51
|
Xie P, Chen H. Mechanism of ribosome translation through mRNA secondary structures. Int J Biol Sci 2017; 13:712-722. [PMID: 28655997 PMCID: PMC5485627 DOI: 10.7150/ijbs.19508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 02/03/2023] Open
Abstract
A ribosome is a macromolecular machine that is responsible for translating the genetic codes in messenger RNA (mRNA) into polypeptide chains. It has been determined that besides translating through the single-stranded region, the ribosome can also translate through the duplex region of mRNA by unwinding the duplex. To understand the mechanism of ribosome translation through the duplex, several models have been proposed to study the dynamics of mRNA unwinding. Here, we present a comprehensive review of these models and also discuss other possible models. We evaluate each model and discuss the consistency and/or inconsistency between the theoretical results that are obtained based on each model and the available experimental data, thus determining which model is the most reasonable one to describe the mRNA unwinding mechanism and dynamics of the ribosome. Moreover, a framework for future studies in this subject is provided.
Collapse
Affiliation(s)
- Ping Xie
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China.,Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China
| |
Collapse
|
52
|
Maji S, Shahoei R, Schulten K, Frank J. Quantitative Characterization of Domain Motions in Molecular Machines. J Phys Chem B 2017; 121:3747-3756. [PMID: 28199113 PMCID: PMC5479934 DOI: 10.1021/acs.jpcb.6b10732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The work of molecular machines such as the ribosome is accompanied by conformational changes, often characterized by relative motions of their domains. The method we have developed seeks to quantify these motions in a general way, facilitating comparisons of results obtained by different researchers. Typically there are multiple snapshots of a structure in the form of pdb coordinates resulting from flexible fitting of low-resolution density maps, from X-ray crystallography, or from molecular dynamics simulation trajectories. Our objective is to characterize the motion of each domain as a coordinate transformation using moments of inertia tensor, a method we developed earlier. What has been missing until now are ancillary tools that make this task practical, general, and biologically informative. We have provided a comprehensive solution to this task with a set of tools implemented on the VMD platform. These tools address the need for reproducible segmentation of domains, and provide a generalized description of their motions using principal axes of inertia. Although this methodology has been specifically developed for studying ribosome motion, it is applicable to any molecular machine.
Collapse
Affiliation(s)
- Suvrajit Maji
- Department of Biochemistry and Molecular Biophysics, Columbia University
| | - Rezvan Shahoei
- Department of Physics, University of Illinois at Urbana-Champaign
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University
- Howard Hughes Medical Institute, Columbia University
- Department of Biological Sciences, Columbia University
| |
Collapse
|
53
|
Recurring RNA structural motifs underlie the mechanics of L1 stalk movement. Nat Commun 2017; 8:14285. [PMID: 28176782 PMCID: PMC5309774 DOI: 10.1038/ncomms14285] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023] Open
Abstract
The L1 stalk of the large ribosomal subunit undergoes large-scale movements coupled to the translocation of deacylated tRNA during protein synthesis. We use quantitative comparative structural analysis to localize the origins of L1 stalk movement and to understand its dynamic interactions with tRNA and other structural elements of the ribosome. Besides its stacking interactions with the tRNA elbow, stalk movement is directly linked to intersubunit rotation, rotation of the 30S head domain and contact of the acceptor arm of deacylated tRNA with helix 68 of 23S rRNA. Movement originates from pivoting at stacked non-canonical base pairs in a Family A three-way junction and bending in an internal G-U-rich zone. Use of these same motifs as hinge points to enable such dynamic events as rotation of the 30S subunit head domain and in flexing of the anticodon arm of tRNA suggests that they represent general strategies for movement of functional RNAs. Translocation of the tRNA on the ribosome is associated with large-scale molecular movements of the ribosomal L1 stalk. Here the authors identify the key determinants that allow these dramatic movements, and suggest they represent general strategies used to enable large-scale motions in functional RNAs.
Collapse
|
54
|
Xie P. Dynamic relationships between ribosomal conformational and RNA positional changes during ribosomal translocation. Heliyon 2016; 2:e00214. [PMID: 28070564 PMCID: PMC5219732 DOI: 10.1016/j.heliyon.2016.e00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Abstract
Ribosomal translocation catalyzed by EF-G hydrolyzing GTP entails multiple conformational changes of ribosome and positional changes of tRNAs and mRNA in the ribosome. However, the detailed dynamic relations among these changes and EF-G sampling are not clear. Here, based on our proposed pathway of ribosomal translocation, we study theoretically the dynamic relations among these changes exhibited in the single molecule data and those exhibited in the ensemble kinetic data. It is shown that the timing of these changes in the single molecule data and that in the ensemble kinetic data show very different. The theoretical results are in agreement with both the available ensemble kinetic experimental data and the single molecule experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
55
|
Belardinelli R, Sharma H, Peske F, Wintermeyer W, Rodnina MV. Translocation as continuous movement through the ribosome. RNA Biol 2016; 13:1197-1203. [PMID: 27801619 DOI: 10.1080/15476286.2016.1240140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In each round of translation elongation, tRNAs and mRNA move within the ribosome by one codon at a time. tRNA-mRNA translocation is promoted by elongation factor G (EF-G) at the cost of GTP hydrolysis. The key questions for understanding translocation are how and when the tRNAs move and how EF-G coordinates motions of the ribosomal subunits with tRNA movement. Here we present 2 recent papers which describe the choreography of movements over the whole trajectory of translocation. We present the view that EF-G accelerates translocation by promoting the steps that lead to GTPase-dependent ribosome unlocking. EF-G facilitates the formation of the rotated state of the ribosome and uncouples the backward motions of the ribosomal subunits, forming an open conformation in which the tRNAs can rapidly move. Ribosome dynamics are important not only in translocation, but also in recoding events, such as frameshifting and bypassing, and mediate sensitivity to antibiotics.
Collapse
Affiliation(s)
- Riccardo Belardinelli
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Heena Sharma
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Frank Peske
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Wolfgang Wintermeyer
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Marina V Rodnina
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| |
Collapse
|
56
|
Sharma H, Adio S, Senyushkina T, Belardinelli R, Peske F, Rodnina MV. Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits. Cell Rep 2016; 16:2187-2196. [PMID: 27524615 DOI: 10.1016/j.celrep.2016.07.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/30/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
Ribosome dynamics play an important role in translation. The rotation of the ribosomal subunits relative to one another is essential for tRNA-mRNA translocation. An important unresolved question is whether subunit rotation limits the rate of translocation. Here, we monitor subunit rotation relative to peptide bond formation and translocation using ensemble kinetics and single-molecule FRET. We observe that spontaneous forward subunit rotation occurs at a rate of 40 s(-1), independent of the rate of preceding peptide bond formation. Elongation factor G (EF-G) accelerates forward subunit rotation to 200 s(-1). tRNA-mRNA movement is much slower (10-40 s(-1)), suggesting that forward subunit rotation does not limit the rate of translocation. The transition back to the non-rotated state of the ribosome kinetically coincides with tRNA-mRNA movement. Thus, large-scale movements of the ribosome are intrinsically rapid and gated by its ligands such as EF-G and tRNA.
Collapse
Affiliation(s)
- Heena Sharma
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
57
|
Schureck MA, Maehigashi T, Miles SJ, Marquez J, Dunham CM. mRNA bound to the 30S subunit is a HigB toxin substrate. RNA (NEW YORK, N.Y.) 2016; 22:1261-70. [PMID: 27307497 PMCID: PMC4931118 DOI: 10.1261/rna.056218.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/07/2016] [Indexed: 05/22/2023]
Abstract
Activation of bacterial toxins during stress results in cleavage of mRNAs in the context of the ribosome. These toxins are thought to function as global translational inhibitors yet recent studies suggest each may have distinct mRNA specificities that result in selective translation for bacterial survival. Here we demonstrate that mRNA in the context of a bacterial 30S subunit is sufficient for ribosome-dependent toxin HigB endonucleolytic activity, suggesting that HigB interferes with the initiation step of translation. We determined the X-ray crystal structure of HigB bound to the 30S, revealing that two solvent-exposed clusters of HigB basic residues directly interact with 30S 16S rRNA helices 18, 30, and 31. We further show that these HigB residues are essential for ribosome recognition and function. Comparison with other ribosome-dependent toxins RelE and YoeB reveals that each interacts with similar features of the 30S aminoacyl (A) site yet does so through presentation of diverse structural motifs.
Collapse
Affiliation(s)
- Marc A Schureck
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Tatsuya Maehigashi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Stacey J Miles
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jhomar Marquez
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
58
|
Xie P. On the pathway of ribosomal translocation. Int J Biol Macromol 2016; 92:401-415. [PMID: 27431796 DOI: 10.1016/j.ijbiomac.2016.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
The translocation of tRNAs coupled with mRNA in the ribosome is a critical process in the elongation cycle of protein synthesis. The translocation entails large-scale conformational changes of the ribosome and involves several intermediate states with tRNAs in different positions with respect to 30S and 50S ribosomal subunits. However, the detailed role of the intermediate states is unknown and the detailed mechanism and pathway of translocation is unclear. Here based on previous structural, biochemical and single-molecule data we present a translocation pathway by incorporating several intermediate states. With the pathway, we study theoretically (i) the kinetics of 30S head rotation associated with translocation catalyzed by wild-type EF-G, (ii) the dynamics of fluctuations between different tRNA states during translocation interfered with EF-G mutants and translocation-specific antibiotics, (iii) the kinetics of tRNA movement in 50S subunit and mRNA movement in 30S subunit in the presence of wild-type EF-G, EF-G mutants and translocation-specific antibiotics, (iv) the dynamics of EF-G sampling to the ribosome during translocation, etc., providing consistent and quantitative explanations of various available biochemical and single-molecule experimental data published in the literature. Moreover, we study the kinetics of 30S head rotation in the presence of EF-G mutants, providing predicted results. These have significant implications for the molecular mechanism and pathway of ribosomal translocation.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
59
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
60
|
Ero R, Kumar V, Chen Y, Gao YG. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function. RNA Biol 2016; 13:1258-1273. [PMID: 27325008 PMCID: PMC5207388 DOI: 10.1080/15476286.2016.1201627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.
Collapse
Affiliation(s)
- Rya Ero
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Veerendra Kumar
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| | - Yun Chen
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Yong-Gui Gao
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| |
Collapse
|
61
|
Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 2016; 5. [PMID: 27159452 PMCID: PMC4896748 DOI: 10.7554/elife.14874] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/08/2016] [Indexed: 12/17/2022] Open
Abstract
Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.
Collapse
Affiliation(s)
| | - Cha San Koh
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Timothy Grant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
62
|
Ling C, Ermolenko DN. Structural insights into ribosome translocation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:620-36. [PMID: 27117863 PMCID: PMC4990484 DOI: 10.1002/wrna.1354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
Abstract
During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clarence Ling
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
63
|
Tinoco I, Kim HK, Yan S. Frameshifting dynamics. Biopolymers 2016; 99:1147-66. [PMID: 23722586 DOI: 10.1002/bip.22293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 01/26/2023]
Abstract
Translation of messenger RNA by a ribosome occurs three nucleotides at a time from start signal to stop. However, a frameshift means that some nucleotides are read twice or some are skipped, and the following sequence of amino acids is completely different from the sequence in the original frame. In some messenger RNAs, including viral RNAs, frameshifting is programmed with RNA signals to produce specific ratios of proteins vital to the replication of the organism. The mechanisms that cause frameshifting have been studied for many years, but there are no definitive conclusions. We review ribosome structure and dynamics in relation to frameshifting dynamics provided by classical ensemble studies, and by new single-molecule methods using optical tweezers and FRET.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460
| | | | | |
Collapse
|
64
|
Salsi E, Farah E, Ermolenko DN. EF-G Activation by Phosphate Analogs. J Mol Biol 2016; 428:2248-58. [PMID: 27063503 DOI: 10.1016/j.jmb.2016.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/31/2023]
Abstract
Elongation factor G (EF-G) is a universally conserved translational GTPase that promotes the translocation of tRNA and mRNA through the ribosome. EF-G binds to the ribosome in a GTP-bound form and subsequently catalyzes GTP hydrolysis. The contribution of the ribosome-stimulated GTP hydrolysis by EF-G to tRNA/mRNA translocation remains debated. Here, we show that while EF-G•GDP does not stably bind to the ribosome and induce translocation, EF-G•GDP in complex with phosphate group analogs BeF3(-) and AlF4(-) promotes the translocation of tRNA and mRNA. Furthermore, the rates of mRNA translocation induced by EF-G in the presence of GTP and a non-hydrolyzable analog of GTP, GDP•BeF3(-) are similar. Our results are consistent with the model suggesting that GTP hydrolysis is not directly coupled to mRNA/tRNA translocation. Hence, GTP binding is required to induce the activated, translocation-competent conformation of EF-G while GTP hydrolysis triggers EF-G release from the ribosome.
Collapse
Affiliation(s)
- Enea Salsi
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Elie Farah
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
65
|
Choreography of molecular movements during ribosome progression along mRNA. Nat Struct Mol Biol 2016; 23:342-8. [PMID: 26999556 DOI: 10.1038/nsmb.3193] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
During translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction. Backward swiveling of the SSU head starts upon tRNA translocation and continues until the post-translocation state is reached. This work places structures of translocation intermediates along a time axis and unravels principles of the motions of macromolecular machines.
Collapse
|
66
|
Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Nat Struct Mol Biol 2016; 23:333-41. [PMID: 26926435 PMCID: PMC4821728 DOI: 10.1038/nsmb.3177] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/25/2016] [Indexed: 12/04/2022]
Abstract
Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position.
Collapse
|
67
|
|
68
|
Liu Q, Fredrick K. Intersubunit Bridges of the Bacterial Ribosome. J Mol Biol 2016; 428:2146-64. [PMID: 26880335 DOI: 10.1016/j.jmb.2016.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 02/02/2023]
Abstract
The ribosome is a large two-subunit ribonucleoprotein machine that translates the genetic code in all cells, synthesizing proteins according to the sequence of the mRNA template. During translation, the primary substrates, transfer RNAs, pass through binding sites formed between the two subunits. Multiple interactions between the ribosomal subunits, termed intersubunit bridges, keep the ribosome intact and at the same time govern dynamics that facilitate the various steps of translation such as transfer RNA-mRNA movement. Here, we review the molecular nature of these intersubunit bridges, how they change conformation during translation, and their functional roles in the process.
Collapse
Affiliation(s)
- Qi Liu
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
69
|
Model of the pathway of -1 frameshifting: Kinetics. Biochem Biophys Rep 2016; 5:453-467. [PMID: 28955853 PMCID: PMC5600437 DOI: 10.1016/j.bbrep.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Programmed -1 translational frameshifting is a process where the translating ribosome shifts the reading frame, which is directed by at least two stimulatory elements in the mRNA-a slippery sequence and a downstream secondary structure. Despite a lot of theoretical and experimental studies, the detailed pathway and mechanism of the -1 frameshifting remain unclear. Here, in order to understand the pathway and mechanism we consider two models to study the kinetics of the -1 frameshifting, providing quantitative explanations of the recent biochemical data of Caliskan et al. (Cell 2014, 157, 1619-1631). One model is modified from that proposed by Caliskan et al. and the other is modified from that proposed in the previous work to explain the single-molecule experimental data. It is shown that by adjusting values of some fundamental parameters both models can give quantitative explanations of the biochemical data of Caliskan et al. on the kinetics of EF-G binding and dissociation and on the kinetics of movement of tRNAs inside the ribosome. However, for the former model some adjusted parameter values deviate significantly from those determined from the available single-molecule experiments, while for the latter model all parameter values are consistent with the available biochemical and single-molecule experimental data. Thus, the latter model most likely reflects the pathway and mechanism of the -1 frameshifting.
Collapse
|
70
|
Tek A, Korostelev AA, Flores SC. MMB-GUI: a fast morphing method demonstrates a possible ribosomal tRNA translocation trajectory. Nucleic Acids Res 2015; 44:95-105. [PMID: 26673695 PMCID: PMC4705676 DOI: 10.1093/nar/gkv1457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Easy-to-use macromolecular viewers, such as UCSF Chimera, are a standard tool in structural biology. They allow rendering and performing geometric operations on large complexes, such as viruses and ribosomes. Dynamical simulation codes enable modeling of conformational changes, but may require considerable time and many CPUs. There is an unmet demand from structural and molecular biologists for software in the middle ground, which would allow visualization combined with quick and interactive modeling of conformational changes, even of large complexes. This motivates MMB-GUI. MMB uses an internal-coordinate, multiscale approach, yielding as much as a 2000-fold speedup over conventional simulation methods. We use Chimera as an interactive graphical interface to control MMB. We show how this can be used for morphing of macromolecules that can be heterogeneous in biopolymer type, sequence, and chain count, accurately recapitulating structural intermediates. We use MMB-GUI to create a possible trajectory of EF-G mediated gate-passing translocation in the ribosome, with all-atom structures. This shows that the GUI makes modeling of large macromolecules accessible to a wide audience. The morph highlights similarities in tRNA conformational changes as tRNA translocates from A to P and from P to E sites and suggests that tRNA flexibility is critical for translocation completion.
Collapse
Affiliation(s)
- Alex Tek
- Cell and Molecular Biology Department, Uppsala University, Box 596, Uppsala 751 24, Sweden
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | | |
Collapse
|
71
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
72
|
Jurchenko C, Salaita KS. Lighting Up the Force: Investigating Mechanisms of Mechanotransduction Using Fluorescent Tension Probes. Mol Cell Biol 2015; 35:2570-82. [PMID: 26031334 PMCID: PMC4524122 DOI: 10.1128/mcb.00195-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ability of cells to sense the physical nature of their surroundings is critical to the survival of multicellular organisms. Cellular response to physical cues from adjacent cells and the extracellular matrix leads to a dynamic cycle in which cells respond by remodeling their local microenvironment, fine-tuning cell stiffness, polarity, and shape. Mechanical regulation is important in cellular development, normal morphogenesis, and wound healing. The mechanisms by which these finely balanced mechanotransduction events occur, however, are not well understood. In large part, this is due to the limited availability of tools to study molecular mechanotransduction events in live cells. Several classes of molecular tension probes have been recently developed which are rapidly transforming the study of mechanotransduction. Molecular tension probes are primarily based on fluorescence resonance energy transfer (FRET) and report on piconewton scale tension events in live cells. In this minireview, we describe the two main classes of tension probes, genetically encoded tension sensors and immobilized tension sensors, and discuss the advantages and limitations of each type. We discuss future opportunities to address major biological questions and outline the challenges facing the next generation of molecular tension probes.
Collapse
Affiliation(s)
- Carol Jurchenko
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Khalid S Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
73
|
Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions. Nat Commun 2015. [PMID: 26224058 PMCID: PMC4522699 DOI: 10.1038/ncomms8896] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin—paromomycin, ribostamycin and neamine—each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6′-polar group, drive subunit rotation in opposite directions. This suggests that their distinct actions hinge on the 6′-substituent and the drug's net positive charge. By solving the crystal structure of the paromomycin–ribosome complex, we observe specific contacts between the apical tip of H69 and the 6′-hydroxyl on paromomycin from within the drug's canonical h44-binding site. These results indicate that aminoglycoside actions must be framed in the context of bridge B2 and their regulation of subunit rotation. Ratchet-like rotation of the small ribosomal subunit relative to the large is essential to the translation mechanism. Here, the authors show that chemically related aminoglycoside antibiotics have distinct impacts on the nature and rate of the subunit rotation process within the intact ribosome.
Collapse
|
74
|
Ritchie DB, Woodside MT. Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol 2015; 34:43-51. [PMID: 26189090 PMCID: PMC7126019 DOI: 10.1016/j.sbi.2015.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada; National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G2M9, Canada.
| |
Collapse
|
75
|
Dunkle JA, Dunham CM. Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code. Biochimie 2015; 114:90-6. [PMID: 25708857 PMCID: PMC4458409 DOI: 10.1016/j.biochi.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
Important viral and cellular gene products are regulated by stop codon readthrough and mRNA frameshifting, processes whereby the ribosome detours from the reading frame defined by three nucleotide codons after initiation of translation. In the last few years, rapid progress has been made in mechanistically characterizing both processes and also revealing that trans-acting factors play important regulatory roles in frameshifting. Here, we review recent biophysical studies that bring new molecular insights to stop codon readthrough and frameshifting. Lastly, we consider whether there may be common mechanistic themes in -1 and +1 frameshifting based on recent X-ray crystal structures of +1 frameshift-prone tRNAs bound to the ribosome.
Collapse
Affiliation(s)
- Jack A Dunkle
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Suite G223, Atlanta, GA 30322, USA
| | - Christine M Dunham
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Suite G223, Atlanta, GA 30322, USA.
| |
Collapse
|
76
|
Adio S, Senyushkina T, Peske F, Fischer N, Wintermeyer W, Rodnina MV. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Nat Commun 2015; 6:7442. [PMID: 26072700 PMCID: PMC4490557 DOI: 10.1038/ncomms8442] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement. EF-G enhances the rate of tRNA–mRNA translocation on the ribosome. Here the authors use single-molecule FRET to follow tRNA translocation in real time, identifying new chimeric intermediates and suggesting how EF-G binding and GTP hydrolysis change the energetic landscape of translocation to accelerate forward tRNA movement.
Collapse
Affiliation(s)
- Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Niels Fischer
- 3D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| |
Collapse
|
77
|
Xie P. Model of ribosomal translocation coupled with intra- and inter-subunit rotations. Biochem Biophys Rep 2015; 2:87-93. [PMID: 29124148 PMCID: PMC5668647 DOI: 10.1016/j.bbrep.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/03/2022] Open
Abstract
The ribosomal translocation involves both intersubunit rotations between the small 30S and large 50S subunits and the intrasubunit rotations of the 30S head relative to the 30S body. However, the detailed molecular mechanism on how the intersubunit and intrasubunit rotations are related to the translocation remains unclear. Here, based on available structural data a model is proposed for the ribosomal translocation, into which both the intersubunit and intrasubunit rotations are incorporated. With the model, we provide quantitative explanations of in vitro experimental data showing the biphasic character in the fluorescence change associated with the mRNA translocation and the character of a rapid increase that is followed by a slow single-exponential decrease in the fluorescence change associated with the 30S head rotation. The calculated translation rate is also consistent with the in vitro single-molecule experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
78
|
Behrmann E, Loerke J, Budkevich TV, Yamamoto K, Schmidt A, Penczek PA, Vos MR, Bürger J, Mielke T, Scheerer P, Spahn CMT. Structural snapshots of actively translating human ribosomes. Cell 2015; 161:845-57. [PMID: 25957688 PMCID: PMC4432480 DOI: 10.1016/j.cell.2015.03.052] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/05/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.
Collapse
Affiliation(s)
- Elmar Behrmann
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tatyana V Budkevich
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kaori Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrea Schmidt
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institut für Medizinische Physik und Biophysik, AG Protein X-Ray Crystallography, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, Achtseweg Noord 5, 5651 GG Eindhoven, the Netherlands
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Max-Planck Institut für Molekulare Genetik, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institut für Medizinische Physik und Biophysik, AG Protein X-Ray Crystallography, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
79
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
80
|
Lin J, Gagnon MG, Bulkley D, Steitz TA. Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 2015; 160:219-27. [PMID: 25594181 DOI: 10.1016/j.cell.2014.11.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
The universally conserved GTPase elongation factor G (EF-G) catalyzes the translocation of tRNA and mRNA on the ribosome after peptide bond formation. Despite numerous studies suggesting that EF-G undergoes extensive conformational rearrangements during translocation, high-resolution structures exist for essentially only one conformation of EF-G in complex with the ribosome. Here, we report four atomic-resolution crystal structures of EF-G bound to the ribosome programmed in the pre- and posttranslocational states and to the ribosome trapped by the antibiotic dityromycin. We observe a previously unseen conformation of EF-G in the pretranslocation complex, which is independently captured by dityromycin on the ribosome. Our structures provide insights into the conformational space that EF-G samples on the ribosome and reveal that tRNA translocation on the ribosome is facilitated by a structural transition of EF-G from a compact to an elongated conformation, which can be prevented by the antibiotic dityromycin.
Collapse
Affiliation(s)
- Jinzhong Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
81
|
Yan S, Wen JD, Bustamante C, Tinoco I. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 2015; 160:870-881. [PMID: 25703095 PMCID: PMC4344849 DOI: 10.1016/j.cell.2015.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022]
Abstract
Programmed ribosomal frameshifting produces alternative proteins from a single transcript. -1 frameshifting occurs on Escherichia coli's dnaX mRNA containing a slippery sequence AAAAAAG and peripheral mRNA structural barriers. Here, we reveal hidden aspects of the frameshifting process, including its exact location on the mRNA and its timing within the translation cycle. Mass spectrometry of translated products shows that ribosomes enter the -1 frame from not one specific codon but various codons along the slippery sequence and slip by not just -1 but also -4 or +2 nucleotides. Single-ribosome translation trajectories detect distinctive codon-scale fluctuations in ribosome-mRNA displacement across the slippery sequence, representing multiple ribosomal translocation attempts during frameshifting. Flanking mRNA structural barriers mechanically stimulate the ribosome to undergo back-and-forth translocation excursions, broadly exploring reading frames. Both experiments reveal aborted translation around mutant slippery sequences, indicating that subsequent fidelity checks on newly adopted codon position base pairings lead to either resumed translation or early termination.
Collapse
Affiliation(s)
- Shannon Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Carlos Bustamante
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
82
|
Following movement of domain IV of elongation factor G during ribosomal translocation. Proc Natl Acad Sci U S A 2014; 111:15060-5. [PMID: 25288752 DOI: 10.1073/pnas.1410873111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translocation of mRNA and tRNAs through the ribosome is catalyzed by a universally conserved elongation factor (EF-G in prokaryotes and EF-2 in eukaryotes). Previous studies have suggested that ribosome-bound EF-G undergoes significant structural rearrangements. Here, we follow the movement of domain IV of EF-G, which is critical for the catalysis of translocation, relative to protein S12 of the small ribosomal subunit using single-molecule FRET. We show that ribosome-bound EF-G adopts distinct conformations corresponding to the pre- and posttranslocation states of the ribosome. Our results suggest that, upon ribosomal translocation, domain IV of EF-G moves toward the A site of the small ribosomal subunit and facilitates the movement of peptidyl-tRNA from the A to the P site. We found no evidence of direct coupling between the observed movement of domain IV of EF-G and GTP hydrolysis. In addition, our results suggest that the pretranslocation conformation of the EF-G-ribosome complex is significantly less stable than the posttranslocation conformation. Hence, the structural rearrangement of EF-G makes a considerable energetic contribution to promoting tRNA translocation.
Collapse
|
83
|
Zhou J, Lancaster L, Donohue JP, Noller HF. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 2014; 345:1188-91. [PMID: 25190797 PMCID: PMC4242719 DOI: 10.1126/science.1255030] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coupled translocation of messenger RNA and transfer RNA (tRNA) through the ribosome, a process catalyzed by elongation factor EF-G, is a crucial step in protein synthesis. The crystal structure of a bacterial translocation complex describes the binding states of two tRNAs trapped in mid-translocation. The deacylated P-site tRNA has moved into a partly translocated pe/E chimeric hybrid state. The anticodon stem-loop of the A-site tRNA is captured in transition toward the 30S P site, while its 3' acceptor end contacts both the A and P loops of the 50S subunit, forming an ap/ap chimeric hybrid state. The structure shows how features of ribosomal RNA rearrange to hand off the A-site tRNA to the P site, revealing an active role for ribosomal RNA in the translocation process.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura Lancaster
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
84
|
Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 2014; 157:1619-31. [PMID: 24949973 PMCID: PMC7112342 DOI: 10.1016/j.cell.2014.04.041] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/17/2014] [Accepted: 04/10/2014] [Indexed: 02/04/2023]
Abstract
Programmed –1 ribosomal frameshifting (−1PRF) is an mRNA recoding event utilized by cells to enhance the information content of the genome and to regulate gene expression. The mechanism of –1PRF and its timing during translation elongation are unclear. Here, we identified the steps that govern –1PRF by following the stepwise movement of the ribosome through the frameshifting site of a model mRNA derived from the IBV 1a/1b gene in a reconstituted in vitro translation system from Escherichia coli. Frameshifting occurs at a late stage of translocation when the two tRNAs are bound to adjacent slippery sequence codons of the mRNA. The downstream pseudoknot in the mRNA impairs the closing movement of the 30S subunit head, the dissociation of EF-G, and the release of tRNA from the ribosome. The slippage of the ribosome into the –1 frame accelerates the completion of translocation, thereby further favoring translation in the new reading frame. Kinetics of –1 ribosomal frameshifting are monitored at single-codon resolution Frameshifting occurs when the backward movement of the 30S subunit head is impeded Two tRNAs at the XXXYYYZ mRNA sequence are stalled in chimeric POST states The shift to the –1 reading frame occurs prior to EF-G release from the ribosome
Collapse
Affiliation(s)
- Neva Caliskan
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Vladimir I Katunin
- B.P. Konstantinov Petersburg Nuclear Physics Institute, Department of Molecular and Radiation Biophysics, 188300 Gatchina, Russia
| | - Riccardo Belardinelli
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany.
| |
Collapse
|
85
|
Abstract
During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2.
Collapse
|
86
|
Holtkamp W, Wintermeyer W, Rodnina MV. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Bioessays 2014; 36:908-18. [PMID: 25118068 DOI: 10.1002/bies.201400076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolysis is coupled to movement. In the light of recent advances in biophysical and structural studies, we argue that intermediate states of translocation are snapshots of dynamic fluctuations that guide the movement. In contrast to current models of stepwise translocation, kinetic evidence shows that the tRNAs move synchronously on the two ribosomal subunits in a rapid reaction orchestrated by EF-G and GTP hydrolysis. EF-G combines the energy regimes of a GTPase and a motor protein and facilitates tRNA movement by a combination of directed Brownian ratchet and power stroke mechanisms.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
87
|
Liu T, Kaplan A, Alexander L, Yan S, Wen JD, Lancaster L, Wickersham CE, Fredrick K, Fredrik K, Noller H, Tinoco I, Bustamante CJ. Direct measurement of the mechanical work during translocation by the ribosome. eLife 2014; 3:e03406. [PMID: 25114092 PMCID: PMC4126342 DOI: 10.7554/elife.03406] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A detailed understanding of tRNA/mRNA translocation requires measurement of the forces generated by the ribosome during this movement. Such measurements have so far remained elusive and, thus, little is known about the relation between force and translocation and how this reflects on its mechanism and regulation. Here, we address these questions using optical tweezers to follow translation by individual ribosomes along single mRNA molecules, against an applied force. We find that translocation rates depend exponentially on the force, with a characteristic distance close to the one-codon step, ruling out the existence of sub-steps and showing that the ribosome likely functions as a Brownian ratchet. We show that the ribosome generates ∼13 pN of force, barely sufficient to unwind the most stable structures in mRNAs, thus providing a basis for their regulatory role. Our assay opens the way to characterizing the ribosome's full mechano-chemical cycle.
Collapse
Affiliation(s)
- Tingting Liu
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Ariel Kaplan
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel Lorry I Lokey Interdisciplinary Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lisa Alexander
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Shannon Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Jin-Der Wen
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Laura Lancaster
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, United States
| | - Charles E Wickersham
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States
| | | | - Kurt Fredrik
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, United States
| | - Harry Noller
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, United States
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Carlos J Bustamante
- Jason L Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States Department of Physics, University of California, Berkeley, Berkeley, United States Department of Chemistry, University of California, Berkeley, Berkeley, United States California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
88
|
EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex. Nat Struct Mol Biol 2014; 21:817-24. [PMID: 25108354 DOI: 10.1038/nsmb.2869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/11/2014] [Indexed: 02/01/2023]
Abstract
During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.
Collapse
|
89
|
Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. Structure 2014; 22:1210-1218. [PMID: 25043550 DOI: 10.1016/j.str.2014.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 01/10/2023]
Abstract
The structural understanding of eukaryotic translation lags behind that of translation on bacterial ribosomes. Here, we present two subnanometer resolution structures of S. cerevisiae 80S ribosome complexes formed with either one or two tRNAs and bound in response to an mRNA fragment containing the Kozak consensus sequence. The ribosomes adopt two globally different conformations that are related to each other by the rotation of the small subunit. Comparison with bacterial ribosome complexes reveals that the global structures and modes of intersubunit rotation of the yeast ribosome differ significantly from those in the bacterial counterpart, most notably in the regions involving the tRNA, small ribosomal subunit, and conserved helix 69 of the large ribosomal subunit. The structures provide insight into ribosome dynamics implicated in tRNA translocation and help elucidate the role of the Kozak fragment in positioning an open reading frame during translation initiation in eukaryotes.
Collapse
|
90
|
Ishida H, Matsumoto A. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations. PLoS One 2014; 9:e101951. [PMID: 24999999 PMCID: PMC4084982 DOI: 10.1371/journal.pone.0101951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/12/2014] [Indexed: 01/11/2023] Open
Abstract
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Directorate and Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kyoto, Japan
- * E-mail:
| | - Atsushi Matsumoto
- Quantum Beam Science Directorate and Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kyoto, Japan
| |
Collapse
|
91
|
McGinnis JL, Weeks KM. Ribosome RNA assembly intermediates visualized in living cells. Biochemistry 2014; 53:3237-47. [PMID: 24818530 DOI: 10.1021/bi500198b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In cells, RNAs likely adopt numerous intermediate conformations prior to formation of functional RNA-protein complexes. We used single-nucleotide resolution selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to probe the structure of Escherichia coli 16S rRNA in healthy growing bacteria. SHAPE-directed modeling indicated that the predominant steady-state RNA conformational ensemble in dividing cells had a base-paired structure different from that expected on the basis of comparative sequence analysis and high-resolution studies of the 30S ribosomal subunit. We identified the major cause of these differences by stopping ongoing in-cell transcription (in essence, an in-cell RNA structure pulse-chase experiment) which caused the RNA to chase into a structure that closely resembled the expected one. Most helices that formed alternate RNA conformations under growth conditions interact directly with tertiary-binding ribosomal proteins and form a C-shape that surrounds the mRNA channel and decoding site. These in-cell experiments lead to a model in which ribosome assembly factors function as molecular struts to preorganize this intermediate and emphasize that the final stages of ribonucleoprotein assembly involve extensive protein-facilitated RNA conformational changes.
Collapse
Affiliation(s)
- Jennifer L McGinnis
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | | |
Collapse
|
92
|
A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. Proc Natl Acad Sci U S A 2014; 111:5538-43. [PMID: 24706807 DOI: 10.1073/pnas.1403457111] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ribosomal frameshifting occurs when a ribosome slips a few nucleotides on an mRNA and generates a new sequence of amino acids. Programmed -1 ribosomal frameshifting (-1PRF) is used in various systems to express two or more proteins from a single mRNA at precisely regulated levels. We used single-molecule fluorescence resonance energy transfer (smFRET) to study the dynamics of -1PRF in the Escherichia coli dnaX gene. The frameshifting mRNA (FSmRNA) contained the frameshifting signals: a Shine-Dalgarno sequence, a slippery sequence, and a downstream stem loop. The dynamics of ribosomal complexes translating through the slippery sequence were characterized using smFRET between the Cy3-labeled L1 stalk of the large ribosomal subunit and a Cy5-labeled tRNA(Lys) in the ribosomal peptidyl-tRNA-binding (P) site. We observed significantly slower elongation factor G (EF-G)-catalyzed translocation through the slippery sequence of FSmRNA in comparison with an mRNA lacking the stem loop, ΔSL. Furthermore, the P-site tRNA/L1 stalk of FSmRNA-programmed pretranslocation (PRE) ribosomal complexes exhibited multiple fluctuations between the classical/open and hybrid/closed states, respectively, in the presence of EF-G before translocation, in contrast with ΔSL-programmed PRE complexes, which sampled the hybrid/closed state approximately once before undergoing translocation. Quantitative analysis showed that the stimulatory stem loop destabilizes the hybrid state and elevates the energy barriers corresponding to subsequent substeps of translocation. The shift of the FSmRNA-programmed PRE complex equilibrium toward the classical/open state and toward states that favor EF-G dissociation apparently allows the PRE complex to explore alternative translocation pathways such as -1PRF.
Collapse
|
93
|
Holtkamp W, Cunha CE, Peske F, Konevega AL, Wintermeyer W, Rodnina MV. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. EMBO J 2014; 33:1073-85. [PMID: 24614227 DOI: 10.1002/embj.201387465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF-G mutants and translocation-specific antibiotics to investigate timing and energetics of translocation. We show that EF-G-GTP facilitates synchronous movements of peptidyl-tRNA on the two subunits into an early post-translocation state, which resembles a chimeric state identified by structural studies. EF-G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF-G. Our results reveal two distinct modes for utilizing the energy of EF-G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Qin P, Yu D, Zuo X, Cornish PV. Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep 2014; 15:185-90. [PMID: 24401932 DOI: 10.1002/embr.201337762] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
During protein synthesis, mRNA and tRNA are moved through the ribosome by the process of translocation. The small diameter of the mRNA entrance tunnel only permits unstructured mRNA to pass through. However, there are structured elements within mRNA that present a barrier for translocation that must be unwound. The ribosome has been shown to unwind RNA in the absence of additional factors, but the mechanism remains unclear. Here, we show using single molecule Förster resonance energy transfer and small angle X-ray scattering experiments a new global conformational state of the ribosome. In the presence of the frameshift inducing dnaX hairpin, the ribosomal subunits are driven into a hyper-rotated state and the L1 stalk is predominantly in an open conformation. This previously unobserved conformational state provides structural insight into the helicase activity of the ribosome and may have important implications for understanding the mechanism of reading frame maintenance.
Collapse
Affiliation(s)
- Peiwu Qin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
95
|
Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CMT, Nierhaus KH. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Microbiol 2013; 12:89-100. [PMID: 24362468 DOI: 10.1038/nrmicro3176] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosomes translate the codon sequence of an mRNA into the amino acid sequence of the corresponding protein. One of the most crucial events is the translocation reaction, which involves movement of both the mRNA and the attached tRNAs by one codon length and is catalysed by the GTPase elongation factor G (EF-G). Interestingly, recent studies have identified a structurally related GTPase, EF4, that catalyses movement of the tRNA2-mRNA complex in the opposite direction when the ribosome stalls, which is known as back-translocation. In this Review, we describe recent insights into the mechanistic basis of both translocation and back-translocation.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2]
| | - Yan Qin
- 1] Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China. [2]
| | - John Achenbach
- 1] NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany. [2]
| | - Chengmin Li
- Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China
| | - Jaroslaw Kijek
- Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Knud H Nierhaus
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2] Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| |
Collapse
|
96
|
Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc Natl Acad Sci U S A 2013; 110:20994-9. [PMID: 24324137 DOI: 10.1073/pnas.1311423110] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, tRNAs and their associated mRNA codons move sequentially on the ribosome from the A (aminoacyl) site to the P (peptidyl) site to the E (exit) site in a process catalyzed by a universally conserved ribosome-dependent GTPase [elongation factor G (EF-G) in prokaryotes and elongation factor 2 (EF-2) in eukaryotes]. Although the high-resolution structure of EF-G bound to the posttranslocation ribosome has been determined, the pretranslocation conformation of the ribosome bound with EF-G and A-site tRNA has evaded visualization owing to the transient nature of this state. Here we use electron cryomicroscopy to determine the structure of the 70S ribosome with EF-G, which is trapped in the pretranslocation state using antibiotic viomycin. Comparison with the posttranslocation ribosome shows that the small subunit of the pretranslocation ribosome is rotated by ∼12° relative to the large subunit. Domain IV of EF-G is positioned in the cleft between the body and head of the small subunit outwardly of the A site and contacts the A-site tRNA. Our findings suggest a model in which domain IV of EF-G promotes the translocation of tRNA from the A to the P site as the small ribosome subunit spontaneously rotates back from the hybrid, rotated state into the nonrotated posttranslocation state.
Collapse
|
97
|
Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc Natl Acad Sci U S A 2013; 110:20964-9. [PMID: 24324168 DOI: 10.1073/pnas.1320387110] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.
Collapse
|
98
|
Zhou J, Lancaster L, Donohue JP, Noller HF. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 2013; 340:1236086. [PMID: 23812722 DOI: 10.1126/science.1236086] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Translocation of messenger and transfer RNA (mRNA and tRNA) through the ribosome is a crucial step in protein synthesis, whose mechanism is not yet understood. The crystal structures of three Thermus ribosome-tRNA-mRNA-EF-G complexes trapped with β,γ-imidoguanosine 5'-triphosphate (GDPNP) or fusidic acid reveal conformational changes occurring during intermediate states of translocation, including large-scale rotation of the 30S subunit head and body. In all complexes, the tRNA acceptor ends occupy the 50S subunit E site, while their anticodon stem loops move with the head of the 30S subunit to positions between the P and E sites, forming chimeric intermediate states. Two universally conserved bases of 16S ribosomal RNA that intercalate between bases of the mRNA may act as "pawls" of a translocational ratchet. These findings provide new insights into the molecular mechanism of ribosomal translocation.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
99
|
Tourigny DS, Fernández IS, Kelley AC, Ramakrishnan V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 2013; 340:1235490. [PMID: 23812720 PMCID: PMC3836249 DOI: 10.1126/science.1235490] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key step of translation by the ribosome is translocation, which involves the movement of messenger RNA (mRNA) and transfer RNA (tRNA) with respect to the ribosome. This allows a new round of protein chain elongation by placing the next mRNA codon in the A site of the 30S subunit. Translocation proceeds through an intermediate state in which the acceptor ends of the tRNAs have moved with respect to the 50S subunit but not the 30S subunit, to form hybrid states. The guanosine triphosphatase (GTPase) elongation factor G (EF-G) catalyzes the subsequent movement of mRNA and tRNA with respect to the 30S subunit. Here, we present a crystal structure at 3 angstrom resolution of the Thermus thermophilus ribosome with a tRNA in the hybrid P/E state bound to EF-G with a GTP analog. The structure provides insights into structural changes that facilitate translocation and suggests a common GTPase mechanism for EF-G and elongation factor Tu.
Collapse
Affiliation(s)
| | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
100
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|