51
|
Arias-Cartin R, Dobihal GS, Campos M, Surovtsev IV, Parry B, Jacobs-Wagner C. Replication fork passage drives asymmetric dynamics of a critical nucleoid-associated protein in Caulobacter. EMBO J 2016; 36:301-318. [PMID: 28011580 DOI: 10.15252/embj.201695513] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
In bacteria, chromosome dynamics and gene expression are modulated by nucleoid-associated proteins (NAPs), but little is known about how NAP activity is coupled to cell cycle progression. Using genomic techniques, quantitative cell imaging, and mathematical modeling, our study in Caulobacter crescentus identifies a novel NAP (GapR) whose activity over the cell cycle is shaped by DNA replication. GapR activity is critical for cellular function, as loss of GapR causes severe, pleiotropic defects in growth, cell division, DNA replication, and chromosome segregation. GapR also affects global gene expression with a chromosomal bias from origin to terminus, which is associated with a similar general bias in GapR binding activity along the chromosome. Strikingly, this asymmetric localization cannot be explained by the distribution of GapR binding sites on the chromosome. Instead, we present a mechanistic model in which the spatiotemporal dynamics of GapR are primarily driven by the progression of the replication forks. This model represents a simple mechanism of cell cycle regulation, in which DNA-binding activity is intimately linked to the action of DNA replication.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Genevieve S Dobihal
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Bradley Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale Medical School, Yale University, New Haven, CT, USA
| |
Collapse
|
52
|
Cell Cycle Constraints and Environmental Control of Local DNA Hypomethylation in α-Proteobacteria. PLoS Genet 2016; 12:e1006499. [PMID: 27997543 PMCID: PMC5172544 DOI: 10.1371/journal.pgen.1006499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Heritable DNA methylation imprints are ubiquitous and underlie genetic variability from bacteria to humans. In microbial genomes, DNA methylation has been implicated in gene transcription, DNA replication and repair, nucleoid segregation, transposition and virulence of pathogenic strains. Despite the importance of local (hypo)methylation at specific loci, how and when these patterns are established during the cell cycle remains poorly characterized. Taking advantage of the small genomes and the synchronizability of α-proteobacteria, we discovered that conserved determinants of the cell cycle transcriptional circuitry establish specific hypomethylation patterns in the cell cycle model system Caulobacter crescentus. We used genome-wide methyl-N6-adenine (m6A-) analyses by restriction-enzyme-cleavage sequencing (REC-Seq) and single-molecule real-time (SMRT) sequencing to show that MucR, a transcriptional regulator that represses virulence and cell cycle genes in S-phase but no longer in G1-phase, occludes 5'-GANTC-3' sequence motifs that are methylated by the DNA adenine methyltransferase CcrM. Constitutive expression of CcrM or heterologous methylases in at least two different α-proteobacteria homogenizes m6A patterns even when MucR is present and affects promoter activity. Environmental stress (phosphate limitation) can override and reconfigure local hypomethylation patterns imposed by the cell cycle circuitry that dictate when and where local hypomethylation is instated.
Collapse
|
53
|
Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 2016; 40:575-91. [PMID: 27476077 DOI: 10.1093/femsre/fuw023] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is a change in gene expression that is heritable without a change in DNA sequence itself. This phenomenon is well studied in eukaryotes, particularly in humans for its role in cellular differentiation, X chromosome inactivation and diseases like cancer. However, comparatively little is known about epigenetic regulation in bacteria. Bacterial epigenetics is mainly present in the form of DNA methylation where DNA methyltransferases add methyl groups to nucleotides. This review focuses on two methyltransferases well characterized for their roles in gene regulation: Dam and CcrM. Dam methyltransferase in Escherichia coli is important for expression of certain genes such as the pap operon, as well as other cellular processes like DNA replication initiation and DNA repair. In Caulobacter crescentus and other Alphaproteobacteria, the methyltransferase CcrM is cell cycle regulated and is involved in the cell-cycle-dependent regulation of several genes. The diversity of regulatory targets as well as regulatory mechanisms suggests that gene regulation by methylation could be a widespread and potent method of regulation in bacteria.
Collapse
Affiliation(s)
- Satish Adhikari
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
54
|
Abstract
The initiation of chromosomal DNA replication starts at a replication origin, which in bacteria is a discrete locus that contains DNA sequence motifs recognized by an initiator protein whose role is to assemble the replication fork machinery at this site. In bacteria with a single chromosome, DnaA is the initiator and is highly conserved in all bacteria. As an adenine nucleotide binding protein, DnaA bound to ATP is active in the assembly of a DnaA oligomer onto these sites. Other proteins modulate DnaA oligomerization via their interaction with the N-terminal region of DnaA. Following the DnaA-dependent unwinding of an AT-rich region within the replication origin, DnaA then mediates the binding of DnaB, the replicative DNA helicase, in a complex with DnaC to form an intermediate named the prepriming complex. In the formation of this intermediate, the helicase is loaded onto the unwound region within the replication origin. As DnaC bound to DnaB inhibits its activity as a DNA helicase, DnaC must dissociate to activate DnaB. Apparently, the interaction of DnaB with primase (DnaG) and primer formation leads to the release of DnaC from DnaB, which is coordinated with or followed by translocation of DnaB to the junction of the replication fork. There, DnaB is able to coordinate its activity as a DNA helicase with the cellular replicase, DNA polymerase III holoenzyme, which uses the primers made by primase for leading strand DNA synthesis.
Collapse
Affiliation(s)
- S Chodavarapu
- Michigan State University, East Lansing, MI, United States
| | - J M Kaguni
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
55
|
Yang JA, Kang I, Moon M, Ryu UC, Kwon KK, Cho JC, Oh HM. Complete genome sequence of Celeribacter marinus IMCC12053T, the host strain of marine bacteriophage P12053L. Mar Genomics 2016; 26:5-7. [DOI: 10.1016/j.margen.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 11/29/2022]
|
56
|
Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom RR, Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ. The Epigenomic Landscape of Prokaryotes. PLoS Genet 2016; 12:e1005854. [PMID: 26870957 PMCID: PMC4752239 DOI: 10.1371/journal.pgen.1005854] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems. DNA methylation is a chemical modification of DNA present in many prokaryotic genomes. The best-known role of DNA methylation is as a component of restriction-modification systems. In these systems, restriction enzymes target foreign DNA for cleavage, while DNA methylation protects the host genome from destruction. Studies in a handful of organisms show that DNA methylation may also act independently of restriction systems and function in genome regulation. However, a lack of technologies has limited the study of DNA methylation to a small number of organisms, and the broader patterns and functions of DNA methylation remain unknown. Here we use SMRT-sequencing to determine the genome wide DNA methylation patterns of more than 200 diverse bacteria and archaea. We show that DNA methylation is pervasive and present in more than 90% of studied organisms. Analysis of this data enabled annotation of the specific DNA binding sites of more than 600 restriction systems, revealing their extraordinary diversity. Strikingly, we observed widespread DNA methylation in the absence of restriction systems. Analyses of these patterns reveal that they are conserved through evolution, and likely function in genome regulation. Thus DNA methylation may play a far wider function in prokaryotic genome biology than was previously supposed.
Collapse
Affiliation(s)
- Matthew J. Blow
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- * E-mail: (MJB); (RJR)
| | - Tyson A. Clark
- Pacific Biosciences, Menlo Park, California, United States of America
| | - Chris G. Daum
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Adam M. Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Alexey Fomenkov
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Roxanne Fries
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jeff Froula
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Dongwan D. Kang
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Rex R. Malmstrom
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Richard D. Morgan
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Janos Posfai
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Kanwar Singh
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kelly Wetmore
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Zhiying Zhao
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Edward M. Rubin
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California, United States of America
| | - Len A. Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Richard J. Roberts
- New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail: (MJB); (RJR)
| |
Collapse
|
57
|
Cell cycle control in Alphaproteobacteria. Curr Opin Microbiol 2016; 30:107-113. [PMID: 26871482 DOI: 10.1016/j.mib.2016.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/22/2022]
Abstract
Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions.
Collapse
|
58
|
Zhu L, Zhong J, Jia X, Liu G, Kang Y, Dong M, Zhang X, Li Q, Yue L, Li C, Fu J, Xiao J, Yan J, Zhang B, Lei M, Chen S, Lv L, Zhu B, Huang H, Chen F. Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology. Nucleic Acids Res 2016; 44:730-43. [PMID: 26704977 PMCID: PMC4737169 DOI: 10.1093/nar/gkv1498] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) remains one of the most common infectious diseases caused by Mycobacterium tuberculosis complex (MTBC). To panoramically analyze MTBC's genomic methylation, we completed the genomes of 12 MTBC strains (Mycobacterium bovis; M. bovis BCG; M. microti; M. africanum; M. tuberculosis H37Rv; H37Ra; and 6 M. tuberculosis clinical isolates) belonging to different lineages and characterized their methylomes using single-molecule real-time (SMRT) technology. We identified three (m6)A sequence motifs and their corresponding methyltransferase (MTase) genes, including the reported mamA, hsdM and a newly discovered mamB. We also experimentally verified the methylated motifs and functions of HsdM and MamB. Our analysis indicated the MTase activities varied between 12 strains due to mutations/deletions. Furthermore, through measuring 'the methylated-motif-site ratio' and 'the methylated-read ratio', we explored the methylation status of each modified site and sequence-read to obtain the 'precision methylome' of the MTBC strains, which enabled intricate analysis of MTase activity at whole-genome scale. Most unmodified sites overlapped with transcription-factor binding-regions, which might protect these sites from methylation. Overall, our findings show enormous potential for the SMRT platform to investigate the precise character of methylome, and significantly enhance our understanding of the function of DNA MTase.
Collapse
Affiliation(s)
- Lingxiang Zhu
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China National Research Institute for Family Planning, Beijing 100081, China
| | - Jun Zhong
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinmiao Jia
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan Liu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxing Dong
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuli Zhang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Fu
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Lei
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Lingna Lv
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute Of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Collaborative Innovation Center for Genetics and Development, China
| |
Collapse
|
59
|
Kurylo CM, Alexander N, Dass RA, Parks MM, Altman RA, Vincent CT, Mason CE, Blanchard SC. Genome Sequence and Analysis of Escherichia coli MRE600, a Colicinogenic, Nonmotile Strain that Lacks RNase I and the Type I Methyltransferase, EcoKI. Genome Biol Evol 2016; 8:742-52. [PMID: 26802429 PMCID: PMC4825418 DOI: 10.1093/gbe/evw008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Escherichia coli strain MRE600 was originally identified for its low RNase I activity and has therefore been widely adopted by the biomedical research community as a preferred source for the expression and purification of transfer RNAs and ribosomes. Despite its widespread use, surprisingly little information about its genome or genetic content exists. Here, we present the first de novo assembly and description of the MRE600 genome and epigenome. To provide context to these studies of MRE600, we include comparative analyses with E. coli K-12 MG1655 (K12). Pacific Biosciences Single Molecule, Real-Time sequencing reads were assembled into one large chromosome (4.83 Mb) and three smaller plasmids (89.1, 56.9, and 7.1 kb). Interestingly, the 7.1-kb plasmid possesses genes encoding a colicin E1 protein and its associated immunity protein. The MRE600 genome has a G + C content of 50.8% and contains a total of 5,181 genes, including 4,913 protein-encoding genes and 268 RNA genes. We identified 41,469 modified DNA bases (0.83% of total) and found that MRE600 lacks the gene for type I methyltransferase, EcoKI. Phylogenetic, taxonomic, and genetic analyses demonstrate that MRE600 is a divergent E. coli strain that displays features of the closely related genus, Shigella. Nevertheless, comparative analyses between MRE600 and E. coli K12 show that these two strains exhibit nearly identical ribosomal proteins, ribosomal RNAs, and highly homologous tRNA species. Substantiating prior suggestions that MRE600 lacks RNase I activity, the RNase I-encoding gene, rna, contains a single premature stop codon early in its open-reading frame.
Collapse
Affiliation(s)
- Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Noah Alexander
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York The Feil Family Brain and Mind Institute, Weill Cornell Medical College, New York, New York
| | - Randall A Dass
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Roger A Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York The Feil Family Brain and Mind Institute, Weill Cornell Medical College, New York, New York
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| |
Collapse
|
60
|
Casadesús J. Bacterial DNA Methylation and Methylomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:35-61. [PMID: 27826834 DOI: 10.1007/978-3-319-43624-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Formation of C5-methylcytosine, N4-methylcytosine, and N6-methyladenine in bacterial genomes is postreplicative and involves transfer of a methyl group from S-adenosyl-methionine to a base embedded in a specific DNA sequence context. Most bacterial DNA methyltransferases belong to restriction-modification systems; in addition, "solitary" or "orphan" DNA methyltransferases are frequently found in the genomes of bacteria and phage. Base methylation can affect the interaction of DNA-binding proteins with their cognate sites, either by a direct effect (e.g., steric hindrance) or by changes in DNA topology. In both Alphaproteobacteria and Gammaproteobacteria, the roles of DNA base methylation are especially well known for N6-methyladenine, including control of chromosome replication, nucleoid segregation, postreplicative correction of DNA mismatches, cell cycle-coupled transcription, formation of bacterial cell lineages, and regulation of bacterial virulence. Technical procedures that permit genome-wide analysis of DNA methylation are nowadays expanding our knowledge of the extent, evolution, and physiological significance of bacterial DNA methylation.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, Seville, 41080, Spain.
| |
Collapse
|
61
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
62
|
DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates. PLoS One 2015; 10:e0144612. [PMID: 26656597 PMCID: PMC4676702 DOI: 10.1371/journal.pone.0144612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.
Collapse
|
63
|
O'Callaghan A, Bottacini F, O'Connell Motherway M, van Sinderen D. Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 2015; 16:832. [PMID: 26489930 PMCID: PMC4618763 DOI: 10.1186/s12864-015-1968-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Background Bifidobacterial genome analysis has provided insights as to how these gut commensals adapt to and persist in the human GIT, while also revealing genetic diversity among members of a given bifidobacterial (sub)species. Bifidobacteria are notoriously recalcitrant to genetic modification, which prevents exploration of their genomic functions, including those that convey (human) health benefits. Methods PacBio SMRT sequencing was used to determine the whole genome seqeunces of two B. longum subsp. longum strains. The B. longum pan-genome was computed using PGAP v1.2 and the core B. longum phylogenetic tree was constructed using a maximum-likelihood based approach in PhyML v3.0. M.blmNCII was cloned in E. coli and an internal fragment if arfBarfB was cloned into pORI19 for insertion mutagenesis. Results In this study we present the complete genome sequences of two Bifidobacterium longum subsp. longum strains. Comparative analysis with thirty one publicly available B. longum genomes allowed the definition of the B. longum core and dispensable genomes. This analysis also highlighted differences in particular metabolic abilities between members of the B. longum subspecies infantis, longum and suis. Furthermore, phylogenetic analysis of the B. longum core genome indicated the existence of a novel subspecies. Methylome data, coupled to the analysis of restriction-modification systems, allowed us to substantially increase the genetic accessibility of B. longum subsp. longum NCIMB 8809 to a level that was shown to permit site-directed mutagenesis. Conclusions Comparative genomic analysis of thirty three B. longum representatives revealed a closed pan-genome for this bifidobacterial species. Phylogenetic analysis of the B. longum core genome also provides evidence for a novel fifth B. longum subspecies. Finally, we improved genetic accessibility for the strain B. longum subsp. longum NCIMB 8809, which allowed the generation of a mutant of this strain. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1968-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A O'Callaghan
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | - F Bottacini
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | - M O'Connell Motherway
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | - D van Sinderen
- APC Microbiome Institute & School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
64
|
Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat Commun 2015; 6:8155. [PMID: 26327191 PMCID: PMC4569722 DOI: 10.1038/ncomms9155] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/23/2015] [Indexed: 11/09/2022] Open
Abstract
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. The long-term response of marine cyanobacteria to increased anthropogenic CO2 are not known. Here, Hutchins et al. show that Trichodesmium exposed to long-term selection at elevated CO2 display irreversible increases in nitrogen fixation and growth rates, even after returning to present day conditions.
Collapse
|
65
|
Abstract
CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM. In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria.
Collapse
|
66
|
Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2015. [PMID: 26221021 DOI: 10.1073/pnas.1513033112] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ΔmetA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ΔmetA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ΔmetA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.
Collapse
|
67
|
Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C, Deikus G, Shen N, Munera D, Waldor MK, Chess A, Blaser MJ, Schadt EE, Fang G. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun 2015; 6:7438. [PMID: 26074426 PMCID: PMC4490391 DOI: 10.1038/ncomms8438] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/08/2015] [Indexed: 12/22/2022] Open
Abstract
Beyond its role in host defense, bacterial DNA methylation also plays important roles in the regulation of gene expression, virulence and antibiotic resistance. Bacterial cells in a clonal population can generate epigenetic heterogeneity to increase population-level phenotypic plasticity. Single molecule, real-time (SMRT) sequencing enables the detection of N6-methyladenine and N4-methylcytosine, two major types of DNA modifications comprising the bacterial methylome. However, existing SMRT sequencing-based methods for studying bacterial methylomes rely on a population-level consensus that lacks the single-cell resolution required to observe epigenetic heterogeneity. Here, we present SMALR (single-molecule modification analysis of long reads), a novel framework for single molecule-level detection and phasing of DNA methylation. Using seven bacterial strains, we show that SMALR yields significantly improved resolution and reveals distinct types of epigenetic heterogeneity. SMALR is a powerful new tool that enables de novo detection of epigenetic heterogeneity and empowers investigation of its functions in bacterial populations. Bacterial DNA methylation is involved in many processes, from host defense to antibiotic resistance, however current methods for examining methylated genomes lack single-cell resolution. Here Beaulaurier et al. present Single Molecule Modification Analysis of Long Reads, a new tool for de novo detection of epigenetic heterogeneity.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Xue-Song Zhang
- Department of Medicine, New York University School of Medicine, New York 10016, USA
| | - Shijia Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Chaggai Rosenbluh
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Nan Shen
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Diana Munera
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Andrew Chess
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Martin J Blaser
- Department of Medicine, New York University School of Medicine, New York 10016, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| |
Collapse
|
68
|
Genome Modification in Enterococcus faecalis OG1RF Assessed by Bisulfite Sequencing and Single-Molecule Real-Time Sequencing. J Bacteriol 2015; 197:1939-51. [PMID: 25825433 DOI: 10.1128/jb.00130-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged, reducing treatment options for these infections. MDR E. faecalis strains have large genomes containing mobile genetic elements (MGEs) that harbor genes for antibiotic resistance and virulence determinants. Bacteria commonly possess genome defense mechanisms to block MGE acquisition, and we hypothesize that these mechanisms have been compromised in MDR E. faecalis. In restriction-modification (R-M) defense, the bacterial genome is methylated at cytosine (C) or adenine (A) residues by a methyltransferase (MTase), such that nonself DNA can be distinguished from self DNA. A cognate restriction endonuclease digests improperly modified nonself DNA. Little is known about R-M in E. faecalis. Here, we use genome resequencing to identify DNA modifications occurring in the oral isolate OG1RF. OG1RF has one of the smallest E. faecalis genomes sequenced to date and possesses few MGEs. Single-molecule real-time (SMRT) and bisulfite sequencing revealed that OG1RF has global 5-methylcytosine (m5C) methylation at 5'-GCWGC-3' motifs. A type II R-M system confers the m5C modification, and disruption of this system impacts OG1RF electrotransformability and conjugative transfer of an antibiotic resistance plasmid. A second DNA MTase was poorly expressed under laboratory conditions but conferred global N(4)-methylcytosine (m4C) methylation at 5'-CCGG-3' motifs when expressed in Escherichia coli. Based on our results, we conclude that R-M can act as a barrier to MGE acquisition and likely influences antibiotic resistance gene dissemination in the E. faecalis species. IMPORTANCE The horizontal transfer of antibiotic resistance genes among bacteria is a critical public health concern. Enterococcus faecalis is an opportunistic pathogen that causes life-threatening infections in humans. Multidrug resistance acquired by horizontal gene transfer limits treatment options for these infections. In this study, we used innovative DNA sequencing methodologies to investigate how a model strain of E. faecalis discriminates its own DNA from foreign DNA, i.e., self versus nonself discrimination. We also assess the role of an E. faecalis genome modification system in modulating conjugative transfer of an antibiotic resistance plasmid. These results are significant because they demonstrate that differential genome modification impacts horizontal gene transfer frequencies in E. faecalis.
Collapse
|
69
|
Sánchez-Romero MA, Cota I, Casadesús J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 2015; 25:9-16. [PMID: 25818841 DOI: 10.1016/j.mib.2015.03.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Formation of C(5)-methyl-cytosine, N(4)-methyl-cytosine, and N(6)-methyl-adenine in bacterial genomes is postreplicative, and occurs at specific targets. Base methylation can modulate the interaction of DNA-binding proteins with their cognate sites, and controls chromosome replication, correction of DNA mismatches, cell cycle-coupled transcription, and formation of epigenetic lineages by phase variation. During four decades, the roles of DNA methylation in bacterial physiology have been investigated by analyzing the contribution of individual methyl groups or small methyl group clusters to the control of DNA-protein interactions. Nowadays, single-molecule real-time sequencing can analyze the DNA methylation of the entire genome (the 'methylome'). Bacterial methylomes provide a wealth of information on the methylation marks present in bacterial genomes, and may open a new era in bacterial epigenomics.
Collapse
Affiliation(s)
| | - Ignacio Cota
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain.
| |
Collapse
|
70
|
Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, Dinh CB, Pham JQ, Cui ZZ, Dill DL, McAdams HH, Shapiro L. The global regulatory architecture of transcription during the Caulobacter cell cycle. PLoS Genet 2015; 11:e1004831. [PMID: 25569173 PMCID: PMC4287350 DOI: 10.1371/journal.pgen.1004831] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. The generation of diverse cell types occurs through two fundamental processes; asymmetric cell division and cell differentiation. Cells progress through these developmental changes guided by complex and layered genetic programs that lead to differential expression of the genome. To explore how a genetic program directs cell cycle progression, we examined the global activity of promoters at distinct stages of the cell cycle of the bacterium Caulobacter crescentus, that undergoes cellular differentiation and divides asymmetrically at each cell division. We found that approximately 21% of transcription start sites are cell cycle-regulated, driving the transcription of both mRNAs and non-coding and antisense RNAs. In addition, 102 cell cycle-regulated genes are transcribed from multiple promoters, allowing multiple regulatory inputs to control the logic of gene activation. We found combinatorial control by the five master transcription regulators that provide the core regulation for the genetic circuitry controlling the cell cycle. Much of this combinatorial control appears to be directed at refinement of temporal expression of various genes over the cell cycle, and at tighter control of asymmetric gene expression between the swarmer and stalked daughter cells.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jared M. Schrader
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Virginia S. Kalogeraki
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Eduardo Abeliuk
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cong B. Dinh
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James Q. Pham
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Zhongying Z. Cui
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - David L. Dill
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Harley H. McAdams
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
71
|
Panis G, Murray SR, Viollier PH. Versatility of global transcriptional regulators in alpha-Proteobacteria: from essential cell cycle control to ancillary functions. FEMS Microbiol Rev 2014; 39:120-33. [PMID: 25793963 DOI: 10.1093/femsre/fuu002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent data indicate that cell cycle transcription in many alpha-Proteobacteria is executed by at least three conserved functional modules in which pairs of antagonistic regulators act jointly, rather than in isolation, to control transcription in S-, G2- or G1-phase. Inactivation of module components often results in pleiotropic defects, ranging from cell death and impaired cell division to fairly benign deficiencies in motility. Expression of module components can follow systemic (cell cycle) or external (nutritional/cell density) cues and may be implemented by auto-regulation, ancillary regulators or other (unknown) mechanisms. Here, we highlight the recent progress in understanding the molecular events and the genetic relationships of the module components in environmental, pathogenic and/or symbiotic alpha-proteobacterial genera. Additionally, we take advantage of the recent genome-wide transcriptional analyses performed in the model alpha-Proteobacterium Caulobacter crescentus to illustrate the complexity of the interactions of the global regulators at selected cell cycle-regulated promoters and we detail the consequences of (mis-)expression when the regulators are absent. This review thus provides the first detailed mechanistic framework for understanding orthologous operational principles acting on cell cycle-regulated promoters in other alpha-Proteobacteria.
Collapse
Affiliation(s)
- Gaël Panis
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | - Sean R Murray
- Department of Biology, Center for Cancer and Developmental Biology, Interdisciplinary Research Institute for the Sciences, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| |
Collapse
|
72
|
Kim KE, Peluso P, Babayan P, Yeadon PJ, Yu C, Fisher WW, Chin CS, Rapicavoli NA, Rank DR, Li J, Catcheside DEA, Celniker SE, Phillippy AM, Bergman CM, Landolin JM. Long-read, whole-genome shotgun sequence data for five model organisms. Sci Data 2014; 1:140045. [PMID: 25977796 PMCID: PMC4365909 DOI: 10.1038/sdata.2014.45] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022] Open
Abstract
Single molecule, real-time (SMRT) sequencing from Pacific Biosciences is increasingly used in many areas of biological research including de novo genome assembly, structural-variant identification, haplotype phasing, mRNA isoform discovery, and base-modification analyses. High-quality, public datasets of SMRT sequences can spur development of analytic tools that can accommodate unique characteristics of SMRT data (long read lengths, lack of GC or amplification bias, and a random error profile leading to high consensus accuracy). In this paper, we describe eight high-coverage SMRT sequence datasets from five organisms (Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, Arabidopsis thaliana, and Drosophila melanogaster) that have been publicly released to the general scientific community (NCBI Sequence Read Archive ID SRP040522). Data were generated using two sequencing chemistries (P4C2 and P5C3) on the PacBio RS II instrument. The datasets reported here can be used without restriction by the research community to generate whole-genome assemblies, test new algorithms, investigate genome structure and evolution, and identify base modifications in some of the most widely-studied model systems in biological research.
Collapse
Affiliation(s)
- Kristi E Kim
- Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, California 94025, USA
| | - Paul Peluso
- Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, California 94025, USA
| | - Primo Babayan
- Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, California 94025, USA
| | - P. Jane Yeadon
- Flinders University, School of Biological Sciences, PO Box 2100, Adelaide, South Australia 5001, Australia
| | - Charles Yu
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - William W Fisher
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Chen-Shan Chin
- Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, California 94025, USA
| | - Nicole A Rapicavoli
- Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, California 94025, USA
| | - David R Rank
- Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, California 94025, USA
| | - Joachim Li
- Department of Microbiology and Immunology, UCSF, San Francisco, California 94158, USA
| | - David E. A Catcheside
- Flinders University, School of Biological Sciences, PO Box 2100, Adelaide, South Australia 5001, Australia
| | - Susan E Celniker
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Adam M Phillippy
- National Biodefense Analysis and Countermeasures Center, 110 Thomas Johnson Drive, Frederick, Maryland 21702, USA
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jane M Landolin
- Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, California 94025, USA
| |
Collapse
|
73
|
Bryan DS, Ransom M, Adane B, York K, Hesselberth JR. High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Res 2014; 24:1534-42. [PMID: 25015380 PMCID: PMC4158761 DOI: 10.1101/gr.174052.114] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
The incorporation and creation of modified nucleobases in DNA have profound effects on genome function. We describe methods for mapping positions and local content of modified DNA nucleobases in genomic DNA. We combined in vitro nucleobase excision with massively parallel DNA sequencing (Excision-seq) to determine the locations of modified nucleobases in genomic DNA. We applied the Excision-seq method to map uracil in E. coli and budding yeast and discovered significant variation in uracil content, wherein uracil is excluded from the earliest and latest replicating regions of the genome, possibly driven by changes in nucleotide pool composition. We also used Excision-seq to identify sites of pyrimidine dimer formation induced by UV light exposure, where the method could distinguish between sites of cyclobutane and 6-4 photoproduct formation. These UV mapping data enabled analysis of local sequence bias around pyrimidine dimers and suggested a preference for an adenosine downstream from 6-4 photoproducts. The Excision-seq method is broadly applicable for high precision, genome-wide mapping of modified nucleobases with cognate repair enzymes.
Collapse
Affiliation(s)
- D Suzi Bryan
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Monica Ransom
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Biniam Adane
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
74
|
DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol 2014; 22:528-35. [DOI: 10.1016/j.tim.2014.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/20/2023]
|
75
|
Curtis PD, Brun YV. Identification of essential alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems. Mol Microbiol 2014; 93:713-35. [PMID: 24975755 DOI: 10.1111/mmi.12686] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 12/22/2022]
Abstract
The cell cycle of Caulobacter crescentus is controlled by a complex signalling network that co-ordinates events. Genome sequencing has revealed many C. crescentus cell cycle genes are conserved in other Alphaproteobacteria, but it is not clear to what extent their function is conserved. As many cell cycle regulatory genes are essential in C. crescentus, the essential genes of two Alphaproteobacteria, Agrobacterium tumefaciens (Rhizobiales) and Brevundimonas subvibrioides (Caulobacterales), were elucidated to identify changes in cell cycle protein function over different phylogenetic distances as demonstrated by changes in essentiality. The results show the majority of conserved essential genes are involved in critical cell cycle processes. Changes in component essentiality reflect major changes in lifestyle, such as divisome components in A. tumefaciens resulting from that organism's different growth pattern. Larger variability of essentiality was observed in cell cycle regulators, suggesting regulatory mechanisms are more customizable than the processes they regulate. Examples include variability in the essentiality of divJ and divK spatial cell cycle regulators, and non-essentiality of the highly conserved and usually essential DNA methyltransferase CcrM. These results show that while essential cell functions are conserved across varying genetic distance, much of a given organism's essential gene pool is specific to that organism.
Collapse
Affiliation(s)
- Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS, 38677, USA
| | | |
Collapse
|
76
|
Cao B, Chen C, DeMott MS, Cheng Q, Clark TA, Xiong X, Zheng X, Butty V, Levine SS, Yuan G, Boitano M, Luong K, Song Y, Zhou X, Deng Z, Turner SW, Korlach J, You D, Wang L, Chen S, Dedon PC. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat Commun 2014; 5:3951. [PMID: 24899568 DOI: 10.1038/ncomms4951] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/25/2014] [Indexed: 01/29/2023] Open
Abstract
Bacterial phosphorothioate (PT) DNA modifications are incorporated by Dnd proteins A-E and often function with DndF-H as a restriction-modification (R-M) system, as in Escherichia coli B7A. However, bacteria such as Vibrio cyclitrophicus FF75 lack dndF-H, which points to other PT functions. Here we report two novel, orthogonal technologies to map PTs across the genomes of B7A and FF75 with >90% agreement: single molecule, real-time sequencing and deep sequencing of iodine-induced cleavage at PT (ICDS). In B7A, we detect PT on both strands of GpsAAC/GpsTTC motifs, but with only 12% of 40,701 possible sites modified. In contrast, PT in FF75 occurs as a single-strand modification at CpsCA, again with only 14% of 160,541 sites modified. Single-molecule analysis indicates that modification could be partial at any particular genomic site even with active restriction by DndF-H, with direct interaction of modification proteins with GAAC/GTTC sites demonstrated with oligonucleotides. These results point to highly unusual target selection by PT-modification proteins and rule out known R-M mechanisms.
Collapse
Affiliation(s)
- Bo Cao
- 1] State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China [2] Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3]
| | - Chao Chen
- 1] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China [2]
| | - Michael S DeMott
- 1] Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2]
| | - Qiuxiang Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Tyson A Clark
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Xiaolin Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoqing Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Vincent Butty
- Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Stuart S Levine
- Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - George Yuan
- Pacific Biosciences, Menlo Park, California 94025, USA
| | | | - Khai Luong
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Yi Song
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Delin You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
77
|
O′Connell Motherway M, Watson D, Bottacini F, Clark TA, Roberts RJ, Korlach J, Garault P, Chervaux C, van Hylckama Vlieg JET, Smokvina T, van Sinderen D. Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis. PLoS One 2014; 9:e94875. [PMID: 24743599 PMCID: PMC3990576 DOI: 10.1371/journal.pone.0094875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/20/2014] [Indexed: 01/25/2023] Open
Abstract
Bifidobacterium animalis subsp. lactis CNCM I-2494 is a component of a commercialized fermented dairy product for which beneficial effects on health has been studied by clinical and preclinical trials. To date little is known about the molecular mechanisms that could explain the beneficial effects that bifidobacteria impart to the host. Restriction-modification (R-M) systems have been identified as key obstacles in the genetic accessibility of bifidobacteria, and circumventing these is a prerequisite to attaining a fundamental understanding of bifidobacterial attributes, including the genes that are responsible for health-promoting properties of this clinically and industrially important group of bacteria. The complete genome sequence of B. animalis subsp. lactis CNCM I-2494 is predicted to harbour the genetic determinants for two type II R-M systems, designated BanLI and BanLII. In order to investigate the functionality and specificity of these two putative R-M systems in B. animalis subsp. lactis CNCM I-2494, we employed PacBio SMRT sequencing with associated methylome analysis. In addition, the contribution of the identified R-M systems to the genetic accessibility of this strain was assessed.
Collapse
Affiliation(s)
- Mary O′Connell Motherway
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Debbie Watson
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Tyson A. Clark
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | | | | | | | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
- * E-mail:
| |
Collapse
|
78
|
Chen P, Jeannotte R, Weimer BC. Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier. Trends Microbiol 2014; 22:292-300. [PMID: 24725482 DOI: 10.1016/j.tim.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023]
Abstract
Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome.
Collapse
Affiliation(s)
- Poyin Chen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile
| | - Richard Jeannotte
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile; Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile.
| |
Collapse
|
79
|
Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res 2014; 42:3720-35. [PMID: 24398711 PMCID: PMC3973325 DOI: 10.1093/nar/gkt1352] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria.
Collapse
Affiliation(s)
- Diego Gonzalez
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, CH 1015, Switzerland, Department of Developmental Biology, Stanford University, CA 94305, USA and Department of Chemistry, Stanford University, CA 94305, USA
| | | | | | | | | |
Collapse
|