51
|
Stability of cytochromes c′ from psychrophilic and piezophilic Shewanella species: implications for complex multiple adaptation to low temperature and high hydrostatic pressure. Extremophiles 2019; 23:239-248. [DOI: 10.1007/s00792-019-01077-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
|
52
|
Trudeau DL, Tawfik DS. Protein engineers turned evolutionists-the quest for the optimal starting point. Curr Opin Biotechnol 2019; 60:46-52. [PMID: 30611116 DOI: 10.1016/j.copbio.2018.12.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
The advent of laboratory directed evolution yielded a fruitful crosstalk between the disciplines of molecular evolution and bio-engineering. Here, we outline recent developments in both disciplines with respect to how one can identify the best starting points for directed evolution, such that highly efficient and robust tailor-made enzymes can be obtained with minimal optimization. Directed evolution studies have highlighted essential features of engineer-able enzymes: highly stable, mutationally robust enzymes with the capacity to accept a broad range of substrates. Robust, evolvable enzymes can be inferred from the natural sequence record. Broad substrate spectrum relates to conformational plasticity and can also be predicted by phylogenetic analyses and/or by computational design. Overall, an increasingly powerful toolkit is becoming available for identifying optimal starting points including network analyses of enzyme superfamilies and other bioinformatics methods.
Collapse
Affiliation(s)
- Devin L Trudeau
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| |
Collapse
|
53
|
Kawamura K, Konagaya N, Maruoka Y. Enhancement and Inhibitory Activities of Minerals for Alanine Oligopeptide Elongation Under Hydrothermal Conditions. ASTROBIOLOGY 2018; 18:1403-1413. [PMID: 30160529 DOI: 10.1089/ast.2017.1732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a previous study, we have showed that the elongation of an alanine oligopeptide [L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala)4)] to higher oligopeptides is enhanced by calcite and dolomite at 275°C, using a mineral-mediated hydrothermal flow reactor system. However, a problem during the use of hydrothermal flow reactor system was that some of the minerals, such as clay, could not be tested due to their clogging in the reactor. In this article, we attempted to analyze the scope of enhancement for the formation of L-alanyl-L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala)5) and higher oligopeptides with different minerals including clay minerals for the elongation of alanine oligopeptide at 175°C. First, carbonate minerals and some clay minerals showed an enhancement of the formation of (Ala)5 from (Ala)4. On the contrary, volcanic products showed strong inhibitory activities. According to the pH dependence on the (Ala)4 elongations, we confirmed that most enhancement and inhibitory activities are due to the pH influence on the elongation of (Ala)4. However, the enhancement of montmorillonite (Tsukinuno), sphalerite, apatite, tourmaline, calcite (Nitto Funka), and the inhibitory activities by volcanic ash (Shinmoedake), volcanic ash (Sakurajima), dickite, and pyrophillite are not simply due to the pH change in the presence of these minerals. The difference found between the previous and present studies suggests that the interaction kinetics of the aqueous phase with the mineral phase is also an important factor for the elongation of (Ala)4. These data imply that the environments with pH near neutral to weak alkaline and with minerals might have been useful for the accumulation of oligopeptides in hydrothermal conditions.
Collapse
Affiliation(s)
- Kunio Kawamura
- 1 Department of Human Environmental Studies, Hiroshima Shudo University , Hiroshima, Japan
| | - Noriko Konagaya
- 2 Department of Nutritional Sciences, Yasuda Women's University , Hiroshima, Japan
| | - Yoshimi Maruoka
- 1 Department of Human Environmental Studies, Hiroshima Shudo University , Hiroshima, Japan
| |
Collapse
|
54
|
|
55
|
Liu Z, Qi FY, Xu DM, Zhou X, Shi P. Genomic and functional evidence reveals molecular insights into the origin of echolocation in whales. SCIENCE ADVANCES 2018; 4:eaat8821. [PMID: 30306134 PMCID: PMC6170035 DOI: 10.1126/sciadv.aat8821] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/27/2018] [Indexed: 05/15/2023]
Abstract
Echolocation allows toothed whales to adapt to underwater habitats where vision is ineffective. Because echolocation requires the ability to detect exceptional high-frequency sounds, fossils related to the auditory system can help to pinpoint the origin of echolocation in whales. However, because of conflicting interpretations of archaeocete fossils, when and how whales evolved the high-frequency hearing correlated with echolocation remain unclear. We address these questions at the molecular level by systematically investigating the convergent evolution of 7206 orthologs across 16 mammals and find that convergent genes between the last common ancestor of all whales (LCAW) and echolocating bats are not significantly enriched in functional categories related to hearing, and that convergence in hearing-related proteins between them is not stronger than that between nonecholocating mammalian lineages and echolocating bats. However, these results contrast with those of parallel analyses between the LCA of toothed whales (LCATW) and echolocating bats. Furthermore, we reconstruct the ancestral genes for the hearing protein prestin for the LCAW and LCATW; we show that the LCAW prestin exhibits the same function as that of nonecholocating mammals, but the LCATW prestin shows functional convergence with that of extant echolocating mammals. Mutagenesis shows that functional convergence of prestin is driven by convergent changes in the prestins S392A and L497M in the LCATW and echolocating bats. Our results provide genomic and functional evidence supporting the origin of high-frequency hearing in the LCAW, not the LCATW, and reveal molecular insights into the origin and evolutionary trajectories of echolocation in whales.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Fei-Yan Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Dong-Ming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
56
|
Lim SA, Bolin ER, Marqusee S. Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange. eLife 2018; 7:38369. [PMID: 30204082 PMCID: PMC6158009 DOI: 10.7554/elife.38369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
The conformations populated during protein folding have been studied for decades; yet, their evolutionary importance remains largely unexplored. Ancestral sequence reconstruction allows access to proteins across evolutionary time, and new methods such as pulsed-labeling hydrogen exchange coupled with mass spectrometry allow determination of folding intermediate structures at near amino-acid resolution. Here, we combine these techniques to monitor the folding of the ribonuclease H family along the evolutionary lineages of T. thermophilus and E. coli RNase H. All homologs and ancestral proteins studied populate a similar folding intermediate despite being separated by billions of years of evolution. Even though this conformation is conserved, the pathway leading to it has diverged over evolutionary time, and rational mutations can alter this trajectory. Our results demonstrate that evolutionary processes can affect the energy landscape to preserve or alter specific features of a protein’s folding pathway.
Collapse
Affiliation(s)
- Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Eric Richard Bolin
- Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Program, University of California, Berkeley, Berkeley, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
57
|
|
58
|
Lim SA, Marqusee S. The burst-phase folding intermediate of ribonuclease H changes conformation over evolutionary history. Biopolymers 2018; 109:e23086. [PMID: 29152711 PMCID: PMC6047922 DOI: 10.1002/bip.23086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 11/06/2022]
Abstract
The amino acid sequence encodes the energy landscape of a protein. Therefore, we expect evolutionary mutations to change features of the protein energy landscape, including the conformations adopted by a polypeptide as it folds to its native state. Ribonucleases H (RNase H) from Escherichia coli and Thermus thermophilus both fold via a partially folded intermediate in which the core region of the protein (helices A-D and strands 4-5) is structured. Strand 1, however, uniquely contributes to the T. thermophilus RNase H folding intermediate (Icore+1 ), but not the E. coli RNase H intermediate (Icore ) (Rosen & Marqusee, PLoS One 2015). We explore the origin of this difference by characterizing the folding intermediate of seven ancestral RNases H spanning the evolutionary history of these two homologs. Using fragment models with or without strand 1 and FRET probes to characterize the folding intermediate of each ancestor, we find a distinct evolutionary trend across the family-the involvement of strand 1 in the folding intermediate is an ancestral feature that is maintained in the thermophilic lineage and is gradually lost in the mesophilic lineage. Evolutionary sequence changes indeed modulate the conformations present on the folding landscape and altered the folding trajectory of RNase H.
Collapse
Affiliation(s)
- Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
59
|
Modi T, Huihui J, Ghosh K, Ozkan SB. Ancient thioredoxins evolved to modern-day stability-function requirement by altering native state ensemble. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170184. [PMID: 29735738 PMCID: PMC5941179 DOI: 10.1098/rstb.2017.0184] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Thioredoxins (THRXs)-small globular proteins that reduce other proteins-are ubiquitous in all forms of life, from Archaea to mammals. Although ancestral thioredoxins share sequential and structural similarity with the modern-day (extant) homologues, they exhibit significantly different functional activity and stability. We investigate this puzzle by comparative studies of their (ancient and modern-day THRXs') native state ensemble, as quantified by the dynamic flexibility index (DFI), a metric for the relative resilience of an amino acid to perturbations in the rest of the protein. Clustering proteins using DFI profiles strongly resemble an alternative classification scheme based on their activity and stability. The DFI profiles of the extant proteins are substantially different around the α3, α4 helices and catalytic regions. Likewise, allosteric coupling of the active site with the rest of the protein is different between ancient and extant THRXs, possibly explaining the decreased catalytic activity at low pH with evolution. At a global level, we note that the population of low-flexibility (called hinges) and high-flexibility sites increases with evolution. The heterogeneity (quantified by the variance) in DFI distribution increases with the decrease in the melting temperature typically associated with the evolution of ancient proteins to their modern-day counterparts.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Huihui
- Department of Physics and Astronomy, University of Denver, Denver, CO 80209, USA
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, CO 80209, USA
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
60
|
Nakano S, Motoyama T, Miyashita Y, Ishizuka Y, Matsuo N, Tokiwa H, Shinoda S, Asano Y, Ito S. Benchmark Analysis of Native and Artificial NAD +-Dependent Enzymes Generated by a Sequence-Based Design Method with or without Phylogenetic Data. Biochemistry 2018; 57:3722-3732. [PMID: 29787243 DOI: 10.1021/acs.biochem.8b00339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of protein sequence databases has enabled us to design artificial proteins by sequence-based design methods, such as full-consensus design (FCD) and ancestral-sequence reconstruction (ASR). Artificial proteins with enhanced activity levels compared with native ones can potentially be generated by such methods, but successful design is rare because preparing a sequence library by curating the database and selecting a method is difficult. Utilizing a curated library prepared by reducing conservation energies, we successfully designed two artificial l-threonine 3-dehydrogenases (SDR-TDH) with higher activity levels than native SDR-TDH, FcTDH-N1, and AncTDH, using FCD and ASR, respectively. The artificial SDR-TDHs had excellent thermal stability and NAD+ recognition compared to native SDR-TDH from Cupriavidus necator (CnTDH); the melting temperatures of FcTDH-N1 and AncTDH were about 10 and 5 °C higher than that of CnTDH, respectively, and the dissociation constants toward NAD+ of FcTDH-N1 and AncTDH were 2- and 7-fold lower than that of CnTDH, respectively. Enzymatic efficiency of the artificial SDR-TDHs were comparable to that of CnTDH. Crystal structures of FcTDH-N1 and AncTDH were determined at 2.8 and 2.1 Å resolution, respectively. Structural and MD simulation analysis of the SDR-TDHs indicated that only the flexibility at specific regions was changed, suggesting that multiple mutations introduced in the artificial SDR-TDHs altered their flexibility and thereby affected their enzymatic properties. Benchmark analysis of the SDR-TDHs indicated that both FCD and ASR can generate highly functional proteins if a curated library is prepared appropriately.
Collapse
Affiliation(s)
- Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan.,Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Tomoharu Motoyama
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Yurina Miyashita
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yuki Ishizuka
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Naoya Matsuo
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Hiroaki Tokiwa
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Suguru Shinoda
- Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan.,Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Yasuhisa Asano
- Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan.,Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan.,Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| |
Collapse
|
61
|
Risso VA, Sanchez-Ruiz JM, Ozkan SB. Biotechnological and protein-engineering implications of ancestral protein resurrection. Curr Opin Struct Biol 2018; 51:106-115. [PMID: 29660672 DOI: 10.1016/j.sbi.2018.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Approximations to the sequences of ancestral proteins can be derived from the sequences of their modern descendants. Proteins encoded by such reconstructed sequences can be prepared in the laboratory and subjected to experimental scrutiny. These 'resurrected' ancestral proteins often display remarkable properties, reflecting ancestral adaptations to intra-cellular and extra-cellular environments that differed from the environments hosting modern/extant proteins. Recent experimental and computational work has specifically discussed high stability, substrate and catalytic promiscuity, conformational flexibility/diversity and altered patterns of interaction with other sub-cellular components. In this review, we discuss these remarkable properties as well as recent attempts to explore their biotechnological and protein-engineering potential.
Collapse
Affiliation(s)
- Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain.
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85281, United States.
| |
Collapse
|
62
|
Di Giulio M. On Earth, there would be a number of fundamental kinds of primary cells – cellular domains – greater than or equal to four. J Theor Biol 2018; 443:10-17. [DOI: 10.1016/j.jtbi.2018.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 11/15/2022]
|
63
|
Buddrus L, Andrews ESV, Leak DJ, Danson MJ, Arcus VL, Crennell SJ. Crystal structure of an inferred ancestral bacterial pyruvate decarboxylase. Acta Crystallogr F Struct Biol Commun 2018; 74:179-186. [PMID: 29497023 PMCID: PMC5947705 DOI: 10.1107/s2053230x18002819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/16/2018] [Indexed: 12/30/2022] Open
Abstract
Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a key enzyme in homofermentative metabolism where ethanol is the major product. PDCs are thiamine pyrophosphate- and Mg2+ ion-dependent enzymes that catalyse the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. As this enzyme class is rare in bacteria, current knowledge of bacterial PDCs is extremely limited. One approach to further the understanding of bacterial PDCs is to exploit the diversity provided by evolution. Ancestral sequence reconstruction (ASR) is a method of computational molecular evolution to infer extinct ancestral protein sequences, which can then be synthesized and experimentally characterized. Through ASR a novel PDC was generated, designated ANC27, that shares only 78% amino-acid sequence identity with its closest extant homologue (Komagataeibacter medellinensis PDC, GenBank accession No. WP_014105323.1), yet is fully functional. Crystals of this PDC diffracted to 3.5 Å resolution. The data were merged in space group P3221, with unit-cell parameters a = b = 108.33, c = 322.65 Å, and contained two dimers (two tetramer halves) in the asymmetric unit. The structure was solved by molecular replacement using PDB entry 2wvg as a model, and the final R values were Rwork = 0.246 (0.3671 in the highest resolution bin) and Rfree = 0.319 (0.4482 in the highest resolution bin). Comparison with extant bacterial PDCs supports the previously observed correlation between decreased tetramer interface area (and number of interactions) and decreased thermostability.
Collapse
Affiliation(s)
- Lisa Buddrus
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, England
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - Emma S. V. Andrews
- School of Science, Faculty of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - David J. Leak
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - Michael J. Danson
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - Vickery L. Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Susan J. Crennell
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| |
Collapse
|
64
|
Comprehensive reduction of amino acid set in a protein suggests the importance of prebiotic amino acids for stable proteins. Sci Rep 2018; 8:1227. [PMID: 29352156 PMCID: PMC5775292 DOI: 10.1038/s41598-018-19561-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022] Open
Abstract
Modern organisms commonly use the same set of 20 genetically coded amino acids for protein synthesis with very few exceptions. However, earlier protein synthesis was plausibly much simpler than modern one and utilized only a limited set of amino acids. Nevertheless, few experimental tests of this issue with arbitrarily chosen amino acid sets had been reported prior to this report. Herein we comprehensively and systematically reduced the size of the amino acid set constituting an ancestral nucleoside kinase that was reconstructed in our previous study. We eventually found that two convergent sequences, each comprised of a 13-amino acid alphabet, folded into soluble, stable and catalytically active structures, even though their stabilities and activities were not as high as those of the parent protein. Notably, many but not all of the reduced-set amino acids coincide with those plausibly abundant in primitive Earth. The inconsistent amino acids appeared to be important for catalytic activity but not for stability. Therefore, our findings suggest that the prebiotically abundant amino acids were used for creating stable protein structures and other amino acids with functional side chains were recruited to achieve efficient catalysis.
Collapse
|
65
|
Okafor CD, Pathak MC, Fagan CE, Bauer NC, Cole MF, Gaucher EA, Ortlund EA. Structural and Dynamics Comparison of Thermostability in Ancient, Modern, and Consensus Elongation Factor Tus. Structure 2018; 26:118-129.e3. [PMID: 29276038 PMCID: PMC5785943 DOI: 10.1016/j.str.2017.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023]
Abstract
Rationally engineering thermostability in proteins would create enzymes and receptors that function under harsh industrial applications. Several sequence-based approaches can generate thermostable variants of mesophilic proteins. To gain insight into the mechanisms by which proteins become more stable, we use structural and dynamic analyses to compare two popular approaches, ancestral sequence reconstruction (ASR) and the consensus method, used to generate thermostable variants of Elongation Factor Thermo-unstable (EF-Tu). We present crystal structures of ancestral and consensus EF-Tus, accompanied by molecular dynamics simulations aimed at probing the strategies employed to enhance thermostability. All proteins adopt crystal structures similar to extant EF-Tus, revealing no difference in average structure between the methods. Molecular dynamics reveals that ASR-generated sequences retain dynamic properties similar to extant, thermostable EF-Tu from Thermus aquaticus, while consensus EF-Tu dynamics differ from evolution-based sequences. This work highlights the advantage of ASR for engineering thermostability while preserving natural motions in multidomain proteins.
Collapse
Affiliation(s)
- C. Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Manish C. Pathak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Crystal E. Fagan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Nicholas C. Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Megan F. Cole
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 USA
| | - Eric A. Gaucher
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA,Correspondence:
| |
Collapse
|
66
|
Kacar B, Guy L, Smith E, Baross J. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160352. [PMID: 29133450 PMCID: PMC5686408 DOI: 10.1098/rsta.2016.0352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2017] [Indexed: 05/04/2023]
Abstract
Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the beta-carbonic anhydrase protein. We assess how carbonic anhydrase proteins meet our selection criteria for reconstructing ancient biosignatures in the laboratory, which we term palaeophenotype reconstruction.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Betul Kacar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Eric Smith
- Earth-Science Life Institute, Meguro-ku, Tokyo 152-8550, Japan
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - John Baross
- The School of Oceanography, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
67
|
Characterization of a thermostable mutant of Agaricus brasiliensis laccase created by phylogeny-based design. J Biosci Bioeng 2017; 124:623-629. [DOI: 10.1016/j.jbiosc.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
|
68
|
Fontanillas E, Galzitskaya OV, Lecompte O, Lobanov MY, Tanguy A, Mary J, Girguis PR, Hourdez S, Jollivet D. Proteome Evolution of Deep-Sea Hydrothermal Vent Alvinellid Polychaetes Supports the Ancestry of Thermophily and Subsequent Adaptation to Cold in Some Lineages. Genome Biol Evol 2017; 9:279-296. [PMID: 28082607 PMCID: PMC5381640 DOI: 10.1093/gbe/evw298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level.
Collapse
Affiliation(s)
- Eric Fontanillas
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Oxana V Galzitskaya
- Laboratory of Protein Physics, Institute of Protein Research, RAS, Institutskaya street, 4, 142290 Pushchino, Moscow, Russia
| | - Odile Lecompte
- CSTB - ICUBE, UMR7357, Faculté de Médecine, 4 rue Kirschleger, 67085 Strasbourg, France
| | - Mikhail Y Lobanov
- Laboratory of Protein Physics, Institute of Protein Research, RAS, Institutskaya street, 4, 142290 Pushchino, Moscow, Russia
| | - Arnaud Tanguy
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Jean Mary
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Peter R Girguis
- Department of Organismic & Evolutionary Biology, Harvard University Biological Laboratories, Cambridge, MA
| | - Stéphane Hourdez
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Didier Jollivet
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| |
Collapse
|
69
|
Kawamura K. Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments. Life (Basel) 2017; 7:E37. [PMID: 28974048 PMCID: PMC5745550 DOI: 10.3390/life7040037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Human Environmental Studies, Hiroshima Shudo University, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3195, Japan.
| |
Collapse
|
70
|
Akanuma S. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere. Life (Basel) 2017; 7:life7030033. [PMID: 28783077 PMCID: PMC5617958 DOI: 10.3390/life7030033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth’s early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth’s surface temperature gradually decreased over time, from Archean to present.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
71
|
Risso VA, Martinez-Rodriguez S, Candel AM, Krüger DM, Pantoja-Uceda D, Ortega-Muñoz M, Santoyo-Gonzalez F, Gaucher EA, Kamerlin SCL, Bruix M, Gavira JA, Sanchez-Ruiz JM. De novo active sites for resurrected Precambrian enzymes. Nat Commun 2017; 8:16113. [PMID: 28719578 PMCID: PMC5520109 DOI: 10.1038/ncomms16113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.
Collapse
Affiliation(s)
- Valeria A. Risso
- Departamento de Quimica Fisica, Facultad de Ciencias University of Granada, 18071 Granada, Spain
| | | | - Adela M. Candel
- Departamento de Quimica Fisica, Facultad de Ciencias University of Granada, 18071 Granada, Spain
| | - Dennis M. Krüger
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - David Pantoja-Uceda
- Departamento de Quimica Fisica Biologica, Instituto de Quimica Fisica Rocasolano, CSIC, c/Serrano 119, 28006-Madrid, Spain
| | - Mariano Ortega-Muñoz
- Departamento de Quimica Organica, Facultad de Ciencias University of Granada, 18071 Granada, Spain
| | | | - Eric A. Gaucher
- School of Biology, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Shina C. L. Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Marta Bruix
- Departamento de Quimica Fisica Biologica, Instituto de Quimica Fisica Rocasolano, CSIC, c/Serrano 119, 28006-Madrid, Spain
| | - Jose A. Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada Avenida de la Palmeras 4, Granada, 18100 Armilla, Spain
| | - Jose M. Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias University of Granada, 18071 Granada, Spain
| |
Collapse
|
72
|
Medina-Carmona E, Fuchs JE, Gavira JA, Mesa-Torres N, Neira JL, Salido E, Palomino-Morales R, Burgos M, Timson DJ, Pey AL. Enhanced vulnerability of human proteins towards disease-associated inactivation through divergent evolution. Hum Mol Genet 2017; 26:3531-3544. [DOI: 10.1093/hmg/ddx238] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022] Open
|
73
|
Babkova P, Sebestova E, Brezovsky J, Chaloupkova R, Damborsky J. Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. Chembiochem 2017; 18:1448-1456. [PMID: 28419658 DOI: 10.1002/cbic.201700197] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 11/08/2022]
Abstract
Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli, and the resurrected ancestral enzymes (AncHLD1-5) were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C), as well as higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2. This is extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for the development of novel biocatalysts and robust templates for directed evolution.
Collapse
Affiliation(s)
- Petra Babkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Eva Sebestova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
74
|
Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering. Biochem J 2017; 474:1-19. [PMID: 28008088 DOI: 10.1042/bcj20160507] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
A central goal in molecular evolution is to understand the ways in which genes and proteins evolve in response to changing environments. In the absence of intact DNA from fossils, ancestral sequence reconstruction (ASR) can be used to infer the evolutionary precursors of extant proteins. To date, ancestral proteins belonging to eubacteria, archaea, yeast and vertebrates have been inferred that have been hypothesized to date from between several million to over 3 billion years ago. ASR has yielded insights into the early history of life on Earth and the evolution of proteins and macromolecular complexes. Recently, however, ASR has developed from a tool for testing hypotheses about protein evolution to a useful means for designing novel proteins. The strength of this approach lies in the ability to infer ancestral sequences encoding proteins that have desirable properties compared with contemporary forms, particularly thermostability and broad substrate range, making them good starting points for laboratory evolution. Developments in technologies for DNA sequencing and synthesis and computational phylogenetic analysis have led to an escalation in the number of ancient proteins resurrected in the last decade and greatly facilitated the use of ASR in the burgeoning field of synthetic biology. However, the primary challenge of ASR remains in accurately inferring ancestral states, despite the uncertainty arising from evolutionary models, incomplete sequences and limited phylogenetic trees. This review will focus, firstly, on the use of ASR to uncover links between sequence and phenotype and, secondly, on the practical application of ASR in protein engineering.
Collapse
|
75
|
Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean. Proc Natl Acad Sci U S A 2017; 114:4619-4624. [PMID: 28416654 DOI: 10.1073/pnas.1702729114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paleotemperatures inferred from the isotopic compositions (δ18O and δ30Si) of marine cherts suggest that Earth's oceans cooled from 70 ± 15 °C in the Archean to the present ∼15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ∼65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.
Collapse
|
76
|
Evidence for the principle of minimal frustration in the evolution of protein folding landscapes. Proc Natl Acad Sci U S A 2017; 114:E1627-E1632. [PMID: 28196883 DOI: 10.1073/pnas.1613892114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Theoretical and experimental studies have firmly established that protein folding can be described by a funneled energy landscape. This funneled energy landscape is the result of foldable protein sequences evolving following the principle of minimal frustration, which allows proteins to rapidly fold to their native biologically functional conformations. For a protein family with a given functional fold, the principle of minimal frustration suggests that, independent of sequence, all proteins within this family should fold with similar rates. However, depending on the optimal living temperature of the organism, proteins also need to modulate their thermodynamic stability. Consequently, the difference in thermodynamic stability should be primarily caused by differences in the unfolding rates. To test this hypothesis experimentally, we performed comprehensive thermodynamic and kinetic analyses of 15 different proteins from the thioredoxin family. Eight of these thioredoxins were extant proteins from psychrophilic, mesophilic, or thermophilic organisms. The other seven protein sequences were obtained using ancestral sequence reconstruction and can be dated back over 4 billion years. We found that all studied proteins fold with very similar rates but unfold with rates that differ up to three orders of magnitude. The unfolding rates correlate well with the thermodynamic stability of the proteins. Moreover, proteins that unfold slower are more resistant to proteolysis. These results provide direct experimental support to the principle of minimal frustration hypothesis.
Collapse
|
77
|
Eick GN, Bridgham JT, Anderson DP, Harms MJ, Thornton JW. Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol 2017; 34:247-261. [PMID: 27795231 PMCID: PMC6095102 DOI: 10.1093/molbev/msw223] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypotheses about the functions of ancient proteins and the effects of historical mutations on them are often tested using ancestral protein reconstruction (APR)-phylogenetic inference of ancestral sequences followed by synthesis and experimental characterization. Usually, some sequence sites are ambiguously reconstructed, with two or more statistically plausible states. The extent to which the inferred functions and mutational effects are robust to uncertainty about the ancestral sequence has not been studied systematically. To address this issue, we reconstructed ancestral proteins in three domain families that have different functions, architectures, and degrees of uncertainty; we then experimentally characterized the functional robustness of these proteins when uncertainty was incorporated using several approaches, including sampling amino acid states from the posterior distribution at each site and incorporating the alternative amino acid state at every ambiguous site in the sequence into a single "worst plausible case" protein. In every case, qualitative conclusions about the ancestral proteins' functions and the effects of key historical mutations were robust to sequence uncertainty, with similar functions observed even when scores of alternate amino acids were incorporated. There was some variation in quantitative descriptors of function among plausible sequences, suggesting that experimentally characterizing robustness is particularly important when quantitative estimates of ancient biochemical parameters are desired. The worst plausible case method appears to provide an efficient strategy for characterizing the functional robustness of ancestral proteins to large amounts of sequence uncertainty. Sampling from the posterior distribution sometimes produced artifactually nonfunctional proteins for sequences reconstructed with substantial ambiguity.
Collapse
Affiliation(s)
- Geeta N Eick
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Department of Anthropology, University of Oregon, Eugene, OR
| | - Jamie T Bridgham
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
| | - Douglas P Anderson
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Michael J Harms
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Joseph W Thornton
- Department of Ecology & Evolution and Department of Human Genetics, University of Chicago, Chicago, IL
| |
Collapse
|
78
|
Nguyen V, Wilson C, Hoemberger M, Stiller JB, Agafonov RV, Kutter S, English J, Theobald DL, Kern D. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science 2017; 355:289-294. [PMID: 28008087 PMCID: PMC5649376 DOI: 10.1126/science.aah3717] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/21/2016] [Indexed: 11/02/2022]
Abstract
With early life likely to have existed in a hot environment, enzymes had to cope with an inherent drop in catalytic speed caused by lowered temperature. Here we characterize the molecular mechanisms underlying thermoadaptation of enzyme catalysis in adenylate kinase using ancestral sequence reconstruction spanning 3 billion years of evolution. We show that evolution solved the enzyme's key kinetic obstacle-how to maintain catalytic speed on a cooler Earth-by exploiting transition-state heat capacity. Tracing the evolution of enzyme activity and stability from the hot-start toward modern hyperthermophilic, mesophilic, and psychrophilic organisms illustrates active pressure versus passive drift in evolution on a molecular level, refutes the debated activity/stability trade-off, and suggests that the catalytic speed of adenylate kinase is an evolutionary driver for organismal fitness.
Collapse
Affiliation(s)
- Vy Nguyen
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Christopher Wilson
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Marc Hoemberger
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - John B Stiller
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Roman V Agafonov
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Steffen Kutter
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Justin English
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | | | - Dorothee Kern
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA.
| |
Collapse
|
79
|
Clifton BE, Whitfield JH, Sanchez-Romero I, Herde MK, Henneberger C, Janovjak H, Jackson CJ. Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors. Methods Mol Biol 2017; 1596:71-87. [PMID: 28293881 DOI: 10.1007/978-1-4939-6940-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Small molecule biosensors based on Förster resonance energy transfer (FRET) enable small molecule signaling to be monitored with high spatial and temporal resolution in complex cellular environments. FRET sensors can be constructed by fusing a pair of fluorescent proteins to a suitable recognition domain, such as a member of the solute-binding protein (SBP) superfamily. However, naturally occurring SBPs may be unsuitable for incorporation into FRET sensors due to their low thermostability, which may preclude imaging under physiological conditions, or because the positions of their N- and C-termini may be suboptimal for fusion of fluorescent proteins, which may limit the dynamic range of the resulting sensors. Here, we show how these problems can be overcome using ancestral protein reconstruction and circular permutation. Ancestral protein reconstruction, used as a protein engineering strategy, leverages phylogenetic information to improve the thermostability of proteins, while circular permutation enables the termini of an SBP to be repositioned to maximize the dynamic range of the resulting FRET sensor. We also provide a protocol for cloning the engineered SBPs into FRET sensor constructs using Golden Gate assembly and discuss considerations for in situ characterization of the FRET sensors.
Collapse
Affiliation(s)
- Ben E Clifton
- Research School of Chemistry, The Australian National University, Building 137, Sullivans Creek Road, Canberra, ACT, 2601, Australia
| | - Jason H Whitfield
- Research School of Chemistry, The Australian National University, Building 137, Sullivans Creek Road, Canberra, ACT, 2601, Australia
| | | | - Michel K Herde
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
- German Centre for Neurodegenerative Diseases, Bonn, Germany
- University College of London, London, UK
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Building 137, Sullivans Creek Road, Canberra, ACT, 2601, Australia.
| |
Collapse
|
80
|
|
81
|
Alcalde M. When directed evolution met ancestral enzyme resurrection. Microb Biotechnol 2016; 10:22-24. [PMID: 27863072 PMCID: PMC5270717 DOI: 10.1111/1751-7915.12452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 11/29/2022] Open
Abstract
The directed evolution of ancestral ‐resurrected‐ enzymes can give a new twist in protein engineering approaches towards more versatile and robust biocatalysts.
![]()
Collapse
Affiliation(s)
- Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
82
|
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H. Proc Natl Acad Sci U S A 2016; 113:13045-13050. [PMID: 27799545 DOI: 10.1073/pnas.1611781113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein's folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale. How exactly a protein's energy landscape is maintained or altered throughout evolution is unclear. To study how a protein's energy landscape changed over time, we characterized the folding trajectories of ancestral proteins of the ribonuclease H (RNase H) family using ancestral sequence reconstruction to access the evolutionary history between RNases H from mesophilic and thermophilic bacteria. We found that despite large sequence divergence, the overall folding pathway is conserved over billions of years of evolution. There are robust trends in the rates of protein folding and unfolding; both modern RNases H evolved to be more kinetically stable than their most recent common ancestor. Finally, our study demonstrates how a partially folded intermediate provides a readily adaptable folding landscape by allowing the independent tuning of kinetics and thermodynamics.
Collapse
|
83
|
Yokobori SI, Nakajima Y, Akanuma S, Yamagishi A. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids. ARCHAEA (VANCOUVER, B.C.) 2016; 2016:1802675. [PMID: 27774041 PMCID: PMC5059525 DOI: 10.1155/2016/1802675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 01/25/2023]
Abstract
Bacteria and Eukarya have cell membranes with sn-glycerol-3-phosphate (G3P), whereas archaeal membranes contain sn-glycerol-1-phosphate (G1P). Determining the time at which cells with either G3P-lipid membranes or G1P-lipid membranes appeared is important for understanding the early evolution of terrestrial life. To clarify this issue, we reconstructed molecular phylogenetic trees of G1PDH (G1P dehydrogenase; EgsA/AraM) which is responsible for G1P synthesis and G3PDHs (G3P dehydrogenase; GpsA and GlpA/GlpD) and glycerol kinase (GlpK) which is responsible for G3P synthesis. Together with the distribution of these protein-encoding genes among archaeal and bacterial groups, our phylogenetic analyses suggested that GlpA/GlpD in the Commonote (the last universal common ancestor of all extant life with a cellular form, Commonote commonote) acquired EgsA (G1PDH) from the archaeal common ancestor (Commonote archaea) and acquired GpsA and GlpK from a bacterial common ancestor (Commonote bacteria). In our scenario based on this study, the Commonote probably possessed a G3P-lipid membrane synthesized enzymatically, after which the archaeal lineage acquired G1PDH followed by the replacement of a G3P-lipid membrane with a G1P-lipid membrane.
Collapse
Affiliation(s)
- Shin-ichi Yokobori
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiki Nakajima
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Akihiko Yamagishi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
84
|
Allen KD, White RH. Occurrence and biosynthesis of 3-mercaptopropionic acid in Methanocaldococcus jannaschii. FEMS Microbiol Lett 2016; 363:fnw217. [PMID: 27634308 DOI: 10.1093/femsle/fnw217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
In a non-targeted analysis of thiol-containing compounds in the hyperthermophilic methanogen Methanocaldococcus jannaschii, we discovered three unexpected metabolites: 3-mercaptopropionic acid (MPA), 2-hydroxy-4-mercaptobutyric acid (HMBA) and 4-mercapto-2-oxobutyric acid (MOB). HMBA and MOB have never been reported as natural products, while MPA is highly prevalent in aquatic environments as a result of biotic and abiotic processing of sulfur-containing compounds. This report provides evidence that HMBA and MOB are part of a biosynthetic pathway to generate MPA in M. jannaschii We show that HMBA can be biosynthesized from malate semialdehyde and hydrogen sulfide, likely using a mechanism similar to that proposed for coenzyme M, coenzyme B and homocysteine biosynthesis in methanogens, where an aldehyde is converted to a thiol. The L-sulfolactate dehydrogenase, derived from the MJ1425 gene, is shown to catalyze the NAD-dependent oxidation of HMBA to MOB. Finally, we demonstrate that HMBA can be used as a biosynthetic precursor to MPA in M. jannaschii cell extracts. This proposed pathway may contribute to the wide occurrence of MPA in marine environments and indicates that MPA must serve some important function in M. jannaschii.
Collapse
Affiliation(s)
- Kylie D Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Robert H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
85
|
Engineering ancestral protein hyperstability. Biochem J 2016; 473:3611-3620. [PMID: 27528732 DOI: 10.1042/bcj20160532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023]
Abstract
Many experimental analyses and proposed scenarios support that ancient life was thermophilic. In congruence with this hypothesis, proteins encoded by reconstructed sequences corresponding to ancient phylogenetic nodes often display very high stability. Here, we show that such 'reconstructed ancestral hyperstability' can be further engineered on the basis of a straightforward approach that uses exclusively information afforded by the ancestral reconstruction process itself. Since evolution does not imply continuous progression, screening of the mutations between two evolutionarily related resurrected ancestral proteins may identify mutations that further stabilize the most stable one. To explore this approach, we have used a resurrected thioredoxin corresponding to the last common ancestor of the cyanobacterial, Deinococcus and Thermus groups (LPBCA thioredoxin), which has a denaturation temperature of ∼123°C. This high value is within the top 0.1% of the denaturation temperatures in the ProTherm database and, therefore, achieving further stabilization appears a priori as a challenging task. Nevertheless, experimental comparison with a resurrected thioredoxin corresponding to the last common ancestor of bacteria (denaturation temperature of ∼115°C) immediately identifies three mutations that increase the denaturation temperature of LPBCA thioredoxin to ∼128°C. Comparison between evolutionarily related resurrected ancestral proteins thus emerges as a simple approach to expand the capability of ancestral reconstruction to search sequence space for extreme protein properties of biotechnological interest. The fact that ancestral sequences for many phylogenetic nodes can be derived from a single alignment of modern sequences should contribute to the general applicability of this approach.
Collapse
|
86
|
Trudeau DL, Kaltenbach M, Tawfik DS. On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol 2016; 33:2633-41. [PMID: 27413048 DOI: 10.1093/molbev/msw138] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ancestral reconstruction provides instrumental insights regarding the biochemical and biophysical characteristics of past proteins. A striking observation relates to the remarkably high thermostability of reconstructed ancestors. The latter has been linked to high environmental temperatures in the Precambrian era, the era relating to most reconstructed proteins. We found that inferred ancestors of the serum paraoxonase (PON) enzyme family, including the mammalian ancestor, exhibit dramatically increased thermostabilities compared with the extant, human enzyme (up to 30 °C higher melting temperature). However, the environmental temperature at the time of emergence of mammals is presumed to be similar to the present one. Additionally, the mammalian PON ancestor has superior folding properties (kinetic stability)-unlike the extant mammalian PONs, it expresses in E. coli in a soluble and functional form, and at a high yield. We discuss two potential origins of this unexpectedly high stability. First, ancestral stability may be overestimated by a "consensus effect," whereby replacing amino acids that are rare in contemporary sequences with the amino acid most common in the family increases protein stability. Comparison to other reconstructed ancestors indicates that the consensus effect may bias some but not all reconstructions. Second, we note that high stability may relate to factors other than high environmental temperature such as oxidative stress or high radiation levels. Foremost, intrinsic factors such as high rates of genetic mutations and/or of transcriptional and translational errors, and less efficient protein quality control systems, may underlie the high kinetic and thermodynamic stability of past proteins.
Collapse
Affiliation(s)
- Devin L Trudeau
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Kaltenbach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
87
|
Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A 2016; 113:8194-9. [PMID: 27382162 DOI: 10.1073/pnas.1607580113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hydrolytic deamination of cytosine and 5-methylcytosine residues in DNA appears to contribute significantly to the appearance of spontaneous mutations in microorganisms and in human disease. In the present work, we examined the mechanism of cytosine deamination and the response of the uncatalyzed reaction to changing temperature. The positively charged 1,3-dimethylcytosinium ion was hydrolyzed at a rate similar to the rate of acid-catalyzed hydrolysis of 1-methylcytosine, for which it furnishes a satisfactory kinetic model and a probable mechanism. In agreement with earlier reports, uncatalyzed deamination was found to proceed at very similar rates for cytosine, 1-methylcytosine, cytidine, and cytidine 5'-phosphate, and also for cytosine residues in single-stranded DNA generated from a phagemid, in which we sequenced an insert representing the gene of the HIV-1 protease. Arrhenius plots for the uncatalyzed deamination of cytosine were linear over the temperature range from 90 °C to 200 °C and indicated a heat of activation (ΔH(‡)) of 23.4 ± 0.5 kcal/mol at pH 7. Recent evidence indicates that the surface of the earth has been cool enough to support life for more than 4 billion years and that life has been present for almost as long. If the temperature at Earth's surface is assumed to have followed Newton's law of cooling, declining exponentially from 100 °C to 25 °C during that period, then half of the cytosine-deaminating events per unit biomass would have taken place during the first 0.2 billion years, and <99.4% would have occurred during the first 2 billion years.
Collapse
|
88
|
Wheeler LC, Lim SA, Marqusee S, Harms MJ. The thermostability and specificity of ancient proteins. Curr Opin Struct Biol 2016; 38:37-43. [PMID: 27288744 DOI: 10.1016/j.sbi.2016.05.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/16/2022]
Abstract
Were ancient proteins systematically different than modern proteins? The answer to this question is profoundly important, shaping how we understand the origins of protein biochemical, biophysical, and functional properties. Ancestral sequence reconstruction (ASR), a phylogenetic approach to infer the sequences of ancestral proteins, may reveal such trends. We discuss two proposed trends: a transition from higher to lower thermostability and a tendency for proteins to acquire higher specificity over time. We review the evidence for elevated ancestral thermostability and discuss its possible origins in a changing environmental temperature and/or reconstruction bias. We also conclude that there is, as yet, insufficient data to support a trend from promiscuity to specificity. Finally, we propose future work to understand these proposed evolutionary trends.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States; Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
| | - Shion A Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States; Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States; Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States.
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States; Institute of Molecular Biology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
89
|
Romero-Romero ML, Risso VA, Martinez-Rodriguez S, Gaucher EA, Ibarra-Molero B, Sanchez-Ruiz JM. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life. PLoS One 2016; 11:e0156657. [PMID: 27253436 PMCID: PMC4890807 DOI: 10.1371/journal.pone.0156657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 01/24/2023] Open
Abstract
The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms.
Collapse
Affiliation(s)
- M. Luisa Romero-Romero
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Valeria A. Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | - Eric A. Gaucher
- Georgia Institute of Technology, School of Biology, School of Chemistry and Biochemistry, and Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia, 30332, United States of America
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jose M. Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
- * E-mail:
| |
Collapse
|
90
|
Newton MS, Arcus VL, Patrick WM. Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes. J R Soc Interface 2016; 12:rsif.2015.0036. [PMID: 25926697 DOI: 10.1098/rsif.2015.0036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of enzymes is often viewed as following a smooth and steady trajectory, from barely functional primordial catalysts to the highly active and specific enzymes that we observe today. In this review, we summarize experimental data that suggest a different reality. Modern examples, such as the emergence of enzymes that hydrolyse human-made pesticides, demonstrate that evolution can be extraordinarily rapid. Experiments to infer and resurrect ancient sequences suggest that some of the first organisms present on the Earth are likely to have possessed highly active enzymes. Reconciling these observations, we argue that rapid bursts of strong selection for increased catalytic efficiency are interspersed with much longer periods in which the catalytic power of an enzyme erodes, through neutral drift and selection for other properties such as cellular energy efficiency or regulation. Thus, many enzymes may have already passed their catalytic peaks.
Collapse
Affiliation(s)
- Matilda S Newton
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Vickery L Arcus
- School of Biology, University of Waikato, Hamilton, New Zealand
| | - Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
91
|
Sakai HD, Kurosawa N. Exploration and isolation of novel thermophiles in frozen enrichment cultures derived from a terrestrial acidic hot spring. Extremophiles 2016; 20:207-14. [PMID: 26860120 DOI: 10.1007/s00792-016-0815-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/28/2016] [Indexed: 11/25/2022]
Abstract
An isolation strategy, exploring novel microorganisms in frozen enrichment cultures (ENFE), which uses a combination of enrichment culture and 16S rRNA gene clone analysis, was evaluated for isolating uncultured thermophiles from a terrestrial acidic hot spring. The procedure comprised (a) multiple enrichment cultures under various conditions, (b) cryostorage of all enrichments, (c) microbial community analyses of the enrichments using 16S rRNA gene sequences, and (d) purification of microorganisms from enrichments containing previously uncultured microorganisms. The enrichments were performed under a total of 36 conditions, and 16 of these enrichments yielded positive microbial growth with the detection of three previously uncultured archaea. Two of the three previously uncultured archaea, strains HS-1 and HS-3, were successfully isolated. Strain HS-1 and HS-3 represented a novel lineage of the order Sulfolobales and novel species of the genus Sulfolobus, respectively. Although innovative isolation methods play strategic roles in isolating previously uncultured microorganisms, the ENFE strategy showed potential for characterizing and isolating such microorganisms using conventional media and techniques.
Collapse
Affiliation(s)
- Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
92
|
Fukuda Y, Abe A, Tamura T, Kishimoto T, Sogabe A, Akanuma S, Yokobori SI, Yamagishi A, Imada K, Inagaki K. Epistasis effects of multiple ancestral-consensus amino acid substitutions on the thermal stability of glycerol kinase from Cellulomonas sp. NT3060. J Biosci Bioeng 2015; 121:497-502. [PMID: 26493633 DOI: 10.1016/j.jbiosc.2015.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/28/2015] [Accepted: 09/16/2015] [Indexed: 10/22/2022]
Abstract
Thermostable variants of the Cellulomonas sp. NT3060 glycerol kinase have been constructed by through the introduction of ancestral-consensus mutations. We produced seven mutants, each having an ancestral-consensus amino acid residue that might be present in the common ancestors of both bacteria and of archaea, and that appeared most frequently at the position of 17 glycerol kinase sequences in the multiple sequence alignment. The thermal stabilities of the resulting mutants were assessed by determining their melting temperatures (Tm), which was defined as the temperature at which 50% of the initial catalytic activity is lost after 15 min of incubation, as well as when the half-life of the catalytic activity occurs at a temperature of 60°C (t1/2). Three mutants showed increased stabilities compared to the wild-type protein. We then produced five more mutants with multiple amino acid substitutions. Some of the resulting mutants showed thermal stabilities much greater than those expected given the stabilities of the respective mutants with single mutations. Therefore, the effects of mutations are not always simply additive and some amino acid substitutions, which do not affect or only slightly improve stability when individually introduced into the protein, show substantial stabilizing effects in combination with other mutations.
Collapse
Affiliation(s)
- Yasuhisa Fukuda
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Asuka Abe
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Tamura
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takahide Kishimoto
- Biochemical Department, Toyobo Co. Ltd., 2-2-8 Dojima Hama, Kita-ku, Osaka 530-8230, Japan
| | - Atsushi Sogabe
- Biochemical Department, Toyobo Co. Ltd., 2-2-8 Dojima Hama, Kita-ku, Osaka 530-8230, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Shin-Ichi Yokobori
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiko Yamagishi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Kenji Inagaki
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
93
|
Akanuma S, Yokobori SI, Nakajima Y, Bessho M, Yamagishi A. Robustness of predictions of extremely thermally stable proteins in ancient organisms. Evolution 2015; 69:2954-62. [PMID: 26404857 DOI: 10.1111/evo.12779] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
Abstract
A number of studies have addressed the environmental temperatures experienced by ancient life. Computational studies using a nonhomogeneous evolution model have estimated ancestral G + C contents of ribosomal RNAs and the amino acid compositions of ancestral proteins, generating hypotheses regarding the mesophilic last universal common ancestor. In contrast, our previous study computationally reconstructed ancestral amino acid sequences of nucleoside diphosphate kinases using a homogeneous model and then empirically resurrected the ancestral proteins. The thermal stabilities of these ancestral proteins were equivalent to or greater than those of extant homologous thermophilic proteins, supporting the thermophilic universal ancestor theory. In this study, we reinferred ancestral sequences using a dataset from which hyperthermophilic sequences were excluded. We also reinferred ancestral sequences using a nonhomogeneous evolution model. The newly reconstructed ancestral proteins are still thermally stable, further supporting the hypothesis that the ancient organisms contained thermally stable proteins and therefore that they were thermophilic.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan
| | - Shin-ichi Yokobori
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshiki Nakajima
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Mizumo Bessho
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
94
|
Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties. J Mol Evol 2015; 81:110-20. [PMID: 26349578 DOI: 10.1007/s00239-015-9697-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.
Collapse
|
95
|
Pollo SM, Zhaxybayeva O, Nesbø CL. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae. Can J Microbiol 2015. [DOI: 10.1139/cjm-2015-0073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.
Collapse
Affiliation(s)
- Stephen M.J. Pollo
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences and Department of Computer Science, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Camilla L. Nesbø
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
96
|
Bar-Rogovsky H, Stern A, Penn O, Kobl I, Pupko T, Tawfik DS. Assessing the prediction fidelity of ancestral reconstruction by a library approach. Protein Eng Des Sel 2015; 28:507-18. [DOI: 10.1093/protein/gzv038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
|
97
|
López-García P, Zivanovic Y, Deschamps P, Moreira D. Bacterial gene import and mesophilic adaptation in archaea. Nat Rev Microbiol 2015; 13:447-56. [PMID: 26075362 DOI: 10.1038/nrmicro3485] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages - including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) - independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles.
Collapse
Affiliation(s)
- Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique UMR 8079, Université Paris-Sud, 91405 Orsay, France
| | - Yvan Zivanovic
- Institut de Génétique et Microbiologie, Centre National de la Recherche Scientifique UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique UMR 8079, Université Paris-Sud, 91405 Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique UMR 8079, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
98
|
Semba Y, Ishida M, Yokobori SI, Yamagishi A. Ancestral amino acid substitution improves the thermal stability of recombinant lignin-peroxidase from white-rot fungi, Phanerochaete chrysosporium strain UAMH 3641. Protein Eng Des Sel 2015; 28:221-30. [PMID: 25858964 DOI: 10.1093/protein/gzv023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 03/13/2015] [Indexed: 11/14/2022] Open
Abstract
Stabilizing enzymes from mesophiles of industrial interest is one of the greatest challenges of protein engineering. The ancestral mutation method, which introduces inferred ancestral residues into a target enzyme, has previously been developed and used to improve the thermostability of thermophilic enzymes. In this report, we studied the ancestral mutation method to improve the chemical and thermal stabilities of Phanerochaete chrysosporium lignin peroxidase (LiP), a mesophilic fungal enzyme. A fungal ancestral LiP sequence was inferred using a phylogenetic tree comprising Basidiomycota and Ascomycota fungal peroxidase sequences. Eleven mutant enzymes containing ancestral residues were designed, heterologously expressed in Escherichia coli and purified. Several of these ancestral mutants showed higher thermal stabilities and increased specific activities and/or kcat/KM than those of wild-type LiP.
Collapse
Affiliation(s)
- Yasuyuki Semba
- Department of Applied Biology, Faculty of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Manabu Ishida
- Department of Applied Biology, Faculty of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan Top Runner Incubation Center for Academia-Industry Fusion, Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology, 1603-1, Kamitomiokamachi, Nagaoka, Niigata 940-2188, Japan
| | - Shin-ichi Yokobori
- Department of Applied Biology, Faculty of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiko Yamagishi
- Department of Applied Biology, Faculty of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
99
|
Identification and characterization of bifunctional proline racemase/hydroxyproline epimerase from archaea: discrimination of substrates and molecular evolution. PLoS One 2015; 10:e0120349. [PMID: 25786142 PMCID: PMC4364671 DOI: 10.1371/journal.pone.0120349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
Proline racemase (ProR) is a member of the pyridoxal 5’-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation) in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE), which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372) from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR). This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative) ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241) and natural ProR (phenylalanine). The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky) tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline), and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily.
Collapse
|
100
|
Sanchuki HBS, Valdameri G, Moure VR, Oliveira MA, Pedrosa FO, Souza EM, Korolik V, Huergo LF. Purification of the Campylobacter jejuni Dps protein assisted by its high melting temperature. Protein Expr Purif 2015; 111:105-10. [PMID: 25707373 DOI: 10.1016/j.pep.2014.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/17/2022]
Abstract
Dps proteins (DNA binding protein from starved cell) form a distinct group within the ferritin superfamily. All Dps members are composed of 12 identical subunits that assemble into a conserved spherical protein shell. Dps oxidize Fe(2+) in a conserved ferroxidase center located at the interface between monomers, the product of the reaction Fe(3+), is then stored inside the protein shell in the form of non-reactive insoluble Fe2O3. The Campylobacter jejuni Dps (CjDps) has been reported to play a plethora of functions, such as DNA binding and protection, iron storage, survival in response to hydrogen peroxide and sulfatide binding. CjDps is also important during biofilm formation and caecal colonization in poultry. In order to facilitate in vitro characterisation of CjDps, it is important to have a simple and reproducible protocol for protein purification. Here we report an observation that CjDps has an unusual high melting temperature. We exploited this property for protein purification by introducing a thermal treatment step which allowed achieving homogeneity by using only two chromatographic steps. Gel filtration chromatography, circular dichroism, mass spectrometry, DNA-binding and iron oxidation analysis confirmed that the CjDps structure and function were unaffected.
Collapse
Affiliation(s)
- Heloisa B S Sanchuki
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Marco A Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil.
| |
Collapse
|