51
|
Hoss AG, Labadorf A, Latourelle JC, Kartha VK, Hadzi TC, Gusella JF, MacDonald ME, Chen JF, Akbarian S, Weng Z, Vonsattel JP, Myers RH. miR-10b-5p expression in Huntington's disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics 2015; 8:10. [PMID: 25889241 PMCID: PMC4349621 DOI: 10.1186/s12920-015-0083-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington’s disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has been reported, which may impact gene expression and modify the progression and severity of HD. Methods We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26 HD, 2 HD gene positive, and 36 control brains. Neuropathological information was available for all HD brains, including age at disease onset, CAG-repeat size, Vonsattel grade, and Hadzi-Vonsattel striatal and cortical scores, a continuous measure of the extent of neurodegeneration. Linear models were performed to examine the relationship of miRNA expression to these clinical features, and messenger RNA targets of associated miRNAs were tested for gene ontology term enrichment. Results We identified 75 miRNAs differentially expressed in HD brain (FDR q-value <0.05). Among the HD brains, nine miRNAs were significantly associated with Vonsattel grade of neuropathological involvement and three of these, miR-10b-5p, miR-10b-3p, and miR-302a-3p, significantly related to the Hadzi-Vonsattel striatal score (a continuous measure of striatal involvement) after adjustment for CAG length. Five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-10b-3p, and miR-106a-5p) were identified as having a significant relationship to CAG length-adjusted age of onset including miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the source of tissue profiled in these studies, the relationship of miR-10b-5p expression to striatal involvement in the disease was independent of cortical involvement. Correlation of miRNAs to the clinical features clustered by direction of effect and the gene targets of the observed miRNAs showed association to processes relating to nervous system development and transcriptional regulation. Conclusions These results demonstrate that miRNA expression in cortical BA9 provides insight into striatal involvement and support a role for these miRNAs, particularly miR-10b-5p, in HD pathogenicity. The miRNAs identified in our studies of postmortem brain tissue may be detectable in peripheral fluids and thus warrant consideration as accessible biomarkers for disease stage, rate of progression, and other important clinical characteristics of HD. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0083-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew G Hoss
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, USA.
| | - Adam Labadorf
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA. .,Bioinformatics Program, Boston University, Boston, MA, USA.
| | - Jeanne C Latourelle
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - Vinay K Kartha
- Bioinformatics Program, Boston University, Boston, MA, USA.
| | - Tiffany C Hadzi
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marcy E MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - Schahram Akbarian
- Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA. .,Genome Science Institute, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
52
|
Blázquez C, Chiarlone A, Bellocchio L, Resel E, Pruunsild P, García-Rincón D, Sendtner M, Timmusk T, Lutz B, Galve-Roperh I, Guzmán M. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ 2015; 22:1618-29. [PMID: 25698444 PMCID: PMC4563779 DOI: 10.1038/cdd.2015.11] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/21/2022] Open
Abstract
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival.
Collapse
Affiliation(s)
- C Blázquez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - A Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - L Bellocchio
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - E Resel
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - P Pruunsild
- Institute of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - D García-Rincón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - M Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - T Timmusk
- Institute of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - B Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - I Galve-Roperh
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - M Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| |
Collapse
|
53
|
Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok SM, Feldman DA, Bateup HS, Gao Q, Hockemeyer D, Mitalipova M, Lewis CA, Vander Heiden MG, Sur M, Young RA, Jaenisch R. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 2014; 13:446-58. [PMID: 24094325 DOI: 10.1016/j.stem.2013.09.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 01/15/2023]
Abstract
Rett syndrome (RTT) is caused by mutations of MECP2, a methyl CpG binding protein thought to act as a global transcriptional repressor. Here we show, using an isogenic human embryonic stem cell model of RTT, that MECP2 mutant neurons display key molecular and cellular features of this disorder. Unbiased global gene expression analyses demonstrate that MECP2 functions as a global activator in neurons but not in neural precursors. Decreased transcription in neurons was coupled with a significant reduction in nascent protein synthesis and lack of MECP2 was manifested as a severe defect in the activity of the AKT/mTOR pathway. Lack of MECP2 also leads to impaired mitochondrial function in mutant neurons. Activation of AKT/mTOR signaling by exogenous growth factors or by depletion of PTEN boosted protein synthesis and ameliorated disease phenotypes in mutant neurons. Our findings indicate a vital function for MECP2 in maintaining active gene transcription in human neuronal cells.
Collapse
Affiliation(s)
- Yun Li
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Cong WN, Chadwick W, Wang R, Daimon CM, Cai H, Amma J, Wood WH, Becker KG, Martin B, Maudsley S. Amitriptyline improves motor function via enhanced neurotrophin signaling and mitochondrial functions in the murine N171-82Q Huntington disease model. J Biol Chem 2014; 290:2728-43. [PMID: 25505248 DOI: 10.1074/jbc.m114.588608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder characterized by progressive motor impairment and cognitive alterations. Hereditary HD is primarily caused by the expansion of a CAG trinucleotide repeat in the huntingtin (Htt) gene, which results in the production of mutant huntingtin protein (mHTT) with an expanded amino-terminal polyglutamine (poly(Q)) stretch. Besides pathological mHTT aggregation, reduced brain-derived neurotrophic factor (BDNF) levels, impaired neurotrophin signaling, and compromised mitochondrial functions also contribute to the deleterious progressive etiology of HD. As a well tolerated Food and Drug Administration-approved antidepressant, amitriptyline (AMI) has shown efficacy in treating neurodegenerative murine models via potentiation of BDNF levels and amelioration of alterations in neurotrophin signaling pathways. In this study, we observed profound improvements in the motor coordination of AMI-treated N171-82Q HD model mice. The beneficial effects of AMI treatment were associated with its ability to reduce mHTT aggregation, potentiation of the BDNF-TrkB signaling system, and support of mitochondrial integrity and functionality. Our study not only provides preclinical evidence for the therapeutic potency of AMI in treating HD, but it also represents an important example of the usefulness of additional pharmacogenomic profiling of pre-existing drugs for novel therapeutic effects with often intractable pathological scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William H Wood
- Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224 and
| | - Kevin G Becker
- Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224 and
| | | | - Stuart Maudsley
- Receptor Pharmacology Unit, the VIB Department of Molecular Genetics, Institute Born-Bunge Laboratory of Neurogenetics, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
55
|
Baydyuk M, Xu B. BDNF signaling and survival of striatal neurons. Front Cell Neurosci 2014; 8:254. [PMID: 25221473 PMCID: PMC4147651 DOI: 10.3389/fncel.2014.00254] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023] Open
Abstract
The striatum, a major component of the basal ganglia, performs multiple functions including control of movement, reward, and addiction. Dysfunction and death of striatal neurons are the main causes for the motor disorders associated with Huntington’s disease (HD). Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is among factors that promote survival and proper function of this neuronal population. Here, we review recent studies showing that BDNF determines the size of the striatum by supporting survival of the immature striatal neurons at their origin, promotes maturation of striatal neurons, and facilitates establishment of striatal connections during brain development. We also examine the role of BDNF in maintaining proper function of the striatum during adulthood, summarize the mechanisms that lead to a deficiency in BDNF signaling and subsequently striatal degeneration in HD, and highlight a potential role of BDNF as a therapeutic target for HD treatment.
Collapse
Affiliation(s)
- Maryna Baydyuk
- National Institute of Neurological Diseases and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida Jupiter, FL, USA
| |
Collapse
|
56
|
Sepers MD, Raymond LA. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease. Drug Discov Today 2014; 19:990-6. [DOI: 10.1016/j.drudis.2014.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022]
|
57
|
Andreska T, Aufmkolk S, Sauer M, Blum R. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. Front Cell Neurosci 2014; 8:107. [PMID: 24782711 PMCID: PMC3990111 DOI: 10.3389/fncel.2014.00107] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022] Open
Abstract
In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Andreska
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Robert Blum
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg Würzburg, Germany
| |
Collapse
|
58
|
Allen EN, Cavanaugh JE. Loss of motor coordination in an aging mouse model. Behav Brain Res 2014; 267:119-25. [PMID: 24675158 DOI: 10.1016/j.bbr.2014.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
With age, there is an increase in motor deficits that leads to an increased incidence of slips and falls. As the elderly population continues to grow, there is a need for aging models and research that focus on behavioral deficits that occur with normal, non-diseased aging. The present study was designed to examine the appropriateness of C57Bl/6 male mice as aging animal models using the challenging beam and cylinder tests to measure motor coordination and spontaneous activity, respectively. Using young (2-4 mo), middle-aged (10-12 mo), and aged (22-24 mo) mice, we observed that aged C57Bl/6 male mice make more errors on the challenging beam task and take fewer hind limb steps as compared to young and middle-aged mice. Body weight and food intake were also measured to determine if these parameters were confounding factors in the interpretation of the behavioral data. Increases in body weight and food consumption were not observed in the oldest group that made the most errors. Together these data indicate that aged C57BL/6 mice display age-related motor deficits similar to those seen in humans and are an appropriate model of motor deficits that occur with age.
Collapse
Affiliation(s)
- Erika N Allen
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Jane E Cavanaugh
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
59
|
Unterwald EM, Page ME, Brown TB, Miller JS, Ruiz M, Pescatore KA, Xu B, Reichardt LF, Beverley J, Tang B, Steiner H, Thomas EA, Ehrlich ME. Behavioral and transcriptome alterations in male and female mice with postnatal deletion of TrkB in dorsal striatal medium spiny neurons. Mol Neurodegener 2013; 8:47. [PMID: 24369067 PMCID: PMC3880973 DOI: 10.1186/1750-1326-8-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/19/2013] [Indexed: 01/05/2023] Open
Abstract
Background The high affinity tyrosine kinase receptor, TrkB, is the primary receptor for brain derived neurotrophic factor (BDNF) and plays an important role in development, maintenance and plasticity of the striatal output medium size spiny neuron. The striatal BDNF/TrkB system is thereby implicated in many physiologic and pathophysiologic processes, the latter including mood disorders, addiction, and Huntington’s disease. We crossed a mouse harboring a transgene directing cre-recombinase expression primarily to postnatal, dorsal striatal medium spiny neurons, to a mouse containing a floxed TrkB allele (fB) mouse designed for deletion of TrkB to determine its role in the adult striatum. Results We found that there were sexually dimorphic alterations in behaviors in response to stressful situations and drugs of abuse. Significant sex and/or genotype differences were found in the forced swim test of depression-like behaviors, anxiety-like behaviors on the elevated plus maze, and cocaine conditioned reward. Microarray analysis of dorsal striatum revealed significant dysregulation in individual and groups of genes that may contribute to the observed behavioral responses and in some cases, represent previously unidentified downstream targets of TrkB. Conclusions The data point to a set of behaviors and changes in gene expression following postnatal deletion of TrkB in the dorsal striatum distinct from those in other brain regions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Michelle E Ehrlich
- Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
60
|
Pandya CD, Hoda MN, Kutiyanawalla A, Buckley PF, Pillai A. Differential effects upon brain and serum BDNF levels in rats as response to continuous and intermittent administration strategies of two second generation antipsychotics. Schizophr Res 2013; 151:287-8. [PMID: 24135222 DOI: 10.1016/j.schres.2013.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Chirayu D Pandya
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
61
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
62
|
Mutant huntingtin gene-dose impacts on aggregate deposition, DARPP32 expression and neuroinflammation in HdhQ150 mice. PLoS One 2013; 8:e75108. [PMID: 24086450 PMCID: PMC3781050 DOI: 10.1371/journal.pone.0075108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 08/12/2013] [Indexed: 12/05/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model.
Collapse
|
63
|
Role of BDNF in Central Motor Structures and Motor Diseases. Mol Neurobiol 2013; 48:783-93. [DOI: 10.1007/s12035-013-8466-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/22/2013] [Indexed: 12/29/2022]
|
64
|
Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, Mori S, Ross CA, Ye K, Duan W. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease. Hum Mol Genet 2013; 22:2462-70. [PMID: 23446639 DOI: 10.1093/hmg/ddt098] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease characterized by abnormal motor coordination, cognitive decline and psychiatric disorders. This disease is caused by an expanded CAG trinucleotide repeat in the gene encoding the protein huntingtin. Reduced levels of brain-derived neurotrophic factor (BDNF) in the brain, which results from transcriptional inhibition and axonal transport deficits mediated by mutant huntingtin, have been suggested as critical factors underlying selective neurodegeneration in both HD patients and HD mouse models. BDNF activates its high-affinity receptor TrkB and promotes neuronal survival; restoring BDNF signaling is thus of particular therapeutic interest. In the present study, we evaluated the ability of a small-molecule TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and its synthetic derivative 4'-dimethylamino-7,8- dihydroxyflavone (4'-DMA-7,8-DHF) to protect neurons in the well-characterized N171-82Q HD mouse model. We found that chronic administration of 7, 8-DHF (5 mg/kg) or 4'-DMA-7,8-DHF (1 mg/kg) significantly improved motor deficits, ameliorated brain atrophy and extended survival in these N171-82Q HD mice. Moreover, 4'-DMA-7,8-DHF preserved DARPP32 levels in the striatum and rescued mutant huntingtin-induced impairment of neurogenesis in the N171-82Q HD mice. These data highlight consideration of TrkB as a therapeutic target in HD and suggest that small-molecule TrkB agonists that penetrate the brain have high potential to be further tested in clinical trials of HD.
Collapse
Affiliation(s)
- Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|