51
|
Nguyen T, Mège RM. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. Eur J Cell Biol 2016; 95:415-426. [PMID: 27320194 DOI: 10.1016/j.ejcb.2016.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - René Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
52
|
Giger FA, Dumortier JG, David NB. Analyzing In Vivo Cell Migration using Cell Transplantations and Time-lapse Imaging in Zebrafish Embryos. J Vis Exp 2016. [PMID: 27168357 DOI: 10.3791/53792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell migration is key to many physiological and pathological conditions, including cancer metastasis. The cellular and molecular bases of cell migration have been thoroughly analyzed in vitro. However, in vivo cell migration somehow differs from in vitro migration, and has proven more difficult to analyze, being less accessible to direct observation and manipulation. This protocol uses the migration of the prospective prechordal plate in the early zebrafish embryo as a model system to study the function of candidate genes in cell migration. Prechordal plate progenitors form a group of cells which, during gastrulation, undergoes a directed migration from the embryonic organizer to the animal pole of the embryo. The proposed protocol uses cell transplantation to create mosaic embryos. This offers the combined advantages of labeling isolated cells, which is key to good imaging, and of limiting gain/loss of function effects to the observed cells, hence ensuring cell-autonomous effects. We describe here how we assessed the function of the TORC2 component Sin1 in cell migration, but the protocol can be used to analyze the function of any candidate gene in controlling cell migration in vivo.
Collapse
Affiliation(s)
- Florence A Giger
- CNRS UMR8197 - INSERM U1024, IBENS, Institut de Biologie de l'École Normale Supérieure
| | - Julien G Dumortier
- Department of Physiology Development and Neuroscience, University of Cambridge
| | - Nicolas B David
- CNRS UMR8197 - INSERM U1024, IBENS, Institut de Biologie de l'École Normale Supérieure;
| |
Collapse
|
53
|
Lanier MH, Kim T, Cooper JA. CARMIL2 is a novel molecular connection between vimentin and actin essential for cell migration and invadopodia formation. Mol Biol Cell 2015; 26:4577-88. [PMID: 26466680 PMCID: PMC4678016 DOI: 10.1091/mbc.e15-08-0552] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
CARMIL2 is a novel and direct molecular connection between vimentin filaments and actin assembly during cell migration and invadopodia formation. Through two distinct domains, CARMIL2 localizes to vimentin filaments and regulates actin assembly. The biochemical activities of both domains are necessary for cell migration and invasion. Cancer cell migration requires the regulation of actin networks at protrusions associated with invadopodia and other leading edges. Carcinomas become invasive after undergoing an epithelial–mesenchymal transition characterized by the appearance of vimentin filaments. While vimentin expression correlates with cell migration, the molecular connections between vimentin- and actin-based membrane protrusions are not understood. We report here that CARMIL2 (capping protein, Arp2/3, myosin-I linker 2) provides such a molecular link. CARMIL2 localizes to vimentin, regulates actin capping protein (CP), and binds to membranes. CARMIL2 is necessary for invadopodia formation, as well as cell polarity, lamellipodial assembly, membrane ruffling, macropinocytosis, and collective cell migration. Using point mutants and chimeras with defined biochemical and cellular properties, we discovered that localization to vimentin and CP binding are both essential for the function of CARMIL2 in cells. On the basis of these results, we propose a model in which dynamic vimentin filaments target CARMIL2 to critical membrane-associated locations, where CARMIL2 regulates CP, and thus actin assembly, to create cell protrusions.
Collapse
Affiliation(s)
- M Hunter Lanier
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Taekyung Kim
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
54
|
Roszko I, S Sepich D, Jessen JR, Chandrasekhar A, Solnica-Krezel L. A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation. Development 2015; 142:2508-20. [PMID: 26062934 DOI: 10.1242/dev.119032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
During vertebrate gastrulation, convergence and extension movements elongate embryonic tissues anteroposteriorly and narrow them mediolaterally. Planar cell polarity (PCP) signaling is essential for mediolateral cell elongation underlying these movements, but how this polarity arises is poorly understood. We analyzed the elongation, orientation and migration behaviors of lateral mesodermal cells undergoing convergence and extension movements in wild-type zebrafish embryos and mutants for the Wnt/PCP core component Vangl2 (Trilobite). We demonstrate that Vangl2 function is required at the time when cells transition to a highly elongated and mediolaterally aligned body. vangl2 mutant cells fail to undergo this transition and to migrate along a straight path with high net speed towards the dorsal midline. Instead, vangl2 mutant cells exhibit an anterior/animal pole bias in cell body alignment and movement direction, suggesting that PCP signaling promotes effective dorsal migration in part by suppressing anterior/animalward cell polarity and movement. Endogenous Vangl2 protein accumulates at the plasma membrane of mesenchymal converging cells at the time its function is required for mediolaterally polarized cell behavior. Heterochronic cell transplantations demonstrated that Vangl2 cell membrane accumulation is stage dependent and regulated by both intrinsic factors and an extracellular signal, which is distinct from PCP signaling or other gastrulation regulators, including BMP and Nodals. Moreover, mosaic expression of fusion proteins revealed enrichment of Vangl2 at the anterior cell edges of highly mediolaterally elongated cells. These results demonstrate that the dynamic Vangl2 intracellular distribution is coordinated with and necessary for the changes in convergence and extension cell behaviors during gastrulation.
Collapse
Affiliation(s)
- Isabelle Roszko
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Diane S Sepich
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37130, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
55
|
Abstract
Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eötvös University, Budapest, Hungary.
| | | |
Collapse
|
56
|
Fast imaging of live organisms with sculpted light sheets. Sci Rep 2015; 5:9385. [PMID: 25893952 PMCID: PMC4403519 DOI: 10.1038/srep09385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/12/2015] [Indexed: 12/31/2022] Open
Abstract
Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.
Collapse
|
57
|
Dumortier JG, David NB. The TORC2 component, Sin1, controls migration of anterior mesendoderm during zebrafish gastrulation. PLoS One 2015; 10:e0118474. [PMID: 25710382 PMCID: PMC4339552 DOI: 10.1371/journal.pone.0118474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/18/2015] [Indexed: 12/19/2022] Open
Abstract
TORC2 is a serine-threonine kinase complex conserved through evolution that recently emerged as a new regulator of actin dynamics and cell migration. However, knockout in mice of its core components Sin1 and Rictor is embryonic lethal, which has limited in vivo analyses. Here, we analysed TORC2 function during early zebrafish development, using a morpholino-mediated loss of function of sin1. Sin1 appears required during gastrulation for migration of the prechordal plate, the anterior most mesoderm. In absence of Sin1, cells migrate both slower and less persistently, which can be correlated to a reduction in actin-rich protrusions and a randomisation of the remaining protrusions. These results demonstrate that, as established in vitro, the TORC2 component Sin1 controls actin dynamics and cell migration in vivo. We furthermore establish that Sin1 is required for protrusion formation downstream of PI3K, and is acting upstream of the GTPase Rac1, since expression of an activated form of Rac1 is sufficient to rescue sin1 loss of function.
Collapse
Affiliation(s)
- Julien G. Dumortier
- INSERM U1024, Paris, France
- CNRS UMR 8197, Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, Paris, France
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United-Kingdom
| | - Nicolas B. David
- INSERM U1024, Paris, France
- CNRS UMR 8197, Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
58
|
Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep 2015; 5:7656. [PMID: 25563751 PMCID: PMC5379035 DOI: 10.1038/srep07656] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 01/19/2023] Open
Abstract
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Collapse
|
59
|
Zhang T, Yin C, Qiao L, Jing L, Li H, Xiao C, Luo N, Lei S, Meng W, Zhu H, Liu J, Xu H, Mo X. Stat3-Efemp2a modulates the fibrillar matrix for cohesive movement of prechordal plate progenitors. Development 2015; 141:4332-42. [PMID: 25371367 DOI: 10.1242/dev.104885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, emerging evidence has shown that Stat3 controls tumor cell migration and invasion. However, the molecular mechanisms by which Stat3 controls the cell movement remain largely unknown. Embryonic gastrula progenitors display coordinated and orientated migration, called collective cell migration. Collective cell migration is the simultaneous movement of multiple cells and is universally involved in physiological and pathological programs. Stat3 activity is required for the migration of gastrula progenitors, but it does not affect cell specification, thus suggesting that gastrula movements are an excellent model to provide insight into Stat3 control of cell migration in vivo. In this study, we reveal a novel mechanism by which Stat3 modulates extracellular matrix (ECM) assembly to control the coherence of collective migration of prechordal plate progenitors during zebrafish embryonic gastrulation. We show that Stat3 regulates the expression of Efemp2a in the prechordal plate progenitors that migrate anteriorly during gastrulation. Alteration of Stat3-Efemp2a signaling activity disrupted the configuration of fibronectin (FN) and laminin (LM) matrices, resulting in defective coherence of prechordal plate progenitor movements in zebrafish embryos. We demonstrate that Efemp2a acts as a downstream effector of Stat3 to promote ECM configuration for coherent collective cell migrations in vivo.
Collapse
Affiliation(s)
- Ting Zhang
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaoran Yin
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangjun Qiao
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lulu Jing
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongda Li
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chun Xiao
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Luo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Lei
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
60
|
Breau MA, Schneider-Maunoury S. Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Dev Biol 2014; 401:25-36. [PMID: 25541234 DOI: 10.1016/j.ydbio.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/16/2023]
Abstract
Key to morphogenesis is the orchestration of cell movements in the embryo, which requires fine-tuned adhesive interactions between cells and their close environment. The neural crest paradigm has provided important insights into how adhesion dynamics control epithelium-to-mesenchyme transition and mesenchymal cell migration. Much less is known about cranial placodes, patches of ectodermal cells that generate essential parts of vertebrate sensory organs and ganglia. In this review, we summarise the known functions of adhesion molecules in cranial placode morphogenesis, and discuss potential novel implications of adhesive interactions in this crucial developmental process. The great repertoire of placodal cell behaviours offers new avenues for exploring the multiple roles of adhesion complexes in epithelial remodelling, collective migration and neuronal movements.
Collapse
Affiliation(s)
- Marie Anne Breau
- Sorbonne Universités, UPMC Univ Paris 06, IBPS-UMR7622, F-75005 Paris, France; CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, F-75005 Paris, France; INSERM, U1156, F-75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, UPMC Univ Paris 06, IBPS-UMR7622, F-75005 Paris, France; CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, F-75005 Paris, France; INSERM, U1156, F-75005 Paris, France
| |
Collapse
|
61
|
|
62
|
Zaritsky A, Kaplan D, Hecht I, Natan S, Wolf L, Gov NS, Ben-Jacob E, Tsarfaty I. Propagating waves of directionality and coordination orchestrate collective cell migration. PLoS Comput Biol 2014; 10:e1003747. [PMID: 25058592 PMCID: PMC4109844 DOI: 10.1371/journal.pcbi.1003747] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022] Open
Abstract
The ability of cells to coordinately migrate in groups is crucial to enable them to travel long distances during embryonic development, wound healing and tumorigenesis, but the fundamental mechanisms underlying intercellular coordination during collective cell migration remain elusive despite considerable research efforts. A novel analytical framework is introduced here to explicitly detect and quantify cell clusters that move coordinately in a monolayer. The analysis combines and associates vast amount of spatiotemporal data across multiple experiments into transparent quantitative measures to report the emergence of new modes of organized behavior during collective migration of tumor and epithelial cells in wound healing assays. First, we discovered the emergence of a wave of coordinated migration propagating backward from the wound front, which reflects formation of clusters of coordinately migrating cells that are generated further away from the wound edge and disintegrate close to the advancing front. This wave emerges in both normal and tumor cells, and is amplified by Met activation with hepatocyte growth factor/scatter factor. Second, Met activation was found to induce coinciding waves of cellular acceleration and stretching, which in turn trigger the emergence of a backward propagating wave of directional migration with about an hour phase lag. Assessments of the relations between the waves revealed that amplified coordinated migration is associated with the emergence of directional migration. Taken together, our data and simplified modeling-based assessments suggest that increased velocity leads to enhanced coordination: higher motility arises due to acceleration and stretching that seems to increase directionality by temporarily diminishing the velocity components orthogonal to the direction defined by the monolayer geometry. Spatial and temporal accumulation of directionality thus defines coordination. The findings offer new insight and suggest a basic cellular mechanism for long-term cell guidance and intercellular communication during collective cell migration. The fundamental mechanisms underlying intercellular coordination during collective cell migration remain elusive despite considerable research efforts. We present a novel analytical framework that considers spatiotemporal dynamics across several traits. Our approach was applied to discover new modes of organized collective dynamics of cancer and normal cells. Following disruption of a cell monolayer, a propagating wave of coordinated migration emerges as clusters of coordinately moving cells are formed away from the wound and disintegrate near the advancing front. Activation of Met signal transduction by hepatocyte growth factor/scatter factor, master regulators of cell motility in malignant and normal processes, generates coinciding waves of cellular acceleration and stretching that propagate backward from the wound front and trigger a delayed wave of directional migration. Amplified coordination is intrinsically associated with enhanced directionality suggesting that even a weak directional cue is sufficient to promote a coordinated response that is transmitted to cells within the cell sheet. Our findings provide important novel insights on the basic cellular organization during collective cell migration and establish a mechanism of long-range cell guidance, intercellular coordination and pattern formation during monolayer wound healing.
Collapse
Affiliation(s)
- Assaf Zaritsky
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Doron Kaplan
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Inbal Hecht
- School of Physics and Astronomy, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sari Natan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Wolf
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Nir S. Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eshel Ben-Jacob
- School of Physics and Astronomy, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Research & Development Unit, Assaf Harofeh Medical Center, Zerifin, Israel
- * E-mail: (EBJ); (IT)
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EBJ); (IT)
| |
Collapse
|
63
|
Hikita T, Ohno A, Sawada M, Ota H, Sawamoto K. Rac1-mediated indentation of resting neurons promotes the chain migration of new neurons in the rostral migratory stream of post-natal mouse brain. J Neurochem 2013; 128:790-7. [DOI: 10.1111/jnc.12518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Takao Hikita
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Akihisa Ohno
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Haruko Ota
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| |
Collapse
|
64
|
Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 2013; 503:281-4. [PMID: 24132237 DOI: 10.1038/nature12611] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 08/28/2013] [Indexed: 12/11/2022]
Abstract
Cell migration requires the generation of branched actin networks that power the protrusion of the plasma membrane in lamellipodia. The actin-related proteins 2 and 3 (Arp2/3) complex is the molecular machine that nucleates these branched actin networks. This machine is activated at the leading edge of migrating cells by Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein (WAVE, also known as SCAR). The WAVE complex is itself directly activated by the small GTPase Rac, which induces lamellipodia. However, how cells regulate the directionality of migration is poorly understood. Here we identify a new protein, Arpin, that inhibits the Arp2/3 complex in vitro, and show that Rac signalling recruits and activates Arpin at the lamellipodial tip, like WAVE. Consistently, after depletion of the inhibitory Arpin, lamellipodia protrude faster and cells migrate faster. A major role of this inhibitory circuit, however, is to control directional persistence of migration. Indeed, Arpin depletion in both mammalian cells and Dictyostelium discoideum amoeba resulted in straighter trajectories, whereas Arpin microinjection in fish keratocytes, one of the most persistent systems of cell migration, induced these cells to turn. The coexistence of the Rac-Arpin-Arp2/3 inhibitory circuit with the Rac-WAVE-Arp2/3 activatory circuit can account for this conserved role of Arpin in steering cell migration.
Collapse
|