51
|
Gao Y, Yang W. Different mechanisms for translocation by monomeric and hexameric helicases. Curr Opin Struct Biol 2019; 61:25-32. [PMID: 31783299 DOI: 10.1016/j.sbi.2019.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022]
Abstract
Helicases are ATP-dependent motor proteins that translocate along single-stranded or double-stranded nucleic acids to alter base-pairing structures or molecular interactions. Helicases can be divided to monomeric and hexameric types, each with distinct ternary structures, nucleic acid-binding modes, and translocation mechanisms. It is well established that monomeric helicases translocate by the inchworm mechanism. Recent structures of different superfamilies of hexameric helicases reveal that they use a hand-over hand mechanism for translocation. Structures of bacteriophage T7 replisome illustrate how helicase and polymerase cooperatively catalyze DNA unwinding. In this review, we survey structures of monomeric and hexameric helicases and compare different mechanisms for translocation.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77030, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
52
|
Garbacz MA, Cox PB, Sharma S, Lujan SA, Chabes A, Kunkel TA. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res 2019; 47:3986-3995. [PMID: 30698744 DOI: 10.1093/nar/gkz048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
53
|
Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O'Donnell ME, van Oijen AM. Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication. Mol Cell 2019; 77:17-25.e5. [PMID: 31704183 DOI: 10.1016/j.molcel.2019.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/25/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.
Collapse
Affiliation(s)
- Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Varsha Natarajan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gurleen Kaur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Claire Maher
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Callum Kay
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael E O'Donnell
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
54
|
Yuan Z, Georgescu R, Santos RDLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Ctf4 organizes sister replisomes and Pol α into a replication factory. eLife 2019; 8:47405. [PMID: 31589141 PMCID: PMC6800005 DOI: 10.7554/elife.47405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG–Ctf43–1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | | | - Daniel Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-EM Suite, Van Andel Institute, Grand Rapids, United States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
55
|
Perera HM, Behrmann MS, Hoang JM, Griffin WC, Trakselis MA. Contacts and context that regulate DNA helicase unwinding and replisome progression. Enzymes 2019; 45:183-223. [PMID: 31627877 DOI: 10.1016/bs.enz.2019.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hexameric DNA helicases involved in the separation of duplex DNA at the replication fork have a universal architecture but have evolved from two separate protein families. The consequences are that the regulation, translocation polarity, strand specificity, and architectural orientation varies between phage/bacteria to that of archaea/eukaryotes. Once assembled and activated for single strand DNA translocation and unwinding, the DNA polymerase couples tightly to the helicase forming a robust replisome complex. However, this helicase-polymerase interaction can be challenged by various forms of endogenous or exogenous agents that can stall the entire replisome or decouple DNA unwinding from synthesis. The consequences of decoupling can be severe, leading to a build-up of ssDNA requiring various pathways for replication fork restart. All told, the hexameric helicase sits prominently at the front of the replisome constantly responding to a variety of obstacles that require transient unwinding/reannealing, traversal of more stable blocks, and alternations in DNA unwinding speed that regulate replisome progression.
Collapse
Affiliation(s)
- Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Joy M Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
| |
Collapse
|
56
|
Zhou ZX, Lujan SA, Burkholder AB, Garbacz MA, Kunkel TA. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication. Nat Commun 2019; 10:3992. [PMID: 31488849 PMCID: PMC6728351 DOI: 10.1038/s41467-019-11995-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 01/29/2023] Open
Abstract
Most current evidence indicates that DNA polymerases ε and δ, respectively, perform the bulk of leading and lagging strand replication of the eukaryotic nuclear genome. Given that ribonucleotide and mismatch incorporation rates by these replicases influence somatic and germline patterns of variation, it is important to understand the details and exceptions to this overall division of labor. Using an improved method to map where these replicases incorporate ribonucleotides during replication, here we present evidence that DNA polymerase δ universally participates in initiating leading strand synthesis and that nascent leading strand synthesis switches from Pol ε to Pol δ during replication termination. Ribonucleotide maps from both the budding and fission yeast reveal conservation of these processes. These observations of replisome dynamics provide important insight into the mechanisms of eukaryotic replication and genome maintenance.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Marta A Garbacz
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
57
|
Langston LD, O'Donnell ME. An explanation for origin unwinding in eukaryotes. eLife 2019; 8:e46515. [PMID: 31282859 PMCID: PMC6634965 DOI: 10.7554/elife.46515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
Twin CMG complexes are assembled head-to-head around duplex DNA at eukaryotic origins of replication. Mcm10 activates CMGs to form helicases that encircle single-strand (ss) DNA and initiate bidirectional forks. How the CMGs melt duplex DNA while encircling it is unknown. Here we show that S. cerevisiae CMG tracks with force while encircling double-stranded (ds) DNA and that in the presence of Mcm10 the CMG melts long blocks of dsDNA while it encircles dsDNA. We demonstrate that CMG tracks mainly on the 3'-5' strand during duplex translocation, predicting that head-to-head CMGs at an origin exert force on opposite strands. Accordingly, we show that CMGs that encircle double strand DNA in a head-to-head orientation melt the duplex in an Mcm10-dependent reaction.
Collapse
Affiliation(s)
- Lance D Langston
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Michael E O'Donnell
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
58
|
Mueller SH, Spenkelink LM, van Oijen AM. When proteins play tag: the dynamic nature of the replisome. Biophys Rev 2019; 11:641-651. [PMID: 31273608 PMCID: PMC6682189 DOI: 10.1007/s12551-019-00569-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication, or the copying of DNA, is a fundamental process to all life. The system of proteins that carries out replication, the replisome, encounters many roadblocks on its way. An inability of the replisome to properly overcome these roadblocks will negatively affect genomic integrity which in turn can lead to disease. Over the past decades, efforts by many researchers using a broad array of approaches have revealed roles for many different proteins during the initial response of the replisome upon encountering roadblocks. Here, we revisit what is known about DNA replication and the effect of roadblocks during DNA replication across different organisms. We also address how advances in single-molecule techniques have changed our view of the replisome from a highly stable machine with behavior dictated by deterministic principles to a dynamic system that is controlled by stochastic processes. We propose that these dynamics will play crucial roles in roadblock bypass. Further single-molecule studies of this bypass will, therefore, be essential to facilitate the in-depth investigation of multi-protein complexes that is necessary to understand complicated collisions on the DNA.
Collapse
Affiliation(s)
- Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
59
|
Hizume K, Araki H. Replication fork pausing at protein barriers on chromosomes. FEBS Lett 2019; 593:1449-1458. [PMID: 31199500 DOI: 10.1002/1873-3468.13481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
When a cell divides prior to completion of DNA replication, serious DNA damage may occur. Thus, in addition to accuracy, the processivity of the replication forks is important. DNA synthesis at replication forks should be completed in time, and forks overcome aberrant structures on the template DNA, including damaged sites, using trans-lesion synthesis, occasionally introducing mutations. By contrast, the protein barrier built on the DNA is known to block the progression of replication forks at specific chromosomal loci. Such protein barriers avert any collision of replication and transcription machineries, or control the recombination of specific loci. The components and the mechanisms of action of protein barriers have been revealed mainly using genetic and biochemical techniques. In addition to proteins involved in replication fork pausing, the interaction of the replicative helicase and DNA polymerase is also essential for replication fork pausing. Here, we provide an overview of replication fork pausing at protein barriers.
Collapse
Affiliation(s)
- Kohji Hizume
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Japan
| | - Hiroyuki Araki
- Microbial Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
60
|
Sparks JL, Chistol G, Gao AO, Räschle M, Larsen NB, Mann M, Duxin JP, Walter JC. The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair. Cell 2018; 176:167-181.e21. [PMID: 30595447 DOI: 10.1016/j.cell.2018.10.053] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/13/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023]
Abstract
Covalent DNA-protein cross-links (DPCs) impede replication fork progression and threaten genome integrity. Using Xenopus egg extracts, we previously showed that replication fork collision with DPCs causes their proteolysis, followed by translesion DNA synthesis. We show here that when DPC proteolysis is blocked, the replicative DNA helicase CMG (CDC45, MCM2-7, GINS), which travels on the leading strand template, bypasses an intact leading strand DPC. Single-molecule imaging reveals that GINS does not dissociate from CMG during bypass and that CMG slows dramatically after bypass, likely due to uncoupling from the stalled leading strand. The DNA helicase RTEL1 facilitates bypass, apparently by generating single-stranded DNA beyond the DPC. The absence of RTEL1 impairs DPC proteolysis, suggesting that CMG must bypass the DPC to enable proteolysis. Our results suggest a mechanism that prevents inadvertent CMG destruction by DPC proteases, and they reveal CMG's remarkable capacity to overcome obstacles on its translocation strand.
Collapse
Affiliation(s)
- Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan O Gao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Markus Räschle
- Department of Molecular Biotechnology and Systems Biology, Technical University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Nicolai B Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
61
|
Goswami P, Abid Ali F, Douglas ME, Locke J, Purkiss A, Janska A, Eickhoff P, Early A, Nans A, Cheung AMC, Diffley JFX, Costa A. Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat Commun 2018; 9:5061. [PMID: 30498216 PMCID: PMC6265327 DOI: 10.1038/s41467-018-07417-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase. A key step is the recruitment of GINS that requires the leading-strand polymerase Pol epsilon, composed of Pol2, Dpb2, Dpb3, Dpb4. While a truncation of the catalytic N-terminal Pol2 supports cell division, Dpb2 and C-terminal Pol2 (C-Pol2) are essential for viability. Dpb2 and C-Pol2 are non-catalytic modules, shown or predicted to be related to an exonuclease and DNA polymerase, respectively. Here, we present the cryo-EM structure of the isolated C-Pol2/Dpb2 heterodimer, revealing that C-Pol2 contains a DNA polymerase fold. We also present the structure of CMG/C-Pol2/Dpb2 on a DNA fork, and find that polymerase binding changes both the helicase structure and fork-junction engagement. Inter-subunit contacts that keep the helicase-polymerase complex together explain several cellular phenotypes. At least some of these contacts are preserved during Pol epsilon-dependent CMG assembly on path to origin firing, as observed with DNA replication reconstituted in vitro. Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase, which requires the leading-strand polymerase Pol ɛ. Here the authors present a structural analysis of a CMG Pol ɛ on a DNA fork, providing insight on the steps leading productive helicase engagement to the DNA junction.
Collapse
Affiliation(s)
- Panchali Goswami
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Max E Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrew Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Agnieszka Janska
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Anne Early
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alan M C Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
62
|
Aria V, Yeeles JTP. Mechanism of Bidirectional Leading-Strand Synthesis Establishment at Eukaryotic DNA Replication Origins. Mol Cell 2018; 73:S1097-2765(18)30879-7. [PMID: 30451148 PMCID: PMC6344338 DOI: 10.1016/j.molcel.2018.10.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022]
Abstract
DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome.
Collapse
Affiliation(s)
- Valentina Aria
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Joseph T P Yeeles
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
63
|
Tsao WC, Eckert KA. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int J Mol Sci 2018; 19:ijms19103255. [PMID: 30347795 PMCID: PMC6214091 DOI: 10.3390/ijms19103255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.
Collapse
Affiliation(s)
- Wei-Chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| |
Collapse
|
64
|
Sasi NK, Coquel F, Lin YL, MacKeigan JP, Pasero P, Weinreich M. DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling. Neoplasia 2018; 20:985-995. [PMID: 30157471 PMCID: PMC6111017 DOI: 10.1016/j.neo.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
CDC7-DBF4 kinase (DDK) initiates DNA replication in eukaryotes by activating the replicative MCM helicase. DDK has diverse and apparently conflicting roles in the replication checkpoint response in various organisms, but the underlying mechanisms are far from settled. We show that human DDK promotes limited resection of newly synthesized DNA at stalled replication forks or sites of DNA damage to initiate replication checkpoint signaling. DDK is also required for efficient fork restart and G2/M cell cycle arrest. DDK exhibits genetic interactions with the ssDNA exonuclease EXO1 and phosphorylates EXO1 in vitro. EXO1 is also required for nascent strand degradation following exposure to HU, so DDK might regulate EXO1 directly. Lastly, sublethal DDK inhibition causes various mitotic abnormalities, which is consistent with a checkpoint deficiency. In summary, DDK has a primary and previously undescribed role in the replication checkpoint to promote ssDNA accumulation at stalled forks, which is required to initiate a robust checkpoint response and cell cycle arrest to maintain genome integrity.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503; Laboratory of Systems Biology, VARI; Graduate Program in Genetics, Michigan State University, East Lansing, MI 48824
| | - Flavie Coquel
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Yea-Lih Lin
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | | | - Philippe Pasero
- IGH, Institute of Human Genetics CNRS UMR 9002 and University of Montpellier, Equipe Labellisée Ligue contre le Cancer, 141 rue de la Cardonille 34396 Cedex 5, Montpellier, France
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503.
| |
Collapse
|
65
|
Villa-Hernández S, Bermejo R. Replisome-Cohesin Interfacing: A Molecular Perspective. Bioessays 2018; 40:e1800109. [PMID: 30106480 DOI: 10.1002/bies.201800109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Cohesion is established in S-phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate DNA molecules and review the current knowledge on the architectural-functional organization of the eukaryotic replisome, significantly advanced by recent biochemical and structural studies. In light of this novel insight, the authors discuss the mechanisms proposed to assist interfacing of replisomes with chromatin-bound cohesin complexes and elaborate on models for nascent chromatids entrapment by cohesin in the environment of the replication fork.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| |
Collapse
|
66
|
Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K, Yu C, Zhang Z. The Mcm2-Ctf4-Polα Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands. Mol Cell 2018; 72:140-151.e3. [PMID: 30244834 DOI: 10.1016/j.molcel.2018.09.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022]
Abstract
Although essential for epigenetic inheritance, the transfer of parental histone (H3-H4)2 tetramers that contain epigenetic modifications to replicating DNA strands is poorly understood. Here, we show that the Mcm2-Ctf4-Polα axis facilitates the transfer of parental (H3-H4)2 tetramers to lagging-strand DNA at replication forks. Mutating the conserved histone-binding domain of the Mcm2 subunit of the CMG (Cdc45-MCM-GINS) DNA helicase, which translocates along the leading-strand template, results in a marked enrichment of parental (H3-H4)2 on leading strand, due to the impairment of the transfer of parental (H3-H4)2 to lagging strands. Similar effects are observed in Ctf4 and Polα primase mutants that disrupt the connection of the CMG helicase to Polα that resides on lagging-strand template. Our results support a model whereby parental (H3-H4)2 complexes displaced from nucleosomes by DNA unwinding at replication forks are transferred by the CMG-Ctf4-Polα complex to lagging-strand DNA for nucleosome assembly at the original location.
Collapse
Affiliation(s)
- Haiyun Gan
- Institute for Cancer Genetics, Department of Pediatrics and Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Albert Serra-Cardona
- Institute for Cancer Genetics, Department of Pediatrics and Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Department of Pediatrics and Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Department of Pediatrics and Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Chuanhe Yu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
67
|
Evrin C, Maman JD, Diamante A, Pellegrini L, Labib K. Histone H2A-H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO J 2018; 37:embj.201899021. [PMID: 30104407 PMCID: PMC6166128 DOI: 10.15252/embj.201899021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/18/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re‐deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone‐binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating‐type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone‐binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin‐derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone‐binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.
Collapse
Affiliation(s)
- Cecile Evrin
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joseph D Maman
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aurora Diamante
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
68
|
Monachino E, Ghodke H, Spinks RR, Hoatson BS, Jergic S, Xu ZQ, Dixon NE, van Oijen AM. Design of DNA rolling-circle templates with controlled fork topology to study mechanisms of DNA replication. Anal Biochem 2018; 557:42-45. [PMID: 30016625 DOI: 10.1016/j.ab.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/19/2022]
Abstract
Rolling-circle DNA amplification is a powerful tool employed in biotechnology to produce large from small amounts of DNA. This mode of DNA replication proceeds via a DNA topology that resembles a replication fork, thus also providing experimental access to the molecular mechanisms of DNA replication. However, conventional templates do not allow controlled access to multiple fork topologies, which is an important factor in mechanistic studies. Here we present the design and production of a rolling-circle substrate with a tunable length of both the gap and the overhang, and we show its application to the bacterial DNA-replication reaction.
Collapse
Affiliation(s)
- Enrico Monachino
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Ben S Hoatson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
69
|
Abstract
Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each cell division cycle. However, the idea that replication forks would form at origins of DNA replication and proceed without impairment to copy the chromosomes has proven naive. It is now clear that replication forks stall frequently as a result of encounters between the replication machinery and template damage, slow-moving or paused transcription complexes, unrelieved positive superhelical tension, covalent protein-DNA complexes, and as a result of cellular stress responses. These stalled forks are a major source of genome instability. The cell has developed many strategies for ensuring that these obstructions to DNA replication do not result in loss of genetic information, including DNA damage tolerance mechanisms such as lesion skipping, whereby the replisome jumps the lesion and continues downstream; template switching both behind template damage and at the stalled fork; and the error-prone pathway of translesion synthesis.
Collapse
Affiliation(s)
- Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
| |
Collapse
|
70
|
Tsuda M, Terada K, Ooka M, Kobayashi K, Sasanuma H, Fujisawa R, Tsurimoto T, Yamamoto J, Iwai S, Kadoda K, Akagawa R, Huang SYN, Pommier Y, Sale JE, Takeda S, Hirota K. The dominant role of proofreading exonuclease activity of replicative polymerase ε in cellular tolerance to cytarabine (Ara-C). Oncotarget 2018; 8:33457-33474. [PMID: 28380422 PMCID: PMC5464882 DOI: 10.18632/oncotarget.16508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 11/25/2022] Open
Abstract
Chemotherapeutic nucleoside analogs, such as Ara-C, 5-Fluorouracil (5-FU) and Trifluridine (FTD), are frequently incorporated into DNA by the replicative DNA polymerases. However, it remains unclear how this incorporation kills cycling cells. There are two possibilities: Nucleoside analog triphosphates inhibit the replicative DNA polymerases, and/or nucleotide analogs mis-incorporated into genomic DNA interfere with the next round of DNA synthesis as replicative DNA polymerases recognize them as template DNA lesions, arresting synthesis. To address the first possibility, we selectively disrupted the proofreading exonuclease activity of DNA polymerase ε (Polε), the leading-strand replicative polymerase in avian DT40 and human TK6 cell lines. To address the second, we disrupted RAD18, a gene involved in translesion DNA synthesis, a mechanism that relieves stalled replication. Strikingly, POLE1exo−/− cells, but not RAD18−/− cells, were hypersensitive to Ara-C, while RAD18−/− cells were hypersensitive to FTD. gH2AX focus formation following a pulse of Ara-C was immediate and did not progress into the next round of replication, while gH2AX focus formation following a pulse of 5-FU and FTD was delayed to the next round of replication. Biochemical studies indicate that human proofreading-deficient Polε-exo− holoenzyme incorporates Ara-CTP, but subsequently extend from this base several times less efficiently than from intact nucleotides. Together our results suggest that Ara-C acts by blocking extension of the nascent DNA strand and is counteracted by the proofreading activity of Polε, while 5-FU and FTD are efficiently incorporated but act as replication fork blocks in the subsequent S phase, which is counteracted by translesion synthesis.
Collapse
Affiliation(s)
- Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Kazuhiro Terada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-Shi, Tokyo 192-0397, Japan
| | - Koji Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-Shi, Tokyo 192-0397, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Ryo Fujisawa
- Department of Biology, School of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kei Kadoda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-Ku, Kyoto 606-8501, Japan.,Division of Radiation Life Science, Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Remi Akagawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-Ku, Kyoto 606-8501, Japan.,Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-Shi, Tokyo 192-0397, Japan
| |
Collapse
|
71
|
Garbacz MA, Lujan SA, Burkholder AB, Cox PB, Wu Q, Zhou ZX, Haber JE, Kunkel TA. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat Commun 2018; 9:858. [PMID: 29487291 PMCID: PMC5829166 DOI: 10.1038/s41467-018-03270-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
To investigate nuclear DNA replication enzymology in vivo, we have studied Saccharomyces cerevisiae strains containing a pol2-16 mutation that inactivates the catalytic activities of DNA polymerase ε (Pol ε). Although pol2-16 mutants survive, they present very tiny spore colonies, increased doubling time, larger than normal cells, aberrant nuclei, and rapid acquisition of suppressor mutations. These phenotypes reveal a severe growth defect that is distinct from that of strains that lack only Pol ε proofreading (pol2-4), consistent with the idea that Pol ε is the major leading-strand polymerase used for unstressed DNA replication. Ribonucleotides are incorporated into the pol2-16 genome in patterns consistent with leading-strand replication by Pol δ when Pol ε is absent. More importantly, ribonucleotide distributions at replication origins suggest that in strains encoding all three replicases, Pol δ contributes to initiation of leading-strand replication. We describe two possible models. DNA polymerases δ and ε (Pols δ and ε) are thought to be responsible for lagging and leading strand synthesis, respectively. Here the authors present evidence that Pol δ contributes to the initiation of leading strand replication in budding yeast by synthesizing DNA of both strands at replication origins.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Qiuqin Wu
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA
| | - Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
72
|
Li H, O'Donnell ME. The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. Bioessays 2018; 40. [PMID: 29405332 DOI: 10.1002/bies.201700208] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Indexed: 01/12/2023]
Abstract
The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is "built" on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex DNA at origins in G1 phase, forming the Mcm2-7 "double hexamer." In a second step, in S phase Cdc45 and GINS are assembled onto each Mcm2-7 ring, hence producing two CMGs that ultimately form two replication forks that travel in opposite directions. Here, we review recent findings about CMG structure and function. The CMG unwinds the parental duplex and is also the organizing center of the replisome: it binds DNA polymerases and other factors. EM studies reveal a 20-subunit core replisome with the leading Pol ϵ and lagging Pol α-primase on opposite faces of CMG, forming a fundamentally asymmetric architecture. Structural studies of CMG at a replication fork reveal unexpected details of how CMG engages the DNA fork. The structures of CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process for formation of bidirectional replication forks at origins.
Collapse
Affiliation(s)
- Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Michael E O'Donnell
- Department of DNA Replication, Rockefeller University and HHMI, New York, NY 10065, USA
| |
Collapse
|
73
|
The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 2018; 25:122-130. [PMID: 29379175 DOI: 10.1038/s41594-018-0024-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.
Collapse
|
74
|
Symmetry from Asymmetry or Asymmetry from Symmetry? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:305-318. [PMID: 29348326 DOI: 10.1101/sqb.2017.82.034272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The processes of DNA replication and mitosis allow the genetic information of a cell to be copied and transferred reliably to its daughter cells. However, if DNA replication and cell division were always performed in a symmetric manner, the result would be a cluster of tumor cells instead of a multicellular organism. Therefore, gaining a complete understanding of any complex living organism depends on learning how cells become different while faithfully maintaining the same genetic material. It is well recognized that the distinct epigenetic information contained in each cell type defines its unique gene expression program. Nevertheless, how epigenetic information contained in the parental cell is either maintained or changed in the daughter cells remains largely unknown. During the asymmetric cell division (ACD) of Drosophila male germline stem cells, our previous work revealed that preexisting histones are selectively retained in the renewed stem cell daughter, whereas newly synthesized histones are enriched in the differentiating daughter cell. We also found that randomized inheritance of preexisting histones versus newly synthesized histones results in both stem cell loss and progenitor germ cell tumor phenotypes, suggesting that programmed histone inheritance is a key epigenetic player for cells to either remember or reset cell fates. Here, we will discuss these findings in the context of current knowledge on DNA replication, polarized mitotic machinery, and ACD for both animal development and tissue homeostasis. We will also speculate on some potential mechanisms underlying asymmetric histone inheritance, which may be used in other biological events to achieve the asymmetric cell fates.
Collapse
|
75
|
Scherr MJ, Safaric B, Duderstadt KE. Noise in the Machine: Alternative Pathway Sampling is the Rule During DNA Replication. Bioessays 2017; 40. [PMID: 29282758 DOI: 10.1002/bies.201700159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Indexed: 11/07/2022]
Abstract
The astonishing efficiency and accuracy of DNA replication has long suggested that refined rules enforce a single highly reproducible sequence of molecular events during the process. This view was solidified by early demonstrations that DNA unwinding and synthesis are coupled within a stable molecular factory, known as the replisome, which consists of conserved components that each play unique and complementary roles. However, recent single-molecule observations of replisome dynamics have begun to challenge this view, revealing that replication may not be defined by a uniform sequence of events. Instead, multiple exchange pathways, pauses, and DNA loop types appear to dominate replisome function. These observations suggest we must rethink our fundamental assumptions and acknowledge that each replication cycle may involve sampling of alternative, sometimes parallel, pathways. Here, we review our current mechanistic understanding of DNA replication while highlighting findings that exemplify multi-pathway aspects of replisome function and considering the broader implications.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany.,Physik Department, Technische Universität München, Garching, Germany
| |
Collapse
|
76
|
Grabarczyk DB, Silkenat S, Kisker C. Structural Basis for the Recruitment of Ctf18-RFC to the Replisome. Structure 2017; 26:137-144.e3. [PMID: 29225079 DOI: 10.1016/j.str.2017.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022]
Abstract
Ctf18-RFC is an alternative PCNA loader which plays important but poorly understood roles in multiple DNA replication-associated processes. To fulfill its specialist roles, the Ctf18-RFC clamp loader contains a unique module in which the Dcc1-Ctf8 complex is bound to the C terminus of Ctf18 (the Ctf18-1-8 module). Here, we report the structural and functional characterization of the heterotetrameric complex formed between Ctf18-1-8 and a 63 kDa fragment of DNA polymerase ɛ. Our data reveal that Ctf18-1-8 binds stably to the polymerase and far from its other functional sites, suggesting that Ctf18-RFC could be associated with Pol ɛ throughout normal replication as the leading strand clamp loader. We also show that Pol ɛ and double-stranded DNA compete to bind the same winged-helix domain on Dcc1, with Pol ɛ being the preferred binding partner, thus suggesting that there are two alternative pathways to recruit Ctf18-RFC to sites of replication.
Collapse
Affiliation(s)
- Daniel B Grabarczyk
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | - Sabrina Silkenat
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
77
|
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev 2017; 31:1073-1088. [PMID: 28717046 PMCID: PMC5538431 DOI: 10.1101/gad.298232.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Review, Riera et al. review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| | - Yasunori Noguchi
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sarah Schneider
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| |
Collapse
|
78
|
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently. Mol Cell Biol 2017; 37:MCB.00190-17. [PMID: 28784720 DOI: 10.1128/mcb.00190-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal.
Collapse
|
79
|
Andrianova MA, Chetan GK, Sibin MK, Mckee T, Merkler D, Narasinga RK, Ribaux P, Blouin JL, Makrythanasis P, Seplyarskiy VB, Antonarakis SE, Nikolaev SI. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours. J Pathol 2017; 243:331-341. [PMID: 28805995 DOI: 10.1002/path.4957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
Abstract
Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo- , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo- disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Ghati Kasturirangan Chetan
- Department of Human Genetics, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Madathan Kandi Sibin
- Department of Human Genetics, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Thomas Mckee
- Service of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Université de Genève (UNIGE), Geneva, Switzerland
| | - Rao Kvl Narasinga
- Department of Neuro-surgery, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Pascale Ribaux
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Jean-Louis Blouin
- Service of Genetic Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Vladimir B Seplyarskiy
- Institute of Information Transmission Problems, Moscow, Russia.,Moscow State University, Moscow, Russia.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
80
|
Trakselis MA, Cranford MT, Chu AM. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chem Res Toxicol 2017; 30:1956-1971. [PMID: 28881136 DOI: 10.1021/acs.chemrestox.7b00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Matthew T Cranford
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Aurea M Chu
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
81
|
Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome. Proc Natl Acad Sci U S A 2017; 114:10630-10635. [PMID: 28923950 DOI: 10.1073/pnas.1711291114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1-Tof1-Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication.
Collapse
|
82
|
Langston LD, Mayle R, Schauer GD, Yurieva O, Zhang D, Yao NY, Georgescu RE, O'Donnell ME. Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks. eLife 2017; 6:e29118. [PMID: 28869037 PMCID: PMC5599239 DOI: 10.7554/elife.29118] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/03/2017] [Indexed: 12/18/2022] Open
Abstract
Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.
Collapse
Affiliation(s)
- Lance D Langston
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Ryan Mayle
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Olga Yurieva
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Nina Y Yao
- The Rockefeller UniversityNew YorkUnited States
| | - Roxana E Georgescu
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Mike E O'Donnell
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
83
|
Hedglin M, Benkovic SJ. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle. Chem Rev 2017; 117:7857-7877. [PMID: 28497687 PMCID: PMC5662946 DOI: 10.1021/acs.chemrev.7b00046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During S-phase, minor DNA damage may be overcome by DNA damage tolerance (DDT) pathways that bypass such obstacles, postponing repair of the offending damage to complete the cell cycle and maintain cell survival. In translesion DNA synthesis (TLS), specialized DNA polymerases replicate the damaged DNA, allowing stringent DNA synthesis by a replicative polymerase to resume beyond the offending damage. Dysregulation of this DDT pathway in human cells leads to increased mutation rates that may contribute to the onset of cancer. Furthermore, TLS affords human cancer cells the ability to counteract chemotherapeutic agents that elicit cell death by damaging DNA in actively replicating cells. Currently, it is unclear how this critical pathway unfolds, in particular, where and when TLS occurs on each template strand. Given the semidiscontinuous nature of DNA replication, it is likely that TLS on the leading and lagging strand templates is unique for each strand. Since the discovery of DDT in the late 1960s, most studies on TLS in eukaryotes have focused on DNA lesions resulting from ultraviolet (UV) radiation exposure. In this review, we revisit these and other related studies to dissect the step-by-step intricacies of this complex process, provide our current understanding of TLS on leading and lagging strand templates, and propose testable hypotheses to gain further insights.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
84
|
The Effects of Replication Stress on S Phase Histone Management and Epigenetic Memory. J Mol Biol 2017; 429:2011-2029. [DOI: 10.1016/j.jmb.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
85
|
Abstract
Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.
Collapse
|
86
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
87
|
Dmowski M, Fijałkowska IJ. Diverse roles of Dpb2, the non-catalytic subunit of DNA polymerase ε. Curr Genet 2017; 63:983-987. [PMID: 28516230 PMCID: PMC5668336 DOI: 10.1007/s00294-017-0706-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Timely progression of living cells through the cell cycle is precisely regulated. This involves a series of phosphorylation events which are regulated by various cyclins, activated in coordination with the cell cycle progression. Phosphorylated proteins govern cell growth, division as well as duplication of the genetic material and transcriptional activation of genes involved in these processes. A subset of these tightly regulated genes, which depend on the MBF transcription factor and are mainly involved in DNA replication and cell division, is transiently activated at the transition from G1 to S phase. A Saccharomyces cerevisiae mutant in the Dpb2 non-catalytic subunit of DNA polymerase ε (Polε) demonstrates abnormalities in transcription of MBF-dependent genes even in normal growth conditions. It is, therefore, tempting to speculate that Dpb2 which, as described previously, participates in the early stages of DNA replication initiation, has an impact on the regulation of replication-related genes expression with possible implications for genomic stability.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Iwona J Fijałkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
88
|
Andrianova MA, Bazykin GA, Nikolaev SI, Seplyarskiy VB. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Res 2017; 27:1336-1343. [PMID: 28512192 PMCID: PMC5538550 DOI: 10.1101/gr.219915.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
Abstract
Mismatch repair (MMR) is one of the main systems maintaining fidelity of replication. Differences in correction of errors produced during replication of the leading and the lagging DNA strands were reported in yeast and in human cancers, but the causes of these differences remain unclear. Here, we analyze data on human cancers with somatic mutations in two of the major DNA polymerases, delta and epsilon, that replicate the genome. We show that these cancers demonstrate a substantial asymmetry of the mutations between the leading and the lagging strands. The direction of this asymmetry is the opposite between cancers with mutated polymerases delta and epsilon, consistent with the role of these polymerases in replication of the lagging and the leading strands in human cells, respectively. Moreover, the direction of strand asymmetry observed in cancers with mutated polymerase delta is similar to that observed in MMR-deficient cancers. Together, these data indicate that polymerase delta (possibly together with polymerase alpha) contributes more mismatches during replication than its leading-strand counterpart, polymerase epsilon; that most of these mismatches are repaired by the MMR system; and that MMR repairs about three times more mismatches produced in cells during lagging strand replication compared with the leading strand.
Collapse
Affiliation(s)
- Maria A Andrianova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Vladimir B Seplyarskiy
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
89
|
Yurieva O, O'Donnell M. Reconstitution of a eukaryotic replisome reveals the mechanism of asymmetric distribution of DNA polymerases. Nucleus 2017; 7:360-8. [PMID: 27416113 PMCID: PMC5039002 DOI: 10.1080/19491034.2016.1205774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes require 3 DNA polymerases for normal replisome operations, DNA polymerases (Pol) α, delta and epsilon. Recent biochemical and structural studies support the asymmetric use of these polymerases on the leading and lagging strands. Pol epsilon interacts with the 11-subunit CMG helicase, forming a 15-protein leading strand complex that acts processively in leading strand synthesis in vitro, but Pol epsilon is inactive on the lagging strand. The opposite results are observed for Pol delta with CMG. Pol delta is highly active on the lagging strand in vitro, but has only feeble activity with CMG on the leading strand. Pol α also functions with CMG to prime both strands, and is even capable of extending both strands with CMG present. However, extensive DNA synthesis by Pol α is sharply curtailed by the presence of either Pol epsilon or Pol delta, which limits the role of the low fidelity Pol α to the initial priming of synthesis.
Collapse
Affiliation(s)
- Olga Yurieva
- a Howard Hughes Medical Institute and DNA Replication Laboratory, The Rockefeller University , New York , NY , USA
| | - Mike O'Donnell
- a Howard Hughes Medical Institute and DNA Replication Laboratory, The Rockefeller University , New York , NY , USA
| |
Collapse
|
90
|
Sun J, Yuan Z, Georgescu R, Li H, O'Donnell M. The eukaryotic CMG helicase pumpjack and integration into the replisome. Nucleus 2017; 7:146-54. [PMID: 27310307 PMCID: PMC4916876 DOI: 10.1080/19491034.2016.1174800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The eukaryotic replisome is α multiprotein machine that contains DNA polymerases, sliding clamps, helicase, and primase along with several factors that participate in cell cycle and checkpoint control. The detailed structure of the 11-subunit CMG helicase (Cdc45/Mcm2-7/GINS) has been solved recently by cryoEM single-particle 3D reconstruction and reveals pumpjack motions that imply an unexpected mechanism of DNA translocation. CMG is also the organizing center of the replisome. Recent in vitro reconstitution of leading and lagging strand DNA synthesis has enabled structural analysis of the replisome. By building the replisome in stages from pure proteins, single-particle EM studies have identified the overall architecture of the eukaryotic replisome. Suprisingly leading and lagging strand polymerases bind to opposite faces of the CMG helicase, unlike the long-held view that DNA polymerases are located in back of the helicase to act on the unwound strands.
Collapse
Affiliation(s)
- Jingchuan Sun
- a Biology Department , Brookhaven National Laboratory , Upton , NY , USA
| | - Zuanning Yuan
- b Department of Biochemistry & Cell Biology , Stony Brook University , Stony Brook , NY , USA
| | - Roxanna Georgescu
- c Howard Hughes Medical Institute and the DNA Replication Laboratory , The Rockefeller University , New York , NY , USA
| | - Huilin Li
- a Biology Department , Brookhaven National Laboratory , Upton , NY , USA.,b Department of Biochemistry & Cell Biology , Stony Brook University , Stony Brook , NY , USA
| | - Mike O'Donnell
- c Howard Hughes Medical Institute and the DNA Replication Laboratory , The Rockefeller University , New York , NY , USA
| |
Collapse
|
91
|
Zhou JC, Janska A, Goswami P, Renault L, Abid Ali F, Kotecha A, Diffley JFX, Costa A. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proc Natl Acad Sci U S A 2017; 114:4141-4146. [PMID: 28373564 PMCID: PMC5402455 DOI: 10.1073/pnas.1700530114] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45-MCM-GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG-Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression.
Collapse
Affiliation(s)
- Jin Chuan Zhou
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Agnieszka Janska
- Chromosome Replication Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Panchali Goswami
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom;
| |
Collapse
|
92
|
Langston L, O'Donnell M. Action of CMG with strand-specific DNA blocks supports an internal unwinding mode for the eukaryotic replicative helicase. eLife 2017; 6. [PMID: 28346143 PMCID: PMC5381960 DOI: 10.7554/elife.23449] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
Replicative helicases are ring-shaped hexamers that encircle DNA for duplex unwinding. The currently accepted view of hexameric helicase function is by steric exclusion, where the helicase encircles one DNA strand and excludes the other, acting as a wedge with an external DNA unwinding point during translocation. Accordingly, strand-specific blocks only affect these helicases when placed on the tracking strand, not the excluded strand. We examined the effect of blocks on the eukaryotic CMG and, contrary to expectations, blocks on either strand inhibit CMG unwinding. A recent cryoEM structure of yeast CMG shows that duplex DNA enters the helicase and unwinding occurs in the central channel. The results of this report inform important aspects of the structure, and we propose that CMG functions by a modified steric exclusion process in which both strands enter the helicase and the duplex unwinding point is internal, followed by exclusion of the non-tracking strand. DOI:http://dx.doi.org/10.7554/eLife.23449.001
Collapse
Affiliation(s)
- Lance Langston
- Howard Hughes Medical Institute, The Rockefeller University, New York City, United States
| | - Mike O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York City, United States
| |
Collapse
|
93
|
Köhler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, Grosse F. Cdc45 is limiting for replication initiation in humans. Cell Cycle 2017; 15:974-85. [PMID: 26919204 PMCID: PMC4889307 DOI: 10.1080/15384101.2016.1152424] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc45 is an essential protein that together with Mcm2-7 and GINS forms the eukaryotic replicative helicase CMG. Cdc45 seems to be rate limiting for the initial unwinding or firing of replication origins. In line with this view, Cdc45-overexpressing cells fired at least twice as many origins as control cells. However, these cells displayed an about 2-fold diminished fork elongation rate, a pronounced asymmetry of replication fork extension, and an early S phase arrest. This was accompanied by H2AX-phosphorylation and subsequent apoptosis. Unexpectedly, we did not observe increased ATR/Chk1 signaling but rather a mild ATM/Chk2 response. In addition, we detected accumulation of long stretches of single-stranded DNA, a hallmark of replication catastrophe. We conclude that increased origin firing by upregulated Cdc45 caused exhaustion of the single-strand binding protein RPA, which in consequence diminished the ATR/Chk1 response; the subsequently occurring fork breaks led to an ATM/Chk2 mediated phosphorylation of H2AX and eventually to apoptosis.
Collapse
Affiliation(s)
- Carsten Köhler
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Dennis Koalick
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Anja Fabricius
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Ann Christin Parplys
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Kerstin Borgmann
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Helmut Pospiech
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,c Faculty of Biochemistry and Molecular Medicine, University of Oulu , Finland
| | - Frank Grosse
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,d Centre for Molecular Biomedicine, Friedrich-Schiller University , Jena , Germany
| |
Collapse
|
94
|
Xie J, Wooten M, Tran V, Chen X. Breaking Symmetry - Asymmetric Histone Inheritance in Stem Cells. Trends Cell Biol 2017; 27:527-540. [PMID: 28268050 DOI: 10.1016/j.tcb.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Asymmetric cell division (ACD) gives rise to two daughter cells with distinct fates. ACD is widely used during development and by many types of adult stem cells during tissue homeostasis and regeneration. ACD can be regulated by extrinsic cues, such as signaling molecules, as well as by intrinsic factors, such as organelles and cortex proteins. The recent discovery of asymmetric histone inheritance during stem cell ACD has revealed another intrinsic mechanism by which ACD produces two distinct daughters. In this review we discuss these findings in the context of cell-cycle regulation, as well as other studies of ACD, to begin understanding the underlying mechanisms and biological relevance of this phenomenon.
Collapse
Affiliation(s)
- Jing Xie
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Current address: Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North Seattle, Seattle, WA 98109, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
95
|
Abstract
This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.
Collapse
Affiliation(s)
- Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
96
|
Hedglin M, Benkovic SJ. Replication Protein A Prohibits Diffusion of the PCNA Sliding Clamp along Single-Stranded DNA. Biochemistry 2017; 56:1824-1835. [PMID: 28177605 PMCID: PMC5382571 DOI: 10.1021/acs.biochem.6b01213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The replicative polymerases cannot accommodate distortions to the native DNA sequence such as modifications (lesions) to the native template bases from exposure to reactive metabolites and environmental mutagens. Consequently, DNA synthesis on an afflicted template abruptly stops upon encountering these lesions, but the replication fork progresses onward, exposing long stretches of the damaged template before eventually stalling. Such arrests may be overcome by translesion DNA synthesis (TLS) in which specialized TLS polymerases bind to the resident proliferating cell nuclear antigen (PCNA) and replicate the damaged DNA. Hence, a critical aspect of TLS is maintaining PCNA at or near a blocked primer/template (P/T) junction upon uncoupling of fork progression from DNA synthesis by the replicative polymerases. The single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), coats the exposed template and might prohibit diffusion of PCNA along the single-stranded DNA adjacent to a blocked P/T junction. However, this idea had yet to be directly tested. We recently developed a unique Cy3-Cy5 Forster resonance energy transfer (FRET) pair that directly reports on the occupancy of DNA by PCNA. In this study, we utilized this FRET pair to directly and continuously monitor the retention of human PCNA at a blocked P/T junction. Results from extensive steady state and pre-steady state FRET assays indicate that RPA binds tightly to the ssDNA adjacent to a blocked P/T junction and restricts PCNA to the upstream duplex region by physically blocking diffusion of PCNA along ssDNA.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
97
|
Dewar JM, Low E, Mann M, Räschle M, Walter JC. CRL2 Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 2017; 31:275-290. [PMID: 28235849 PMCID: PMC5358724 DOI: 10.1101/gad.291799.116] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Here, Dewar et al. use a proteomic screen in Xenopus egg extracts to identify factors that are enriched on chromatin when CMG unloading from chromatin, which is a key event during eukaryotic replication termination, is blocked. Their results show that CRL2Lrr1 is a master regulator of replisome disassembly during vertebrate DNA replication termination. A key event during eukaryotic replication termination is the removal of the CMG helicase from chromatin. CMG unloading involves ubiquitylation of its Mcm7 subunit and the action of the p97 ATPase. Using a proteomic screen in Xenopus egg extracts, we identified factors that are enriched on chromatin when CMG unloading is blocked. This approach identified the E3 ubiquitin ligase CRL2Lrr1, a specific p97 complex, other potential regulators of termination, and many replisome components. We show that Mcm7 ubiquitylation and CRL2Lrr1 binding to chromatin are temporally linked and occur only during replication termination. In the absence of CRL2Lrr1, Mcm7 is not ubiquitylated, CMG unloading is inhibited, and a large subcomplex of the vertebrate replisome that includes DNA Pol ε is retained on DNA. Our data identify CRL2Lrr1 as a master regulator of replisome disassembly during vertebrate DNA replication termination.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
98
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
99
|
Abstract
The human primosome is a 340-kilodalton complex of primase (DNA-dependent RNA polymerase) and DNA polymerase α, which initiates genome replication by synthesizing chimeric RNA-DNA primers for DNA polymerases δ and ϵ. Accumulated biochemical and structural data reveal the complex mechanism of concerted primer synthesis by two catalytic centers. First, primase generates an RNA primer through three steps: initiation, consisting of dinucleotide synthesis from two nucleotide triphosphates; elongation, resulting in dinucleotide extension; and termination, owing to primase inhibition by a mature 9-mer primer. Then Polα, which works equally well on DNA:RNA and DNA:DNA double helices, intramolecularly catches the template primed by a 9mer RNA and extends the primer with dNTPs. All primosome transactions are highly coordinated by autoregulation through the alternating activation/inhibition of the catalytic centers. This coordination is mediated by the small C-terminal domain of the primase accessory subunit, which forms a tight complex with the template:primer, shuttles between the primase and DNA polymerase active sites, and determines their access to the substrate.
Collapse
|
100
|
Dmowski M, Rudzka J, Campbell JL, Jonczyk P, Fijałkowska IJ. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint. PLoS Genet 2017; 13:e1006572. [PMID: 28107343 PMCID: PMC5291541 DOI: 10.1371/journal.pgen.1006572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 02/03/2017] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. The viability of living organisms depends on the integrity of their genomes. Each cell has to constantly monitor DNA replication and coordinate it with cell division to avoid genomic instability. This is achieved through pathways known as cell cycle checkpoints. Therefore, upon replication perturbation, DNA synthesis slows down and cell division is delayed. For that, a specific signal is induced and propagated through a mechanism that have already been identified but still need investigations. We have isolated a mutated form of Dpb2, the essential subunit of DNA polymerase epsilon (Pol ε) holoenzyme. This mutated form of Pol ε impairs proper activation of the cellular response to replication stress. We show that yeast cells with mutations in the DPB2 gene fail to activate the Nrm1-regulated branch of the checkpoint, which controls numerous genes expressed in response to replication stress. Moreover, our results support the model of parallel activation of replication checkpoint from the leading and lagging DNA strands. This strongly suggests that Pol ε, the leading strand replicase, is involved in replication checkpoint activation from this strand. Our results contribute to the understanding of mechanisms of cellular response to replication stress, which are necessary to preserve genome stability.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
- * E-mail:
| | - Justyna Rudzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Judith L. Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA, United States of America
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Iwona J. Fijałkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| |
Collapse
|