51
|
Nicolson T. It takes two. eLife 2015; 4. [PMID: 26439013 PMCID: PMC4592937 DOI: 10.7554/elife.11399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Two forms of an unconventional myosin motor protein have separate functions in the growth and maintenance of hair bundles in auditory hair cells.
Collapse
Affiliation(s)
- Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
52
|
Chang MY, Kim AR, Kim NK, Lee C, Lee KY, Jeon WS, Koo JW, Oh SH, Park WY, Kim D, Choi BY. Identification and Clinical Implications of Novel MYO15A Mutations in a Non-consanguineous Korean Family by Targeted Exome Sequencing. Mol Cells 2015; 38:781-8. [PMID: 26242193 PMCID: PMC4588721 DOI: 10.14348/molcells.2015.0078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/11/2015] [Indexed: 12/02/2022] Open
Abstract
Mutations of MYO15A are generally known to cause severe to profound hearing loss throughout all frequencies. Here, we found two novel MYO15A mutations, c.3871C>T (p.L1291F) and c.5835T>G (p.Y1945X) in an affected individual carrying congenital profound sensorineural hearing loss (SNHL) through targeted resequencing of 134 known deafness genes. The variant, p.L1291F and p.Y1945X, resided in the myosin motor and IQ2 domains, respectively. The p.L1291F variant was predicted to affect the structure of the actin-binding site from three-dimensional protein modeling, thereby interfering with the correct interaction between actin and myosin. From the literature analysis, mutations in the N-terminal domain were more frequently associated with residual hearing at low frequencies than mutations in the other regions of this gene. Therefore we suggest a hypothetical genotype-phenotype correlation whereby MYO15A mutations that affect domains other than the N-terminal domain, lead to profound SNHL throughout all frequencies and mutations that affect the N-terminal domain, result in residual hearing at low frequencies. This genotype-phenotype correlation suggests that preservation of residual hearing during auditory rehabilitation like cochlear implantation should be intended for those who carry mutations in the N-terminal domain and that individuals with mutations elsewhere in MYO15A require early cochlear implantation to timely initiate speech development.
Collapse
Affiliation(s)
- Mun Young Chang
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul national University College of Medicine, Seoul 110-744,
Korea
| | - Ah Reum Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul national University College of Medicine, Seoul 110-744,
Korea
| | - Nayoung K.D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-710,
Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-710,
Korea
- Samsung Advanced Institute for Health Sciences and Technology, Seoul 135-710,
Korea
| | - Kyoung Yeul Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Woo-Sung Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Ja-Won Koo
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam 463-707,
Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul national University College of Medicine, Seoul 110-744,
Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-710,
Korea
- Samsung Advanced Institute for Health Sciences and Technology, Seoul 135-710,
Korea
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam 463-707,
Korea
| |
Collapse
|
53
|
Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice. Mol Ther 2015; 24:17-25. [PMID: 26307667 DOI: 10.1038/mt.2015.150] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023] Open
Abstract
Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy.
Collapse
|
54
|
Fang Q, Indzhykulian AA, Mustapha M, Riordan GP, Dolan DF, Friedman TB, Belyantseva IA, Frolenkov GI, Camper SA, Bird JE. The 133-kDa N-terminal domain enables myosin 15 to maintain mechanotransducing stereocilia and is essential for hearing. eLife 2015; 4. [PMID: 26302205 PMCID: PMC4592939 DOI: 10.7554/elife.08627] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/22/2015] [Indexed: 11/13/2022] Open
Abstract
The precise assembly of inner ear hair cell stereocilia into rows of increasing height is critical for mechanotransduction and the sense of hearing. Yet, how the lengths of actin-based stereocilia are regulated remains poorly understood. Mutations of the molecular motor myosin 15 stunt stereocilia growth and cause deafness. We found that hair cells express two isoforms of myosin 15 that differ by inclusion of an 133-kDa N-terminal domain, and that these isoforms can selectively traffic to different stereocilia rows. Using an isoform-specific knockout mouse, we show that hair cells expressing only the small isoform remarkably develop normal stereocilia bundles. However, a critical subset of stereocilia with active mechanotransducer channels subsequently retracts. The larger isoform with the 133-kDa N-terminal domain traffics to these specialized stereocilia and prevents disassembly of their actin core. Our results show that myosin 15 isoforms can navigate between functionally distinct classes of stereocilia, and are independently required to assemble and then maintain the intricate hair bundle architecture.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, United States
| | | | - Mirna Mustapha
- Department of Human Genetics, University of Michigan, Ann Arbor, United States
| | - Gavin P Riordan
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, United States
| | - David F Dolan
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, United States
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, United States
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, United States
| | | | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, United States
| | - Jonathan E Bird
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, United States
| |
Collapse
|
55
|
Sakai T, Jung HS, Sato O, Yamada MD, You DJ, Ikebe R, Ikebe M. Structure and Regulation of the Movement of Human Myosin VIIA. J Biol Chem 2015; 290:17587-98. [PMID: 26001786 DOI: 10.1074/jbc.m114.599365] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 11/06/2022] Open
Abstract
Human myosin VIIA (HM7A) is responsible for human Usher syndrome type 1B, which causes hearing and visual loss in humans. Here we studied the regulation of HM7A. The actin-activated ATPase activity of full-length HM7A (HM7AFull) was lower than that of tail-truncated HM7A (HM7AΔTail). Deletion of the C-terminal 40 amino acids and mutation of the basic residues in this region (R2176A or K2179A) abolished the inhibition. Electron microscopy revealed that HM7AFull is a monomer in which the tail domain bends back toward the head-neck domain to form a compact structure. This compact structure is extended at high ionic strength or in the presence of Ca(2+). Although myosin VIIA has five isoleucine-glutamine (IQ) motifs, the neck length seems to be shorter than the expected length of five bound calmodulins. Supporting this observation, the IQ domain bound only three calmodulins in Ca(2+), and the first IQ motif failed to bind calmodulin in EGTA. These results suggest that the unique IQ domain of HM7A is important for the tail-neck interaction and, therefore, regulation. Cellular studies revealed that dimer formation of HM7A is critical for its translocation to filopodial tips and that the tail domain (HM7ATail) markedly reduced the filopodial tip localization of the HM7AΔTail dimer, suggesting that the tail-inhibition mechanism is operating in vivo. The translocation of the HM7AFull dimer was significantly less than that of the HM7AΔTail dimer, and R2176A/R2179A mutation rescued the filopodial tip translocation. These results suggest that HM7A can transport its cargo molecules, such as USH1 proteins, upon release of the tail-dependent inhibition.
Collapse
Affiliation(s)
- Tsuyoshi Sakai
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Hyun Suk Jung
- the Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 305-333, Korea, and the Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do 200-701, Korea
| | - Osamu Sato
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Masafumi D Yamada
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dong-Ju You
- the Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 305-333, Korea, and
| | - Reiko Ikebe
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Mitsuo Ikebe
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708,
| |
Collapse
|
56
|
Rui X, Li Y, Jin F, Li F. TMPRSS3 is a novel poor prognostic factor for breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5435-5442. [PMID: 26191247 PMCID: PMC4503118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
It has recently been reported that transmembrane protease, serine 3 (TMPRSS3) is overexpressed in cancer. However, TMPRSS3 expression and its biological roles in breast cancer (BC) have not been reported. This study aims to investigate the TMPRSS3 expression in BC and its relation with the outcome of the BC. This study involves a total of 149 BC tissues and adjacent non-cancerous tissues that were diagnosed between 2004 and 2007. Immunohistochemistry is used to compare the pattern of TMPRSS3 expression in BC and in adjacent non-cancerous tissues. Kaplan-Meier and Cox regression analyses were used to assess the prognostic significance of TMPRSS3 expression among BC patients. The results are as follow: TMPRSS3 expression is significantly in BC compared to adjacent non-cancerous tissues. High TMPRSS3 expression was related to TNM stage, lymph node metastasis, and Ki-67 expression. Furthermore, the overall survival (OS) and disease-free survival (DFS) in BC patients with high TMPRSS3 expression were lower than those in patients with low TMPRSS3 expression. Based on multivariate analysis, lymph node metastasis, TNM stage and TMPRSS3 expression are independent prognostic factors for OS in BC, while lymph node metastasis and TMPRSS3 expression are independent prognostic factors for DFS in BC. This study proves that TMPRSS3 expression is an independent prognostic factor for BC patients. Bioinformatic analysis of potential TMPRSS3 binding proteins revealed that TMPRSS3 could be a key regulator of cancer pathways. This study helps us better understand the function of TMPRSS3 in cancer.
Collapse
Affiliation(s)
- Xue Rui
- Department of Breast Surgery, General Surgery, First Hospital of China Medical UniversityShenyang 110001, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical UniversityShenyang 110001, China
| | - Feng Jin
- Department of Breast Surgery, General Surgery, First Hospital of China Medical UniversityShenyang 110001, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical UniversityShenyang 110001, China
| |
Collapse
|
57
|
Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:207-18. [PMID: 25775934 DOI: 10.1007/s00249-015-1015-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 01/11/2023]
Abstract
The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.
Collapse
|
58
|
Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. J Biol Chem 2014; 289:30832-30841. [PMID: 25231988 DOI: 10.1074/jbc.m114.572453] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.
Collapse
Affiliation(s)
- Carol S Bookwalter
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405
| | - Anne Kelsen
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Jacqueline M Leung
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Gary E Ward
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405.
| | - Kathleen M Trybus
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
59
|
Lee CF, Melkani GC, Bernstein SI. The UNC-45 myosin chaperone: from worms to flies to vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:103-44. [PMID: 25376491 DOI: 10.1016/b978-0-12-800177-6.00004-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNC-45 (uncoordinated mutant number 45) is a UCS (UNC-45, CRO1, She4p) domain protein that is critical for myosin stability and function. It likely aides in folding myosin during cellular differentiation and maintenance, and protects myosin from denaturation during stress. Invertebrates have a single unc-45 gene that is expressed in both muscle and nonmuscle tissues. Vertebrates possess one gene expressed in striated muscle (unc-45b) and another that is more generally expressed (unc-45a). Structurally, UNC-45 is composed of a series of α-helices connected by loops. It has an N-terminal tetratricopeptide repeat domain that binds to Hsp90 and a central domain composed of armadillo repeats. Its C-terminal UCS domain, which is also comprised of helical armadillo repeats, interacts with myosin. In this chapter, we present biochemical, structural, and genetic analyses of UNC-45 in Caenorhabditis elegans, Drosophila melanogaster, and various vertebrates. Further, we provide insights into UNC-45 functions, its potential mechanism of action, and its roles in human disease.
Collapse
Affiliation(s)
- Chi F Lee
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Girish C Melkani
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|