
Goumard C, Desbois-Mouthon C, Wendum D, Calmel C, Merabtene F, Scatton O, Praz F. Low Levels of Microsatellite Instability at Simple Repeated Sequences Commonly Occur in Human Hepatocellular Carcinoma. Cancer Genomics Proteomics 2018; 14:329-339. [PMID: 28871000 DOI: 10.21873/cgp.20043] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM The aim of this study was to assess the incidence of MSI in a large series of human hepatocellular carcinomas (HCC) with various etiologies. MATERIALS AND METHODS The MSI status was determined by polymerase chain reaction (PCR) using 5 mononucleotide and 13 CAn dinucleotide repeats. RESULTS None of the 122 HCC samples displayed an MSI-High phenotype, as defined by the presence of alterations at more than 30% of the microsatellite markers analyzed. Yet, limited microsatellite instability consisting in the insertion or deletion of a few repeat motifs was detected in 32 tumor samples (26.2%), regardless of the etiology of the underlying liver disease. MSI tended to be higher in patients with cirrhosis (p=0.051), possibly reflecting an impact of the inflammatory context in this process. CONCLUSION Based on a large series of HCC with various etiologies, our study allowed us to definitely conclude that MSI is not a hallmark of HCC.
Collapse
Affiliation(s)
- Claire Goumard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Christele Desbois-Mouthon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Dominique Wendum
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,APHP, Hôpital Saint-Antoine, Service d'Anatomie Pathologique, Paris, France
| | - Claire Calmel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Fatiha Merabtene
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Plateforme d'Histomorphologie Saint-Antoine, UMS 30, Paris, France
| | - Olivier Scatton
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,APHP, Hôpital Saint-Antoine, Service de Chirurgie Hépatobiliaire, Paris, France
| | - Françoise Praz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
87
|
Grizzi F, Basso G, Borroni EM, Cavalleri T, Bianchi P, Stifter S, Chiriva-Internati M, Malesci A, Laghi L. Evolving notions on immune response in colorectal cancer and their implications for biomarker development. Inflamm Res 2018; 67:375-389. [PMID: 29322204 DOI: 10.1007/s00011-017-1128-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) still represents the third most commonly diagnosed type of cancer in men and women worldwide. CRC is acknowledged as a heterogeneous disease that develops through a multi-step sequence of events driven by clonal selections; this observation is sustained by the fact that histologically similar tumors may have completely different outcomes, including a varied response to therapy. METHODS In "early" and "intermediate" stage of CRC (stages II and III, respectively) there is a compelling need for new biomarkers fit to assess the metastatic potential of their disease, selecting patients with aggressive disease that might benefit from adjuvant and targeted therapies. Therefore, we review the actual notions on immune response in colorectal cancer and their implications for biomarker development. RESULTS The recognition of the key role of immune cells in human cancer progression has recently drawn attention on the tumor immune microenvironment, as a source of new indicators of tumor outcome and response to therapy. Thus, beside consolidated histopathological biomarkers, immune endpoints are now emerging as potential biomarkers. CONCLUSIONS The introduction of immune signatures and cellular and molecular components of the immune system as biomarkers is particularly important considering the increasing use of immune-based cancer therapies as therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Gianluca Basso
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Elena Monica Borroni
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Tommaso Cavalleri
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paolo Bianchi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sanja Stifter
- Department of Pathology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Alberto Malesci
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Hereditary Cancer Genetics Clinic, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
88
|
Uraki S, Ariyasu H, Doi A, Kawai S, Takeshima K, Morita S, Fukai J, Fujita K, Furuta H, Nishi M, Sugano K, Inoshita N, Nakao N, Yamada S, Akamizu T. Reduced Expression of Mismatch Repair Genes MSH6/MSH2 Directly Promotes Pituitary Tumor Growth via the ATR-Chk1 Pathway. J Clin Endocrinol Metab 2018; 103:1171-1179. [PMID: 29342268 DOI: 10.1210/jc.2017-02332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The mechanisms of pituitary adenoma (PA) pathogenesis and proliferation remain largely unknown. OBJECTIVES To clarify the role of mismatch repair (MMR) genes in the molecular mechanism of PA proliferation. DESIGN We performed quantitative analyses by real-time polymerase chain reaction and immunohistochemistry to detect MMR gene and protein expression in human PAs (n = 47). We also performed correlation analyses of expression levels and tumor volume doubling time (TVDT; n = 31). Specifically, correlation analyses were performed between genes with significant correlation and ataxiatelangiectasia and Rad3-related (ATR) expression in cell-cycle regulatory mechanism ATR-checkpoint kinase 1 (Chk1) pathway (n = 93). We investigated the effect of reduced gene expression on cell proliferation and ATR gene expression in AtT-20ins cells and primary cultures of human PAs. RESULTS Expression of mutS homologs 6 and 2 (MSH6 and MSH2) was positively associated with TVDT (R = 0.52, P = 0.003, and R = 0.44, P = 0.01), as were the corresponding protein levels. Gene expression was positively associated with ATR expression (R = 0.47, P < 0.00001, and R = 0.49, P < 0.00001). In AtT-20ins, the reduction of MSH6 and/or MSH2 expression by small interfering RNA significantly promoted cell proliferation by decreasing ATR expression. This effect was also observed in primary culture. CONCLUSION Reduction of MSH6 and MSH2 expression at the messenger RNA and protein levels could be involved in direct PA proliferation by promoting cell-cycle progression or decreasing the rate of apoptosis through interference with the function of the ATR-Chk1 pathway.
Collapse
Affiliation(s)
- Shinsuke Uraki
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Ariyasu
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Asako Doi
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shintaro Kawai
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken Takeshima
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Junya Fukai
- Department of Neurologic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Koji Fujita
- Department of Neurologic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroto Furuta
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Nishi
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kokichi Sugano
- Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Tochigi, Japan
| | - Naoko Inoshita
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Naoyuki Nakao
- Department of Neurologic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shozo Yamada
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo, Japan
| | - Takashi Akamizu
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
89
|
Gao Y, Liu Z, Ding Z, Hou S, Li J, Jiang K. MicroRNA-155 increases colon cancer chemoresistance to cisplatin by targeting forkhead box O3. Oncol Lett 2018; 15:4781-4788. [PMID: 29552117 PMCID: PMC5840649 DOI: 10.3892/ol.2018.7976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/23/2017] [Indexed: 12/27/2022] Open
Abstract
To investigate the effect of microRNA (miR)-155 on colon cancer chemoresistance to cisplatine and its mechanism. Reverse transcription quantitative polymerase chain reaction was used to measure the levels of miR-155 and forkhead box O3 (FOXO3) in colon cancer specimens and cell lines. Overexpression of miR-155 and miR-155 inhibitor were transfected into colon cancer cell lines to investigate its role of chemoresistance to cisplatin in colon cancer. MTS assays were used to analyse cell viability in vitro. In vivo tumor formation assays were performed in C57BL/6 wild type and miR-155 knockout mice (miR-155-/-). A luciferase reporter assay was used to measure the translation of FOXO3. Additionally, the expression of FOXO3 was detected by western blot analysis. It was identified that miR-155 was markedly upregulated in colon cancer tissue and cell lines. Overexpression of miR-155 enhanced colon cancer cell chemoresistance to cisplatin in vitro and tumorigenesis in vivo. In addition, overexpression of miR-155 was associated with decreased levels of FOXO3, primarily through inhibiting the expression of FOXO3 to increase colon cancer resistanec to cisplatin. The present study demonstrated that miR-155 increased colon cancer drug resistance and decreased FOXO3 expression in vivo and in vitro. This may provide a novel method for the treatment of drug-resistant colon cancer.
Collapse
Affiliation(s)
- Yuewen Gao
- Department of General Surgery, The People's Hospital of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Zhaoyan Liu
- Department of General Surgery, The People's Hospital of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Zhaohong Ding
- Department of General Surgery, The People's Hospital of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Shicai Hou
- Department of General Surgery, The People's Hospital of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Jun Li
- Department of General Surgery, The People's Hospital of Rizhao City, Rizhao, Shandong 276800, P.R. China
| | - Kehua Jiang
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
90
|
Pagotto S, Veronese A, Soranno A, Lanuti P, Di Marco M, Russo MV, Ramassone A, Marchisio M, Simeone P, Guanciali-Franchi PE, Palka G, Costantini RM, Croce CM, Visone R. Hsa-miR-155-5p drives aneuploidy at early stages of cellular transformation. Oncotarget 2018; 9:13036-13047. [PMID: 29560129 PMCID: PMC5849193 DOI: 10.18632/oncotarget.24437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
Hsa-miR-155-5p (miR-155) is overexpressed in most solid and hematological malignancies. It promotes loss of genomic integrity in cancer cells by targeting genes involved in microsatellite instability and DNA repair; however, the link between miR-155 and aneuploidy has been scarcely investigated. Here we describe a novel mechanism by which miR-155 causes chromosomal instability. Using osteosarcoma cells (U2OS) and normal human dermal fibroblast (HDF), two well-established models for the study of chromosome congression, we demonstrate that miR-155 targets the spindle checkpoint proteins BUB1, CENP-F, and ZW10, thus compromising chromosome alignment at the metaphase plate. In U2OS cells, exogenous miR-155 expression reduced the recruitment of BUB1, CENP-F, and ZW10 to the kinetochores which resulted in defective chromosome congression. In contrast, during in vitro transformation of HDF by enforced expression of SV40 Large T antigen and human telomerase (HDFLT/hTERT), inhibition of miR-155 reduced chromosome congression errors and aneuploidy at early passages. Using live-cell imaging we observed that miR-155 delays progression through mitosis, indicating an activated mitotic spindle checkpoint, which likely fails to reduce aneuploidy. Overall, this study provides insight into a mechanism that generates aneuploidy at early stages of cellular transformation, pointing to a role for miR-155 in chromosomal instability at tumor onset.
Collapse
Affiliation(s)
- Sara Pagotto
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Angelo Veronese
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Alessandra Soranno
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Paola Lanuti
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Mirco Di Marco
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | | | - Alice Ramassone
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Marco Marchisio
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Pasquale Simeone
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Paolo E Guanciali-Franchi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Giandomenico Palka
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Renato Mariani Costantini
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.,Chronic Lymphocytic Leukemia Research Consortium, San Diego, California 92093, USA
| | - Rosa Visone
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
91
|
Scanlon SE, Hegan DC, Sulkowski PL, Glazer PM. Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity in VHL-deficient human renal cell carcinoma. Oncotarget 2018; 9:4647-4660. [PMID: 29435132 PMCID: PMC5797003 DOI: 10.18632/oncotarget.23470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 11/25/2022] Open
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is inactivated in the vast majority of human clear cell renal carcinomas. The pathogenesis of VHL loss is currently best understood to occur through stabilization of the hypoxia-inducible factors, activation of hypoxia-induced signaling pathways, and transcriptional reprogramming towards a pro-angiogenic and pro-growth state. However, hypoxia also drives other pro-tumorigenic processes, including the development of genomic instability via down-regulation of DNA repair gene expression. Here, we find that DNA repair genes involved in double-strand break repair by homologous recombination (HR) and in mismatch repair, which are down-regulated by hypoxic stress, are decreased in VHL-deficient renal cancer cells relative to wild type VHL-complemented cells. Functionally, this gene repression is associated with impaired DNA double-strand break repair in VHL-deficient cells, as determined by the persistence of ionizing radiation-induced DNA double-strand breaks and reduced repair activity in a homology-dependent plasmid reactivation assay. Furthermore, VHL deficiency conferred increased sensitivity to PARP inhibitors, analogous to the synthetic lethality observed between hypoxia and these agents. Finally, we discovered a correlation between VHL inactivation and reduced HR gene expression in a large panel of human renal carcinoma samples. Together, our data elucidate a novel connection between VHL-deficient renal carcinoma and hypoxia-induced down-regulation of DNA repair, and identify potential opportunities for targeting DNA repair defects in human renal cell carcinoma.
Collapse
Affiliation(s)
- Susan E. Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Denise C. Hegan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Parker L. Sulkowski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
92
|
Alivernini S, Gremese E, McSharry C, Tolusso B, Ferraccioli G, McInnes IB, Kurowska-Stolarska M. MicroRNA-155-at the Critical Interface of Innate and Adaptive Immunity in Arthritis. Front Immunol 2018; 8:1932. [PMID: 29354135 PMCID: PMC5760508 DOI: 10.3389/fimmu.2017.01932] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that fine-tune the cell response to a changing environment by modulating the cell transcriptome. miR-155 is a multifunctional miRNA enriched in cells of the immune system and is indispensable for the immune response. However, when deregulated, miR-155 contributes to the development of chronic inflammation, autoimmunity, cancer, and fibrosis. Herein, we review the evidence for the pathogenic role of miR-155 in driving aberrant activation of the immune system in rheumatoid arthritis, and its potential as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Stefano Alivernini
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Gremese
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Barbara Tolusso
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianfranco Ferraccioli
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| |
Collapse
|
93
|
Zhou S, Chen G. Design, synthesis, and bioactivity evaluation of antitumor sorafenib analogues. RSC Adv 2018; 8:37643-37651. [PMID: 35558629 PMCID: PMC9089424 DOI: 10.1039/c8ra08246d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
Malignant tumors are a serious threat to human health and are generally treated with chemical therapy.
Collapse
Affiliation(s)
- Shiyang Zhou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
| | - Guangying Chen
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education
| |
Collapse
|
94
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
95
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
96
|
Eldeib MG, Kandil YI, Abdelghany TM, Mansour OA, El-Zahabi MM. Alterations of microRNAs expression in response to 5-Fluorouracil, Oxaliplatin, and Irinotecan treatment of colorectal cancer cells. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
97
|
Harada K, Kaya DM, Song S, Baba H, Ajani JA. Genomic profiling of colorectal cancers and the future of personalized treatment. COLORECTAL CANCER 2017. [DOI: 10.2217/crc-2016-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New technologies have enabled faster, cheaper and more accurate genomic and other types of profiling. Therefore, treatment has become more customized according to molecular subtype. Here, we summarize the current status of genomic profiling for colorectal cancer (CRC) and discuss future directions. Recently, the CRC Subtyping Consortium classified CRC into four subtypes: CMS1, microsatellite instability immune (14%); CMS2, canonical (37%); CMS3, metabolic (13%); and CMS4, mesenchymal (23%). Testing for KRAS, NRAS and BRAF mutations, and microsatellite instability status in CRC has proven essential for treatment decisions. Tumor heterogeneity and the evolution of drug-resistant subclones after therapy should be further assessed and pursued. Patient-derived xenografts and liquid biopsies might facilitate the development of optimum and accurate personalized therapy regimens.
Collapse
Affiliation(s)
- Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1–1–1 Honjo, Kumamoto 860–8556, Japan
| | - Dilsa Mizrak Kaya
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1–1–1 Honjo, Kumamoto 860–8556, Japan
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
98
|
microRNAs as cancer therapeutics: A step closer to clinical application. Cancer Lett 2017; 407:113-122. [DOI: 10.1016/j.canlet.2017.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
|
99
|
Sun Y, Hawkins PG, Bi N, Dess RT, Tewari M, Hearn JWD, Hayman JA, Kalemkerian GP, Lawrence TS, Ten Haken RK, Matuszak MM, Kong FM, Jolly S, Schipper MJ. Serum MicroRNA Signature Predicts Response to High-Dose Radiation Therapy in Locally Advanced Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2017; 100:107-114. [PMID: 29051037 DOI: 10.1016/j.ijrobp.2017.08.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/11/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To assess the utility of circulating serum microRNAs (c-miRNAs) to predict response to high-dose radiation therapy for locally advanced non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Data from 80 patients treated from 2004 to 2013 with definitive standard- or high-dose radiation therapy for stages II-III NSCLC as part of 4 prospective institutional clinical trials were evaluated. Pretreatment serum levels of 62 miRNAs were measured by quantitative reverse transcription-polymerase chain reaction array. We combined miRNA data and clinical factors to generate a dose-response score (DRS) for predicting overall survival (OS) after high-dose versus standard-dose radiation therapy. Elastic net Cox regression was used for variable selection and parameter estimation. Model assessment and tuning parameter selection were performed through full cross-validation. The DRS was also correlated with local progression, distant metastasis, and grade 3 or higher cardiac toxicity using Cox regression, and grade 2 or higher esophageal and pulmonary toxicity using logistic regression. RESULTS Eleven predictive miRNAs were combined with clinical factors to generate a DRS for each patient. In patients with low DRS, high-dose radiation therapy was associated with significantly improved OS compared to treatment with standard-dose radiation therapy (hazard ratio 0.22). In these patients, high-dose radiation also conferred lower risk of distant metastasis and local progression, although the latter association was not statistically significant. Patients with high DRS exhibited similar rates of OS regardless of dose (hazard ratio 0.78). The DRS did not correlate with treatment-related toxicity. CONCLUSIONS Using c-miRNA signature and clinical factors, we developed a DRS that identified a subset of patients with locally advanced NSCLC who derive an OS benefit from high-dose radiation therapy. This DRS may guide dose escalation in a patient-specific manner.
Collapse
Affiliation(s)
- Yilun Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Peter G Hawkins
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Nan Bi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiation Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking, People's Republic of China
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Muneesh Tewari
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Jason W D Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - James A Hayman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Gregory P Kalemkerian
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Feng-Ming Kong
- Department of Radiation Oncology, Indiana University, Indianapolis, Indiana
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| | - Matthew J Schipper
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
100
|
Yang Y, Du Y, Liu X, Cho WC. Involvement of Non-coding RNAs in the Signaling Pathways of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:19-51. [PMID: 27573893 DOI: 10.1007/978-3-319-42059-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common diagnosed cancers worldwide. The metastasis and development of resistance to anti-cancer treatment are major challenges in the treatment of CRC. Understanding mechanisms underpinning the pathogenesis is therefore critical in developing novel agents for CRC treatments. A large number of evidence has demonstrated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have functional roles in both the physiological and pathological processes by regulating the expression of their target genes. These molecules are engaged in the pathobiology of neoplastic diseases and are targets for the diagnosis, prognosis and therapy of a variety of cancers, including CRC. In this regard, ncRNAs have emerged as one of the hallmarks of CRC pathogenesis and they also play key roles in metastasis, drug resistance and the stemness of CRC stem cell by regulating various signaling networks. Therefore, a better understanding the ncRNAs involved in the signaling pathways of CRC may lead to the development of novel strategy for diagnosis, prognosis and treatment of CRC. In this chapter, we summarize the latest findings on ncRNAs, with a focus on miRNAs and lncRNAs involving in signaling networks and in the regulation of pathogenic signaling pathways in CRC.
Collapse
Affiliation(s)
- Yinxue Yang
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yong Du
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|