51
|
Chen HI, Attiah M, Baltuch G, Smith DH, Hamilton RH, Lucas TH. Harnessing plasticity for the treatment of neurosurgical disorders: an overview. World Neurosurg 2014; 82:648-59. [PMID: 24518888 DOI: 10.1016/j.wneu.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/30/2013] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
Plasticity is fundamental to normal central nervous system function and its response to injury. Understanding this adaptive capacity is central to the development of novel surgical approaches to neurologic disease. These innovative interventions offer the promise of maximizing functional recovery for patients by harnessing targeted plasticity. Developing novel therapies will require the unprecedented integration of neuroscience, bioengineering, molecular biology, and physiology. Such synergistic approaches will create therapeutic options for patients previously outside of the scope of neurosurgery, such as those with permanent disability after traumatic brain injury or stroke. In this review, we synthesize the rapidly evolving field of plasticity and explore ways that neurosurgeons may enhance functional recovery in the future. We conclude that understanding plasticity is fundamental to modern neurosurgical education and practice.
Collapse
Affiliation(s)
- H Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mark Attiah
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon Baltuch
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roy H Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy H Lucas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
52
|
Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ. Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 2014; 8:483-516. [PMID: 23826701 DOI: 10.2217/rme.13.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) ranks as the leading cause of mortality and disability in the young population worldwide. The annual US incidence of TBI in the general population is estimated at 1.7 million per year, with an estimated financial burden in excess of US$75 billion a year in the USA alone. Despite the prevalence and cost of TBI to individuals and society, no treatments have passed clinical trial to clinical implementation. The rapid expansion of stem cell research and technology offers an alternative to traditional pharmacological approaches targeting acute neuroprotection. However, preclinical testing of these approaches depends on the selection and characterization of appropriate animal models. In this article we consider the underlying pathophysiology for the focal and diffuse TBI subtypes, discuss the existing preclinical TBI models and functional outcome tasks used for assessment of injury and recovery, identify criteria particular to preclinical animal models of TBI in which stem cell therapies can be tested for safety and efficacy, and review these criteria in the context of the existing TBI literature. We suggest that 2 months post-TBI is the minimum period needed to evaluate human cell transplant efficacy and safety. Comprehensive review of the published TBI literature revealed that only 32% of rodent TBI papers evaluated functional outcome ≥1 month post-TBI, and only 10% evaluated functional outcomes ≥2 months post-TBI. Not all published papers that evaluated functional deficits at a minimum of 2 months post-TBI reported deficits; hence, only 8.6% of overall TBI papers captured in this review demonstrated functional deficits at 2 months or more postinjury. A 2-month survival and assessment period would allow sufficient time for differentiation and integration of human neural stem cells with the host. Critically, while trophic effects might be observed at earlier time points, it will also be important to demonstrate the sustainability of such an effect, supporting the importance of an extended period of in vivo observation. Furthermore, regulatory bodies will likely require at least 6 months survival post-transplantation for assessment of toxicology/safety, particularly in the context of assessing cell abnormalities.
Collapse
Affiliation(s)
- Eric M Gold
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine 2030 Gross Hall, CA 92697-1705, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 2014; 15:82-92. [PMID: 24434846 PMCID: PMC4539940 DOI: 10.1038/nrg3563] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After years of incremental progress, several recent studies have succeeded in deriving disease-relevant cell types from human pluripotent stem cell (hPSC) sources. The prospect of an unlimited cell source, combined with promising preclinical data, indicates that hPSC technology may be on the verge of clinical translation. In this Review, we discuss recent progress in directed differentiation, some of the new technologies that have facilitated the success of hPSC therapies and the remaining hurdles on the road towards developing hPSC-based cell therapies.
Collapse
Affiliation(s)
- Viviane Tabar
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York 10065, USA
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York 10065, USA
| |
Collapse
|
54
|
Tønnesen J, Kokaia M. Electrophysiological investigations of synaptic connectivity between host and graft neurons. PROGRESS IN BRAIN RESEARCH 2013. [PMID: 23195416 DOI: 10.1016/b978-0-444-59575-1.00005-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The functional synaptic integration of grafted stem cell-derived neurons is one of the key aspects of neural cell replacement therapies for neurological disorders such as Parkinson's disease. However, little is currently known about the synaptic connectivity between graft and host cells after transplantation, not only in the settings of clinical trials but also in experimental studies. This knowledge gap is primarily due to the lack of experimental electrophysiological approaches allowing interrogation of synaptic connectivity between prospectively identified host and graft neurons and hampers our understanding of the mechanisms underlying functional integration of stem cell-derived neurons in the host brain, as well as the optimization of protocols for deriving stem cells for neural cell replacement therapy. Recent optogenetic tools allow for direct investigation of connectivity between host and graft neural populations and have already been applied to show bidirectional integration of dopaminergic neurons in a host tissue. These new tools have potential to advance our understanding of functional integration in the near future. Here, we provide an overview of the current literature addressing functional integration of stem cell-derived neurons in the settings of Parkinson's disease models and discuss some experimental paradigms to approach this issue.
Collapse
Affiliation(s)
- Jan Tønnesen
- Synaptic Plasticity and Superresolution Microscopy Group, Interdisciplinary Institute for Neurosciences, Université de Bordeaux Segalen, Bordeaux, France
| | | |
Collapse
|
55
|
Aimone JB, Weick JP. Perspectives for computational modeling of cell replacement for neurological disorders. Front Comput Neurosci 2013; 7:150. [PMID: 24223548 PMCID: PMC3818471 DOI: 10.3389/fncom.2013.00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/10/2013] [Indexed: 02/04/2023] Open
Abstract
Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impact circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.
Collapse
Affiliation(s)
- James B Aimone
- 1Cognitive Modeling Group, Sandia National Laboratories Albuquerque, NM, USA
| | | |
Collapse
|
56
|
Engraftment of nonintegrating neural stem cells differentially perturbs cortical activity in a dose-dependent manner. Mol Ther 2013; 21:2258-67. [PMID: 23831593 DOI: 10.1038/mt.2013.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022] Open
Abstract
Neural stem cell (NSC) therapy represents a potentially powerful approach for gene transfer in the diseased central nervous system. However, transplanted primary, embryonic stem cell- and induced pluripotent stem cell-derived NSCs generate largely undifferentiated progeny. Understanding how physiologically immature cells influence host activity is critical to evaluating the therapeutic utility of NSCs. Earlier inquiries were limited to single-cell recordings and did not address the emergent properties of neuronal ensembles. To interrogate cortical networks post-transplant, we used voltage sensitive dye imaging in mouse neocortical brain slices, which permits high temporal resolution analysis of neural activity. Although moderate NSC engraftment largely preserved host physiology, subtle defects in the activation properties of synaptic inputs were induced. High-density engraftment severely dampened cortical excitability, markedly reducing the amplitude, spatial extent, and velocity of propagating synaptic potentials in layers 2-6. These global effects may be mediated by specific disruptions in excitatory network structure in deep layers. We propose that depletion of endogenous cells in engrafted neocortex contributes to circuit alterations. Our data provide the first evidence that nonintegrating cells cause differential host impairment as a function of engrafted load. Moreover, they emphasize the necessity for efficient differentiation methods and proper controls for engraftment effects that interfere with the benefits of NSC therapy.
Collapse
|
57
|
Abstract
Down syndrome (trisomy 21) is the most common genetic cause of intellectual disability, but the precise molecular mechanisms underlying impaired cognition remain unclear. Elucidation of these mechanisms has been hindered by the lack of a model system that contains full trisomy of chromosome 21 (Ts21) in a human genome that enables normal gene regulation. To overcome this limitation, we created Ts21-induced pluripotent stem cells (iPSCs) from two sets of Ts21 human fibroblasts. One of the fibroblast lines had low level mosaicism for Ts21 and yielded Ts21 iPSCs and an isogenic control that is disomic for human chromosome 21 (HSA21). Differentiation of all Ts21 iPSCs yielded similar numbers of neurons expressing markers characteristic of dorsal forebrain neurons that were functionally similar to controls. Expression profiling of Ts21 iPSCs and their neuronal derivatives revealed changes in HSA21 genes consistent with the presence of 50% more genetic material as well as changes in non-HSA21 genes that suggested compensatory responses to oxidative stress. Ts21 neurons displayed reduced synaptic activity, affecting excitatory and inhibitory synapses equally. Thus, Ts21 iPSCs and neurons display unique developmental defects that are consistent with cognitive deficits in individuals with Down syndrome and may enable discovery of the underlying causes of and treatments for this disorder.
Collapse
|
58
|
Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, Zhou GM, Ayala M, Zhang SC. Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 2013; 31:440-7. [PMID: 23604284 DOI: 10.1038/nbt.2565] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Dysfunction of basal forebrain cholinergic neurons (BFCNs) and γ-aminobutyric acid (GABA) interneurons, derived from medial ganglionic eminence (MGE), is implicated in disorders of learning and memory. Here we present a method for differentiating human embryonic stem cells (hESCs) to a nearly uniform population of NKX2.1(+) MGE-like progenitor cells. After transplantation into the hippocampus of mice in which BFCNs and some GABA neurons in the medial septum had been destroyed by mu P75-saporin, human MGE-like progenitors, but not ventral spinal progenitors, produced BFCNs that synaptically connected with endogenous neurons, whereas both progenitors generated similar populations of GABA neurons. Mice transplanted with MGE-like but not spinal progenitors showed improvements in learning and memory deficits. These results suggest that progeny of the MGE-like progenitors, particularly BFCNs, contributed to learning and memory. Our findings support the prospect of using human stem cell-derived MGE-like progenitors in developing therapies for neurological disorders of learning and memory.
Collapse
Affiliation(s)
- Yan Liu
- Waisman Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Krencik R, Ullian EM. A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies. Front Cell Neurosci 2013; 7:25. [PMID: 23503583 PMCID: PMC3596764 DOI: 10.3389/fncel.2013.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/28/2013] [Indexed: 11/13/2022] Open
Abstract
What roles do astrocytes play in human disease?This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs) into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, CA, USA
| | | |
Collapse
|
60
|
High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. J Neurosci 2013; 32:15837-42. [PMID: 23136422 DOI: 10.1523/jneurosci.3735-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After transplantation, individual stem cell-derived neurons can functionally integrate into the host CNS; however, evidence that neurons derived from transplanted human embryonic stem cells (hESCs) can drive endogenous neuronal network activity in CNS tissue is still lacking. Here, using multielectrode array recordings, we report activation of high-frequency oscillations in the β and γ ranges (10-100 Hz) in the host hippocampal network via targeted optogenetic stimulation of transplanted hESC-derived neurons.
Collapse
|
61
|
Nayagam BA, Edge AS, Needham K, Hyakumura T, Leung J, Nayagam DAX, Dottori M. An in vitro model of developmental synaptogenesis using cocultures of human neural progenitors and cochlear explants. Stem Cells Dev 2012; 22:901-12. [PMID: 23078657 DOI: 10.1089/scd.2012.0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In mammals, the sensory hair cells and auditory neurons do not spontaneously regenerate and their loss results in permanent hearing impairment. Stem cell therapy is one emerging strategy that is being investigated to overcome the loss of sensory cells after hearing loss. To successfully replace auditory neurons, stem cell-derived neurons must be electrically active, capable of organized outgrowth of processes, and of making functional connections with appropriate tissues. We have developed an in vitro assay to test these parameters using cocultures of developing cochlear explants together with neural progenitors derived from human embryonic stem cells (hESCs). We found that these neural progenitors are electrically active and extend their neurites toward the sensory hair cells in cochlear explants. Importantly, this neurite extension was found to be significantly greater when neural progenitors were predifferentiated toward a neural crest-like lineage. When grown in coculture with hair cells only (denervated cochlear explants), stem cell-derived processes were capable of locating and growing along the hair cell rows in an en passant-like manner. Many presynaptic terminals (synapsin 1-positive) were observed between hair cells and stem cell-derived processes in vitro. These results suggest that differentiated hESC-derived neural progenitors may be useful for developing therapies directed at auditory nerve replacement, including complementing emerging hair cell regeneration therapies.
Collapse
Affiliation(s)
- Bryony A Nayagam
- Department of Otolaryngology, The University of Melbourne, Melbourne, Parkville, Australia.
| | | | | | | | | | | | | |
Collapse
|
62
|
Livesey FJ. Stem cell models of Alzheimer's disease and related neurological disorders. ALZHEIMERS RESEARCH & THERAPY 2012; 4:44. [PMID: 23131128 PMCID: PMC3580453 DOI: 10.1186/alzrt147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human models of Alzheimer's disease (AD) have the potential to complement existing animal models for carrying out functional studies of AD pathogenesis and the development of novel therapies. An effective human cellular model of AD would use the appropriate cell types and ideally neural circuits affected by the disease, would develop relevant pathology and would do so in a reproducible manner over a timescale short enough for practical use. A pressing question for the usefulness of this approach is whether neurological diseases that take decades to become manifest in humans can be successfully modelled over a reasonable timescale. We discuss here whether these models can do more than simply replicate what is already known about AD, and evaluate some of their potentially unique advantages.
Collapse
Affiliation(s)
- Frederick J Livesey
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
63
|
de Groot MWGDM, Westerink RHS, Dingemans MML. Don't judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing. Toxicol Sci 2012; 132:1-7. [PMID: 22961093 DOI: 10.1093/toxsci/kfs269] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Classical cases of developmental neurotoxicity (DNT) in humans and advances in risk assessment methods did not prevent the emergence of new chemicals with (suspected) DNT potential. Exposure to these chemicals may be related to the increased worldwide incidence of learning and neurodevelopmental disorders in children. DNT is often investigated in a traditional manner (in vivo using large numbers of experimental animals), whereas development of in vitro methods for DNT reduces animal use and increases insight into cellular and molecular mechanisms of DNT. Several essential neurodevelopmental processes, including proliferation, migration, differentiation, formation of axons and dendrites, synaptogenesis, and apoptosis, are already being evaluated in vitro using biochemical and morphological endpoints. Yet, investigation of chemical-induced effects on the development of functional neuronal networks, including network formation, inter- and intracellular signaling and neuronal network function, is underrepresented in DNT testing. This view therefore focuses on in vitro models and innovative experimental approaches for functional DNT testing, ranging from optical and electrophysiological measurements of intra- and intercellular signaling in neural stem/progenitor cells to measurements of network activity in neuronal networks using multielectrode arrays. The development of functional DNT assays will strongly support the decision-making process for measures to prevent potential chemical-induced adverse effects on neurodevelopment and cognition in humans. We therefore argue that for risk assessment, biochemical and morphological approaches should be complemented with investigations of neuronal (network) functionality.
Collapse
|
64
|
Kapucu FE, Tanskanen JMA, Mikkonen JE, Ylä-Outinen L, Narkilahti S, Hyttinen JAK. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics. Front Comput Neurosci 2012; 6:38. [PMID: 22723778 PMCID: PMC3378047 DOI: 10.3389/fncom.2012.00038] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/30/2012] [Indexed: 01/15/2023] Open
Abstract
In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI) histograms. Moreover, the algorithm calculates ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average (CMA) and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA) data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.
Collapse
Affiliation(s)
- Fikret E Kapucu
- Department of Biomedical Engineering, Tampere University of Technology Tampere, Finland
| | | | | | | | | | | |
Collapse
|
65
|
Jellinger KA. Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med 2012; 16:1166-83. [PMID: 22176890 PMCID: PMC3823071 DOI: 10.1111/j.1582-4934.2011.01507.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Abstract
The misfolding and progressive aggregation of specific proteins in selective regions of the nervous system is a seminal occurrence in many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic and experimental differences, increasing evidence indicates considerable overlap between synucleinopathies, tauopathies and other protein-misfolding diseases. Inclusions, often characteristic hallmarks of these disorders, suggest interactions of pathological proteins enganging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Alzheimer, Parkinson, Huntington and prion diseases, have confirmed correlations/overlaps between these and other neurodegenerative disorders. Emerging evidence, in addition to synergistic effects of tau protein, amyloid-β, α-synuclein and other pathologic proteins, suggests that prion-like induction and spreading, involving secreted proteins, are major pathogenic mechanisms in various neurodegenerative diseases, depending on genetic backgrounds and environmental factors. The elucidation of the basic molecular mechanisms underlying the interaction and spreading of pathogenic proteins, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, is a major challenge for modern neuroscience, to provide a deeper insight into their pathogenesis as a basis of effective diagnosis and treatment.
Collapse
|
66
|
Abstract
The use of ion channels to control defined events in defined cell types at defined times in the context of living tissue or whole organism represent one of the major advance of the last decade, and optogenetics (i.e the combination of genetic and optical methods) obviously played a key role in this achievement.1 Although the existence of light-activated ion channels (i.e ospin channels) has been known since 1971,2 it took about 35 y before the concept of an ion channel used for bioengineering control of cell or tissue activity becomes reality.3 From that moment forward, rhodopsine channels4,5 (i.e blue light-gated non-specific Na+ channels that depolarize cells thus increasing cell excitability) or halorhodopsin channels6 (i.e yellow light-gated Cl- channels that hyperpolarize cells thus decreasing cell excitability) have been extensively used to turn neurons on and off in response to diverse colors of light, with an extremely high temporal precision (i.e milliseconds range). Although optogenetics has been originally established in neuroscience, it addresses now to non-neuronal systems, including cardiac, smooth and skeletal muscles, glial cells or even embryonic stem cells.7-9 However, although light stimulation allows control of cell excitability with a high spatio-temporal specificity, light waves present the disadvantage to not penetrate deep tissue, and implanted devices are required for in vivo light stimulation. In contrast to visible light-waves, radio-waves (i.e longer wavelength and lower frequency) can penetrate deep tissues with minimal energy absorption.
Collapse
|
67
|
Piquet AL, Venkiteswaran K, Marupudi NI, Berk M, Subramanian T. The immunological challenges of cell transplantation for the treatment of Parkinson's disease. Brain Res Bull 2012; 88:320-31. [PMID: 22521427 DOI: 10.1016/j.brainresbull.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/24/2023]
Abstract
Dopaminergic cell transplantation is an experimental therapy for Parkinson's disease (PD). It has many potential theoretical advantages over current treatment strategies such as providing continuous local dopaminergic replenishment, eliminating motor fluctuations and medication-induced dyskinesias, slowing down disease progression or even reversing disease pathology in the host. Recent studies also show that dopaminergic cell transplants provide long-term neuromodulation in the basal ganglia that simulates the combined effects of oral dopaminergic therapy and surgical therapies like deep brain stimulation, the contemporary therapeutic approach to advanced PD. However, dopaminergic cell transplantation in PD as not been optimized and current experimental techniques have many drawbacks. In published experiments to date of attempted dopaminergic grafting in PD, the major challenges are unacceptable graft-induced dyskinesias or failure of such grafts to exceed the benefits afforded by sham surgery. A deleterious host immune response to the transplant has been implicated as a major putative cause for these adverse outcomes. This article focuses on recent advances in understanding the immunology of the transplantation in PD and possible methods to overcome adverse events such that we could translate cell replacement strategies into viable clinical treatments in the future.
Collapse
Affiliation(s)
- Amanda L Piquet
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, United States
| | | | | | | | | |
Collapse
|
68
|
Schubert C. Host neurons obey transplants. Nature 2011. [DOI: 10.1038/nature.2011.9406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|