51
|
Calì T, Ottolini D, Soriano ME, Brini M. A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Hum Mol Genet 2014; 24:1045-60. [PMID: 25305074 DOI: 10.1093/hmg/ddu519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Parkinson's disease-related protein DJ-1 has a role in the protection against oxidative stress and maintenance of mitochondria structure. Whether this action depends on its localization and activity within the mitochondria is not clear. Here we develop an approach to resolve intra-mitochondrial distribution of DJ-1 and monitor its translocation under specific conditions. By a new split-green fluorescent protein (GFP)-based tool, we can observe that a small DJ-1 fraction is located within the mitochondrial matrix and that it consistently increases upon nutrient depletion. We also find that the targeting of DJ-1 to the mitochondrial matrix enhances mitochondrial and cytosolic adenosine triphosphate levels. Intriguingly, DJ-1 pathogenic mutants fail to improve bioenergetics and translocate within the mitochondrial matrix, suggesting that the DJ-1 protective role requires both these actions. By this new split-GFP-based tool, we can resolve mitochondrial compartmentalization of proteins which are not constitutively resident in mitochondria but translocate to them in response to specific stimuli.
Collapse
Affiliation(s)
- Tito Calì
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| | - Denis Ottolini
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| | - Maria Eugenia Soriano
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi, 58/b, 35131 Padova, Italy
| |
Collapse
|
52
|
Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, Switzer RC, Ahmad SO, Sunkin SM, Walker D, Cui X, Fisher DA, McCoy AM, Gamber K, Ding X, Goldberg MS, Benkovic SA, Haupt M, Baptista MA, Fiske BK, Sherer TB, Frasier MA. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiol Dis 2014; 70:190-203. [DOI: 10.1016/j.nbd.2014.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 11/25/2022] Open
|
53
|
Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption. Redox Biol 2014; 2:667-72. [PMID: 24936441 PMCID: PMC4052521 DOI: 10.1016/j.redox.2014.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Mutations in the DJ-1 gene have been shown to cause a rare autosomal-recessive genetic form of Parkinson's disease (PD). The function of DJ-1 and its role in PD development has been linked to multiple pathways, however its exact role in the development of PD has remained elusive. It is thought that DJ-1 may play a role in regulating reactive oxygen species (ROS) formation and overall oxidative stress in cells through directly scavenging ROS itself, or through the regulation of ROS scavenging systems such as glutathione (GSH) or thioredoxin (Trx) or ROS producing complexes such as complex I of the electron transport chain. Previous work in this laboratory has demonstrated that isolated brain mitochondria consume H2O2 predominantly by the Trx/Thioredoxin Reductase (TrxR)/Peroxiredoxin (Prx) system in a respiration dependent manner (Drechsel et al., Journal of Biological Chemistry, 2010). Therefore we wanted to determine if mitochondrial H2O2 consumption was altered in brains from DJ-1 deficient mice (DJ-1(-/-)). Surprisingly, DJ-1(-/-) mice showed an increase in mitochondrial respiration-dependent H2O2 consumption compared to controls. To determine the basis of the increased H2O2 consumption in DJ1(-/-) mice, the activities of Trx, Thioredoxin Reductase (TrxR), GSH, glutathione disulfide (GSSG) and glutathione reductase (GR) were measured. Compared to control mice, brains from DJ-1(-/-) mice showed an increase in (1) mitochondrial Trx activity, (2) GSH and GSSG levels and (3) mitochondrial glutaredoxin (GRX) activity. Brains from DJ-1(-/-) mice showed a decrease in mitochondrial GR activity compared to controls. The increase in the enzymatic activities of mitochondrial Trx and total GSH levels may account for the increased H2O2 consumption observed in the brain mitochondria in DJ-1(-/-) mice perhaps as an adaptive response to chronic DJ-1 deficiency.
Collapse
Key Words
- 4-HNE, 4-hydroxyl-2-nonenal
- 6OHDA, 6-hydroxydopamine
- ASK1, apoptosis signal-regulating kinase 1
- BSA, Bovin Serum Albumin
- Cox IV, complex IV
- DA, dopaminergic
- DJ-1
- DJ1-/-, DJ-1 knockout
- GR, glutathione reductase
- GRX, glutaredoxin
- GSH, reduced glutathione
- GSSG, oxidized glutathione
- Gpx, glutathione peroxidase
- H2O2, hydrogen peroxide
- HEDS, 2-hydroxyethyl disulfide
- MEF, mouse embryonic fibroblasts
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Mitochondria
- Nrf2, nuclear factor erythroid 2-related factor
- Oxidative stress
- PD, Parkinson’s disease
- PQ, paraquat
- Parkinson’s disease
- Prx, peroxiredoxin
- ROS, reactive oxygen species
- SNpc, substantia nigra pars compacta
- TH, tyrosine hydroxylase
- Thioredoxin
- Thioredoxin reductase
- Trx, thioredoxin
- Trx1, cytosolic trx
- Trx2, mitochondrial trx
- TrxR, thioredoxin reductase
- TrxR1, cytosolic TrxR
- TrxR2, mitochondrial Trx
Collapse
|
54
|
Sanchez G, Varaschin RK, Büeler H, Marcogliese PC, Park DS, Trudeau LE. Unaltered striatal dopamine release levels in young Parkin knockout, Pink1 knockout, DJ-1 knockout and LRRK2 R1441G transgenic mice. PLoS One 2014; 9:e94826. [PMID: 24733019 PMCID: PMC3986353 DOI: 10.1371/journal.pone.0094826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/19/2014] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative brain diseases; it is accompanied by extensive loss of dopamine (DA) neurons of the substantia nigra that project to the putamen, leading to impaired motor functions. Several genes have been associated with hereditary forms of the disease and transgenic mice have been developed by a number of groups to produce animal models of PD and to explore the basic functions of these genes. Surprisingly, most of the various mouse lines generated such as Parkin KO, Pink1 KO, DJ-1 KO and LRRK2 transgenic have been reported to lack degeneration of nigral DA neuron, one of the hallmarks of PD. However, modest impairments of motor behavior have been reported, suggesting the possibility that the models recapitulate at least some of the early stages of PD, including early dysfunction of DA axon terminals. To further evaluate this possibility, here we provide for the first time a systematic comparison of DA release in four different mouse lines, examined at a young age range, prior to potential age-dependent compensations. Using fast scan cyclic voltammetry in striatal sections prepared from young, 6–8 weeks old mice, we examined sub-second DA overflow evoked by single pulses and action potential trains. Unexpectedly, none of the models displayed any dysfunction of DA overflow or reuptake. These results, compatible with the lack of DA neuron loss in these models, suggest that molecular dysfunctions caused by the absence or mutation of these individual genes are not sufficient to perturb the function and survival of mouse DA neurons.
Collapse
Affiliation(s)
- Gonzalo Sanchez
- Departments of pharmacology and neurosciences, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Rafael K. Varaschin
- Departments of pharmacology and neurosciences, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Hansruedi Büeler
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Paul C. Marcogliese
- Department of cellular and molecular medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David S. Park
- Department of cellular and molecular medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Louis-Eric Trudeau
- Departments of pharmacology and neurosciences, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, Canada
- * E-mail:
| |
Collapse
|
55
|
Assous M, Had-Aissouni L, Gubellini P, Melon C, Nafia I, Salin P, Kerkerian-Le-Goff L, Kachidian P. Progressive Parkinsonism by acute dysfunction of excitatory amino acid transporters in the rat substantia nigra. Neurobiol Dis 2014; 65:69-81. [PMID: 24480091 DOI: 10.1016/j.nbd.2014.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive degeneration of substantia nigra (SN) dopamine neurons, involving a multifactorial cascade of pathogenic events. Here we explored the hypothesis that dysfunction of excitatory amino acid transporters (EAATs) might be involved. Acutely-induced dysfunction of EAATs in the rat SN, by single unilateral injection of their substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC), triggers a neurodegenerative process mimicking several PD features. Dopamine neurons are selectively affected, consistent with their sustained excitation by PDC measured by slice electrophysiology. The anti-oxidant N-acetylcysteine and the NMDA receptor antagonists ifenprodil and memantine provide neuroprotection. Besides oxidative stress and NMDA receptor-mediated excitotoxicity, glutathione depletion and neuroinflammation characterize the primary insult. Most interestingly, the degeneration progresses overtime with unilateral to bilateral and caudo-rostral evolution. Transient adaptive changes in dopamine function markers in SN and striatum accompany cell loss and axonal dystrophy, respectively. Motor deficits appear when neuron loss exceeds 50% in the most affected SN and striatal dopamine tone is dramatically reduced. These findings outline a functional link between EAAT dysfunction and several PD pathogenic mechanisms/pathological hallmarks, and provide a novel acutely-triggered model of progressive Parkinsonism.
Collapse
Affiliation(s)
- Maxime Assous
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Laurence Had-Aissouni
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Paolo Gubellini
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Christophe Melon
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Imane Nafia
- Fluofarma, 2 Rue Robert Escarpit, 33607, Pessac, France
| | - Pascal Salin
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Lydia Kerkerian-Le-Goff
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France.
| | - Philippe Kachidian
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France.
| |
Collapse
|
56
|
Hennis MR, Seamans KW, Marvin MA, Casey BH, Goldberg MS. Behavioral and neurotransmitter abnormalities in mice deficient for Parkin, DJ-1 and superoxide dismutase. PLoS One 2013; 8:e84894. [PMID: 24386432 PMCID: PMC3873453 DOI: 10.1371/journal.pone.0084894] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/27/2013] [Indexed: 01/10/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin-/-DJ-1-/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities.
Collapse
Affiliation(s)
- Meghan R. Hennis
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katherine W. Seamans
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Marian A. Marvin
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bradford H. Casey
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Matthew S. Goldberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
57
|
Regulation of dopamine presynaptic markers and receptors in the striatum of DJ-1 and Pink1 knockout rats. Neurosci Lett 2013; 557 Pt B:123-8. [PMID: 24157858 DOI: 10.1016/j.neulet.2013.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/24/2022]
Abstract
Pathogenic autosomal recessive mutations in the DJ-1 (Park7) or the PTEN-induced putative kinase 1 (Pink1 or PARK6) genes are associated with familial Parkinson's disease (PD). It is not well known regarding the pathological mechanisms involving the DJ-1 and Pink1 mutations. Here we characterized DJ-1 and Pink1 knockout rats both through expression profiling and using quantitative autoradiography to measure the densities of the dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) in the striatum of transgenic rats and wild type controls. Expression profiling with a commercially available array of 84 genes known to be involved in PD indicated that only the target gene was significantly downregulated in each transgenic rat model. D1 receptor, VMAT2, and DAT were measured using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. No significant changes were observed in the density of DAT in either model. Although the densities of VMAT2 and D1 receptor were unchanged in Pink1 knockout, but both were increased in DJ-1 knockout rats. The densities of D2 and D3 receptors, determined by mathematical analysis of binding of radioligands [(3)H]WC-10 and [(3)H]raclopride, were significantly increased in both knockout models. These distinctive changes in the expression of dopamine presynaptic markers and receptors in the striatum may reflect different compensatory regulation of dopamine system in DJ-1 versus Pink1 knockout rat models of familial PD.
Collapse
|
58
|
Surprising behavioral and neurochemical enhancements in mice with combined mutations linked to Parkinson's disease. Neurobiol Dis 2013; 62:113-23. [PMID: 24075852 DOI: 10.1016/j.nbd.2013.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/23/2013] [Accepted: 09/17/2013] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder behind Alzheimer's disease. There are currently no therapies proven to halt or slow the progressive neuronal cell loss in PD. A better understanding of the molecular and cellular causes of PD is needed to develop disease-modifying therapies. PD is an age-dependent disease that causes the progressive death of dopamine-producing neurons in the brain. Loss of substantia nigra dopaminergic neurons results in locomotor symptoms such as slowness of movement, tremor, rigidity and postural instability. Abnormalities in other neurotransmitters, such as serotonin, may also be involved in both the motor and non-motor symptoms of PD. Most cases of PD are sporadic but many families show a Mendelian pattern of inherited Parkinsonism and causative mutations have been identified in genes such as Parkin, DJ-1, PINK1, alpha-synuclein and leucine rich repeat kinase 2 (LRRK2). Although the definitive causes of idiopathic PD remain uncertain, the activity of the antioxidant enzyme glutathione peroxidase 1 (Gpx1) is reduced in PD brains and has been shown to be a key determinant of vulnerability to dopaminergic neuron loss in PD animal models. Furthermore, Gpx1 activity decreases with age in human substantia nigra but not rodent substantia nigra. Therefore, we crossed mice deficient for both Parkin and DJ-1 with mice deficient for Gpx1 to test the hypothesis that loss-of-function mutations in Parkin and DJ-1 cause PD by increasing vulnerability to Gpx1 deficiency. Surprisingly, mice lacking Parkin, DJ-1 and Gpx1 have increased striatal dopamine levels in the absence of nigral cell loss compared to wild type, Gpx1(-/-), and Parkin(-/-)DJ-1(-/-) mutant mice. Additionally, Parkin(-/-)DJ-1(-/-) mice exhibit improved rotarod performance and have increased serotonin in the striatum and hippocampus. Stereological analysis indicated that the increased serotonin levels were not due to increased serotonergic projections. The results of our behavioral, neurochemical and immunohistochemical analyses reveal that PD-linked mutations in Parkin and DJ-1 cause dysregulation of neurotransmitter systems beyond the nigrostriatal dopaminergic circuit and that loss-of-function mutations in Parkin and DJ-1 lead to adaptive changes in dopamine and serotonin especially in the context of Gpx1 deficiency.
Collapse
|
59
|
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 2013; 62:132-144. [PMID: 23380027 DOI: 10.1016/j.freeradbiomed.2013.01.018] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder with both motor and nonmotor symptoms owing to a spreading process of neuronal loss in the brain. At present, only symptomatic treatment exists and nothing can be done to halt the degenerative process, as its cause remains unclear. Risk factors such as aging, genetic susceptibility, and environmental factors all play a role in the onset of the pathogenic process but how these interlink to cause neuronal loss is not known. There have been major advances in the understanding of mechanisms that contribute to nigral dopaminergic cell death, including mitochondrial dysfunction, oxidative stress, altered protein handling, and inflammation. However, it is not known if the same processes are responsible for neuronal loss in nondopaminergic brain regions. Many of the known mechanisms of cell death are mirrored in toxin-based models of PD, but neuronal loss is rapid and not progressive and limited to dopaminergic cells, and drugs that protect against toxin-induced cell death have not translated into neuroprotective therapies in humans. Gene mutations identified in rare familial forms of PD encode proteins whose functions overlap widely with the known molecular pathways in sporadic disease and these have again expanded our knowledge of the neurodegenerative process but again have so far failed to yield effective models of sporadic disease when translated into animals. We seem to be missing some key parts of the jigsaw, the trigger event starting many years earlier in the disease process, and what we are looking at now is merely part of a downstream process that is the end stage of neuronal death.
Collapse
Affiliation(s)
- David T Dexter
- Parkinson's Disease Research Group, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London SE1 9NH, UK.
| |
Collapse
|
60
|
Levine AJ, Harris CR, Puzio-Kuter AM. The interfaces between signal transduction pathways: IGF-1/mTor, p53 and the Parkinson Disease pathway. Oncotarget 2013; 3:1301-7. [PMID: 23211569 PMCID: PMC3717794 DOI: 10.18632/oncotarget.759] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Arnold J Levine
- Cancer Institute of New Jersey, UMDNJ, New Brunswick, NJ, USA.
| | | | | |
Collapse
|
61
|
Shahaduzzaman M, Acosta S, Bickford PC, Borlongan CV. α-Synuclein is a pathological link and therapeutic target for Parkinson's disease and traumatic brain injury. Med Hypotheses 2013; 81:675-80. [PMID: 23920272 DOI: 10.1016/j.mehy.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/05/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) affects more than 1% of population over 65 and it is characterized by gradual loss of nigrostriatal dopaminergic neurons and wide spread accumulation of α-synuclein. Collectively 30% of familial and 3-5% of sporadic form of PD are associated with genetic mutation. Compelling evidence implicates that in addition to inherited factors, acquired co-morbidities contribute to PD pathology. Here, we hypothesize that traumatic brain injury (TBI) exacerbates nigrostriatal dopaminergic degeneration by modulating PD-associated genes including α-synuclein, DJ-1, LRRK2, among others. Thus this article will present speculative arguments of a genetic component contributing to this TBI and PD pathological overlap.
Collapse
Affiliation(s)
- Md Shahaduzzaman
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | | | | | | |
Collapse
|
62
|
Evidence of oxidative stress in young and aged DJ-1-deficient mice. FEBS Lett 2013; 587:1562-70. [PMID: 23587484 DOI: 10.1016/j.febslet.2013.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 02/02/2023]
Abstract
Loss of DJ-1 function contributes to pathogenesis in Parkinson's disease. Here, we investigate the impact of aging and DJ-1 deficiency in transgenic mice. Ventral midbrain from young DJ-1-deficient mice revealed no change in 4-hydroxy-2-nonenal (4-HNE), but HSP60, HSP40 and striatal dopamine turnover were significantly elevated compared to wildtype. In aged mice, the chaperone response observed in wildtype animals was absent from DJ-1-deficient transgenics, and nigral 4-HNE immunoreactivity was enhanced. These changes were concomitant with increased striatal dopamine levels and uptake. Thus, increased oxidants and diminished protein quality control may contribute to nigral oxidative damage with aging in the model.
Collapse
|
63
|
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62:803-19. [DOI: 10.1016/j.neuint.2012.12.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
|