51
|
Foster RA, Zehr JP. Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations. Annu Rev Microbiol 2020; 73:435-456. [PMID: 31500535 DOI: 10.1146/annurev-micro-090817-062650] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyanobacteria are common in symbiotic relationships with diverse multicellular organisms (animals, plants, fungi) in terrestrial environments and with single-celled heterotrophic, mixotrophic, and autotrophic protists in aquatic environments. In the sunlit zones of aquatic environments, diverse cyanobacterial symbioses exist with autotrophic taxa in phytoplankton, including dinoflagellates, diatoms, and haptophytes (prymnesiophytes). Phototrophic unicellular cyanobacteria related to Synechococcus and Prochlorococcus are associated with a number of groups. N2-fixing cyanobacteria are symbiotic with diatoms and haptophytes. Extensive genome reduction is involved in the N2-fixing endosymbionts, most dramatically in the unicellular cyanobacteria associated with haptophytes, which have lost most of the photosynthetic apparatus, the ability to fix C, and the tricarboxylic acid cycle. The mechanisms involved in N2-fixing symbioses may involve more interactions beyond simple exchange of fixed C for N. N2-fixing cyanobacterial symbioses are widespread in the oceans, even more widely distributed than the best-known free-living N2-fixing cyanobacteria, suggesting they may be equally or more important in the global ocean biogeochemical cycle of N.Despite their ubiquitous nature and significance in biogeochemical cycles, cyanobacterium-phytoplankton symbioses remain understudied and poorly understood.
Collapse
Affiliation(s)
- Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden;
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
52
|
Fan X, Qiu H, Han W, Wang Y, Xu D, Zhang X, Bhattacharya D, Ye N. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. SCIENCE ADVANCES 2020; 6:eaba0111. [PMID: 32494685 PMCID: PMC7190310 DOI: 10.1126/sciadv.aba0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/03/2020] [Indexed: 05/17/2023]
Abstract
The extent and role of horizontal gene transfer (HGT) in phytoplankton and, more broadly, eukaryotic evolution remain controversial topics. Recent studies substantiate the importance of HGT in modifying or expanding functions such as metal or reactive species detoxification and buttressing halotolerance. Yet, the potential of HGT to significantly alter the fate of species in a major eukaryotic assemblage remains to be established. We provide such an example for the ecologically important lineages encompassed by cryptophytes, rhizarians, alveolates, stramenopiles, and haptophytes ("CRASH" taxa). We describe robust evidence of prokaryotic HGTs in these taxa affecting functions such as polysaccharide biosynthesis. Numbers of HGTs range from 0.16 to 1.44% of CRASH species gene inventories, comparable to the ca. 1% prokaryote-derived HGTs found in the genomes of extremophilic red algae. Our results substantially expand the impact of HGT in eukaryotes and define a set of general principles for prokaryotic gene fixation in phytoplankton genomes.
Collapse
Affiliation(s)
- Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Qiu
- Independent scholar, 121 Goucher Terrace, Gaithersburg, MD 20877, USA
| | - Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, 59 Dudley Road, Foran Hall 102, New Brunswick, NJ 08901, USA
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
53
|
Sato N, Yoshitomi T, Mori-Moriyama N. Characterization and Biosynthesis of Lipids in Paulinella micropora MYN1: Evidence for Efficient Integration of Chromatophores into Cellular Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2020; 61:869-881. [PMID: 32044983 DOI: 10.1093/pcp/pcaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The chromatophores found in the cells of photosynthetic Paulinella species, once believed to be endosymbiotic cyanobacteria, are photosynthetic organelles that are distinct from chloroplasts. The chromatophore genome is similar to the genomes of α-cyanobacteria and encodes about 1,000 genes. Therefore, the chromatophore is an intriguing model of organelle formation. In this study, we analyzed the lipids of Paulinella micropora MYN1 to verify that this organism is a composite of cyanobacterial descendants and a heterotrophic protist. We detected glycolipids and phospholipids, as well as a betaine lipid diacylglyceryl-3-O-carboxyhydroxymethylcholine, previously detected in many marine algae. Cholesterol was the only sterol component detected, suggesting that the host cell is similar to animal cells. The glycolipids, presumably present in the chromatophores, contained mainly C16 fatty acids, whereas other classes of lipids, presumably present in the other compartments, were abundant in C20 and C22 polyunsaturated fatty acids. This suggests that chromatophores are metabolically distinct from the rest of the cell. Metabolic studies using isotopically labeled substrates showed that different fatty acids are synthesized in the chromatophore and the cytosol, which is consistent with the presence of both type I and type II fatty acid synthases, supposedly present in the cytosol and the chromatophore, respectively. Nevertheless, rapid labeling of the fatty acids in triacylglycerol and phosphatidylcholine by photosynthetically fixed carbon suggested that the chromatophores efficiently provide metabolites to the host. The metabolic and ultrastructural evidence suggests that chromatophores are tightly integrated into the whole cellular metabolism.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
54
|
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field MC, Hampl V. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. THE NEW PHYTOLOGIST 2020; 225:1578-1592. [PMID: 31580486 DOI: 10.1111/nph.16237] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/25/2019] [Indexed: 05/20/2023]
Abstract
Euglena spp. are phototrophic flagellates with considerable ecological presence and impact. Euglena gracilis harbours secondary green plastids, but an incompletely characterised proteome precludes accurate understanding of both plastid function and evolutionary history. Using subcellular fractionation, an improved sequence database and MS we determined the composition, evolutionary relationships and hence predicted functions of the E. gracilis plastid proteome. We confidently identified 1345 distinct plastid protein groups and found that at least 100 proteins represent horizontal acquisitions from organisms other than green algae or prokaryotes. Metabolic reconstruction confirmed previously studied/predicted enzymes/pathways and provided evidence for multiple unusual features, including uncoupling of carotenoid and phytol metabolism, a limited role in amino acid metabolism, and dual sets of the SUF pathway for FeS cluster assembly, one of which was acquired by lateral gene transfer from Chlamydiae. Plastid paralogues of trafficking-associated proteins potentially mediating fusion of transport vesicles with the outermost plastid membrane were identified, together with derlin-related proteins, potential translocases across the middle membrane, and an extremely simplified TIC complex. The Euglena plastid, as the product of many genomes, combines novel and conserved features of metabolism and transport.
Collapse
Affiliation(s)
| | - Martin Zoltner
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Petr Soukal
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
| | - Kristína Záhonová
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
- Faculty of Science, University of Ostrava, Ostrava, 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - ThankGod E Ebenezer
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Eva Lacová Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Marek Eliáš
- Faculty of Science, University of Ostrava, Ostrava, 710 00, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czechia
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Vladimír Hampl
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
| |
Collapse
|
55
|
Chalmers TJ, Wu LE. Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing: Somatic Acquisition of Foreign Transposable Elements as a Catalyst of Genome Instability, Epigenetic Dysregulation, Inflammation, Senescence, and Ageing. Bioessays 2020; 42:e1900197. [PMID: 31994769 DOI: 10.1002/bies.201900197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Indexed: 01/07/2023]
Abstract
The de-repression of transposable elements (TEs) in mammalian genomes is thought to contribute to genome instability, inflammation, and ageing, yet is viewed as a cell-autonomous event. In contrast to mammalian cells, prokaryotes constantly exchange genetic material through TEs, crossing both cell and species barriers, contributing to rapid microbial evolution and diversity in complex communities such as the mammalian gut. Here, it is proposed that TEs released from prokaryotes in the microbiome or from pathogenic infections regularly cross the kingdom barrier to the somatic cells of their eukaryotic hosts. It is proposed this horizontal transfer of TEs from microbe to host is a stochastic, ongoing catalyst of genome destabilization, resulting in structural and epigenetic variations, and activation of well-evolved host defense mechanisms contributing to inflammation, senescence, and biological ageing. It is proposed that innate immunity pathways defend against the horizontal acquisition of microbial TEs, and that activation of this pathway during horizontal transposon transfer promotes chronic inflammation during ageing. Finally, it is suggested that horizontal acquisition of prokaryotic TEs into mammalian genomes has been masked and subsequently under-reported due to flaws in current sequencing pipelines, and new strategies to uncover these events are proposed.
Collapse
Affiliation(s)
| | - Lindsay E Wu
- School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
56
|
Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, Ferrari C, Facchinelli F, Ball SG, Cenci U, Chan CX, Wagner NE, Yoon HS, Weber APM, Bhattacharya D. Analysis of an improved Cyanophora paradoxa genome assembly. DNA Res 2020; 26:287-299. [PMID: 31098614 PMCID: PMC6704402 DOI: 10.1093/dnares/dsz009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/30/2019] [Indexed: 12/12/2022] Open
Abstract
Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.
Collapse
Affiliation(s)
- Dana C Price
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Robyn Roth
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Marek Mutwil
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Camilla Ferrari
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Fabio Facchinelli
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole E Wagner
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
57
|
Sato N. Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event? JOURNAL OF PLANT RESEARCH 2020; 133:15-33. [PMID: 31811433 PMCID: PMC6946739 DOI: 10.1007/s10265-019-01157-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/01/2019] [Indexed: 05/10/2023]
Abstract
The paradigm "cyanobacterial origin of chloroplasts" is currently viewed as an established fact. However, we may have to re-consider the origin of chloroplast membranes, because membranes are not replicated by their own. It is the genes for lipid biosynthetic enzymes that are inherited. In the current understandings, these enzymes became encoded by the nuclear genome as a result of endosymbiotic gene transfer from the endosymbiont. However, we previously showed that many enzymes involved in the synthesis of chloroplast peptidoglycan and glycolipids did not originate from cyanobacteria. Here I present results of comprehensive phylogenetic analysis of chloroplast enzymes involved in fatty acid and lipid biosynthesis, as well as additional chloroplast components related to photosynthesis and gene expression. Four types of phylogenetic relationship between chloroplast enzymes (encoded by the chloroplast and nuclear genomes) and cyanobacterial counterparts were found: type 1, chloroplast enzymes diverged from inside of cyanobacterial clade; type 2, chloroplast and cyanobacterial enzymes are sister groups; type 3, chloroplast enzymes originated from homologs of bacteria other than cyanobacteria; type 4, chloroplast enzymes diverged from eukaryotic homologs. Estimation of evolutionary distances suggested that the acquisition times of chloroplast enzymes were diverse, indicating that multiple gene transfers accounted for the chloroplast enzymes analyzed. Based on the results, I try to relax the tight logic of the endosymbiotic origin of chloroplasts involving a single endosymbiotic event by proposing alternative hypotheses. The hypothesis of host-directed chloroplast formation proposes that glycolipid synthesis ability had been acquired by the eukaryotic host before the acquisition of chloroplast ribosomes. Chloroplast membrane system could have been provided by the host, whereas cyanobacteria contributed to the genes for the genetic and photosynthesis systems, at various times, either before or after the formation of chloroplast membranes. The origin(s) of chloroplasts seems to be more complicated than the single event of primary endosymbiosis.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
58
|
Bhattacharya D, Price DC. The Algal Tree of Life from a Genomics Perspective. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
59
|
Bublitz DC, Chadwick GL, Magyar JS, Sandoz KM, Brooks DM, Mesnage S, Ladinsky MS, Garber AI, Bjorkman PJ, Orphan VJ, McCutcheon JP. Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell 2019; 179:703-712.e7. [PMID: 31587897 PMCID: PMC6838666 DOI: 10.1016/j.cell.2019.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes. Mealybugs have two bacterial endosymbionts; one symbiont lives inside the other The mealybug genome has acquired some bacterial peptidoglycan (PG)-related genes This insect-symbiont mosaic pathway produces a PG layer at the innermost symbiont Endosymbionts and organelles have evolved similar levels of biochemical integration
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kelsi M Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Diane M Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Stéphane Mesnage
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
60
|
Dunn CD, Paavilainen VO. Wherever I may roam: organellar protein targeting and evolvability. Curr Opin Genet Dev 2019; 58-59:9-16. [DOI: 10.1016/j.gde.2019.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/20/2019] [Indexed: 02/08/2023]
|
61
|
Ponce-Toledo RI, López-García P, Moreira D. Horizontal and endosymbiotic gene transfer in early plastid evolution. THE NEW PHYTOLOGIST 2019; 224:618-624. [PMID: 31135958 PMCID: PMC6759420 DOI: 10.1111/nph.15965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered into a number of secondary endosymbioses with diverse eukaryotic hosts. These events had major consequences on the evolution and diversification of life on Earth. Although almost all plastid diversity derives from a single endosymbiotic event, the analysis of nuclear genomes of plastid-bearing lineages has revealed a mosaic origin of plastid-related genes. In addition to cyanobacterial genes, plastids recruited for their functioning eukaryotic proteins encoded by the host nucleus and also bacterial proteins of noncyanobacterial origin. Therefore, plastid proteins and plastid-localised metabolic pathways evolved by tinkering and using gene toolkits from different sources. This mixed heritage seems especially complex in secondary algae containing green plastids, the acquisition of which appears to have been facilitated by many previous acquisitions of red algal genes (the 'red carpet hypothesis').
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
62
|
Husnik F, Keeling PJ. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr Opin Genet Dev 2019; 58-59:1-8. [DOI: 10.1016/j.gde.2019.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/29/2022]
|
63
|
Gavelis GS, Gile GH. How did cyanobacteria first embark on the path to becoming plastids?: lessons from protist symbioses. FEMS Microbiol Lett 2019; 365:5079637. [PMID: 30165400 DOI: 10.1093/femsle/fny209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Symbioses between phototrophs and heterotrophs (a.k.a 'photosymbioses') are extremely common, and range from loose and temporary associations to obligate and highly specialized forms. In the history of life, the most transformative was the 'primary endosymbiosis,' wherein a cyanobacterium was engulfed by a eukaryote and became genetically integrated as a heritable photosynthetic organelle, or plastid. By allowing the rise of algae and plants, this event dramatically altered the biosphere, but its remote origin over one billion years ago has obscured the sequence of events leading to its establishment. Here, we review the genetic, physiological and developmental hurdles involved in early primary endosymbiosis. Since we cannot travel back in time to witness these evolutionary junctures, we will draw on examples of unicellular eukaryotes (protists) spanning diverse modes of photosymbiosis. We also review experimental approaches that could be used to recreate aspects of early primary endosymbiosis on a human timescale.
Collapse
Affiliation(s)
- Gregory S Gavelis
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
64
|
Abstract
An amoeba named Paulinella harbours 'chromatophores', cyanobacterium-derived photosynthetic bodies that evolved independent of plastids. Proteomics has shown that hundreds of nucleus-encoded proteins are targeted to the chromatophore, revealing the host cell's contributions to its recently established organelle.
Collapse
Affiliation(s)
- John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada.
| |
Collapse
|
65
|
Irwin NAT, Keeling PJ. Extensive Reduction of the Nuclear Pore Complex in Nucleomorphs. Genome Biol Evol 2019; 11:678-687. [PMID: 30715330 PMCID: PMC6411479 DOI: 10.1093/gbe/evz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC) is a large macromolecular assembly situated within the pores of the nuclear envelope. Through interactions between its subcomplexes and import proteins, the NPC mediates the transport of molecules into and out of the nucleus and facilitates dynamic chromatin regulation and gene expression. Accordingly, the NPC constitutes a highly integrated nuclear component that is ubiquitous and conserved among eukaryotes. Potential exceptions to this are nucleomorphs: Highly reduced, relict nuclei that were derived from green and red algae following their endosymbiotic integration into two lineages, the chlorarachniophytes and the cryptophyceans. A previous investigation failed to identify NPC genes in nucleomorph genomes suggesting that these genes have either been relocated to the host nucleus or lost. Here, we sought to investigate the composition of the NPC in nucleomorphs by using genomic and transcriptomic data to identify and phylogenetically classify NPC proteins in nucleomorph-containing algae. Although we found NPC proteins in all examined lineages, most of those found in chlorarachniophytes and cryptophyceans were single copy, host-related proteins that lacked signal peptides. Two exceptions were Nup98 and Rae1, which had clear nucleomorph-derived homologs. However, these proteins alone are likely insufficient to structure a canonical NPC and previous reports revealed that Nup98 and Rae1 have other nuclear functions. Ultimately, these data indicate that nucleomorphs represent eukaryotic nuclei without a canonical NPC, raising fundamental questions about their structure and function.
Collapse
Affiliation(s)
- Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
66
|
Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species. Sci Rep 2019; 9:2560. [PMID: 30796245 PMCID: PMC6384880 DOI: 10.1038/s41598-019-38621-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022] Open
Abstract
The thecate amoeba Paulinella is a valuable model for understanding plastid organellogenesis because this lineage has independently gained plastids (termed chromatophores) of alpha-cyanobacterial provenance. Plastid primary endosymbiosis in Paulinella occurred relatively recently (90–140 million years ago, Mya), whereas the origin of the canonical Archaeplastida plastid occurred >1,500 Mya. Therefore, these two events provide independent perspectives on plastid formation on vastly different timescales. Here we generated the complete chromatophore genome sequence from P. longichromatophora (979,356 bp, GC-content = 38.8%, 915 predicted genes) and P. micropora NZ27 (977,190 bp, GC-content = 39.9%, 911 predicted genes) and compared these data to that from existing chromatophore genomes. Our analysis suggests that when a basal split occurred among photosynthetic Paulinella species ca. 60 Mya, only 35% of the ancestral orthologous gene families from the cyanobacterial endosymbiont remained in chromatophore DNA. Following major gene losses during the early stages of endosymbiosis, this process slowed down significantly, resulting in a conserved gene content across extant taxa. Chromatophore genes faced relaxed selection when compared to homologs in free-living alpha-cyanobacteria, likely reflecting the homogeneous intracellular environment of the Paulinella host. Comparison of nucleotide substitution and insertion/deletion events among different P. micropora strains demonstrates that increases in AT-content and genome reduction are ongoing and dynamic processes in chromatophore evolution.
Collapse
|
67
|
Watson AK, Lannes R, Pathmanathan JS, Méheust R, Karkar S, Colson P, Corel E, Lopez P, Bapteste E. The Methodology Behind Network Thinking: Graphs to Analyze Microbial Complexity and Evolution. Methods Mol Biol 2019; 1910:271-308. [PMID: 31278668 DOI: 10.1007/978-1-4939-9074-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the post genomic era, large and complex molecular datasets from genome and metagenome sequencing projects expand the limits of what is possible for bioinformatic analyses. Network-based methods are increasingly used to complement phylogenetic analysis in studies in molecular evolution, including comparative genomics, classification, and ecological studies. Using network methods, the vertical and horizontal relationships between all genes or genomes, whether they are from cellular chromosomes or mobile genetic elements, can be explored in a single expandable graph. In recent years, development of new methods for the construction and analysis of networks has helped to broaden the availability of these approaches from programmers to a diversity of users. This chapter introduces the different kinds of networks based on sequence similarity that are already available to tackle a wide range of biological questions, including sequence similarity networks, gene-sharing networks and bipartite graphs, and a guide for their construction and analyses.
Collapse
Affiliation(s)
- Andrew K Watson
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France
| | - Romain Lannes
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France
| | - Jananan S Pathmanathan
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France
| | - Raphaël Méheust
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France
| | - Slim Karkar
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of NJ, New Brunswick, NJ, USA
| | - Philippe Colson
- Fondation Institut Hospitalo-Universitaire Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Tione, Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, INSERM U1095, Aix-Marseille University, Marseille, France
| | - Eduardo Corel
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France
| | - Philippe Lopez
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France
| | - Eric Bapteste
- Sorbonne Universités, Institut de Biologie Paris-Seine, UPMC Université Paris 6, Paris, France.
| |
Collapse
|
68
|
Lutfullahoğlu-Bal G, Seferoğlu AB, Keskin A, Akdoğan E, Dunn CD. A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells. Sci Rep 2018; 8:16374. [PMID: 30401812 PMCID: PMC6219538 DOI: 10.1038/s41598-018-34646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
Collapse
Affiliation(s)
- Güleycan Lutfullahoğlu-Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
| | - Ayşe Bengisu Seferoğlu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Abdurrahman Keskin
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Biological Sciences, Columbia University, New York, NY, 10027, United States of America
| | - Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, United States of America
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
69
|
dos Santos M, Ghoul M, West SA. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol 2018; 16:e2006671. [PMID: 30359363 PMCID: PMC6219813 DOI: 10.1371/journal.pbio.2006671] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.
Collapse
Affiliation(s)
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stuart A. West
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
70
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
71
|
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The Origin and Diversification of Mitochondria. Curr Biol 2018; 27:R1177-R1192. [PMID: 29112874 DOI: 10.1016/j.cub.2017.09.015] [Citation(s) in RCA: 595] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondria are best known for their role in the generation of ATP by aerobic respiration. Yet, research in the past half century has shown that they perform a much larger suite of functions and that these functions can vary substantially among diverse eukaryotic lineages. Despite this diversity, all mitochondria derive from a common ancestral organelle that originated from the integration of an endosymbiotic alphaproteobacterium into a host cell related to Asgard Archaea. The transition from endosymbiotic bacterium to permanent organelle entailed a massive number of evolutionary changes including the origins of hundreds of new genes and a protein import system, insertion of membrane transporters, integration of metabolism and reproduction, genome reduction, endosymbiotic gene transfer, lateral gene transfer and the retargeting of proteins. These changes occurred incrementally as the endosymbiont and the host became integrated. Although many insights into this transition have been gained, controversy persists regarding the nature of the original endosymbiont, its initial interactions with the host and the timing of its integration relative to the origin of other features of eukaryote cells. Since the establishment of the organelle, proteins have been gained, lost, transferred and retargeted as mitochondria have specialized into the spectrum of functional types seen across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| |
Collapse
|
72
|
Matsuo M, Katahata A, Satoh S, Matsuzaki M, Nomura M, Ishida KI, Inagaki Y, Obokata J. Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer. PLoS One 2018; 13:e0200961. [PMID: 30024971 PMCID: PMC6053224 DOI: 10.1371/journal.pone.0200961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5′ end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5′ end sequence of 28–33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution.
Collapse
Affiliation(s)
- Mitsuhiro Matsuo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Atsushi Katahata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mami Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-ichiro Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
73
|
Abstract
The classic Darwinian theory and the Synthetic evolutionary theory and their linear models, while invaluable to study the origins and evolution of species, are not primarily designed to model the evolution of organisations, typically that of ecosystems, nor that of processes. How could evolutionary theory better explain the evolution of biological complexity and diversity? Inclusive network-based analyses of dynamic systems could retrace interactions between (related or unrelated) components. This theoretical shift from a Tree of Life to a Dynamic Interaction Network of Life, which is supported by diverse molecular, cellular, microbiological, organismal, ecological and evolutionary studies, would further unify evolutionary biology.
Collapse
Affiliation(s)
- Eric Bapteste
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), F-75005 Paris, France
- CNRS, UMR7138, Institut de Biologie Paris-Seine, F-75005 Paris, France
| | - Philippe Huneman
- Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS / Paris I Sorbonne), F-75006 Paris, France
| |
Collapse
|
74
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
75
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
76
|
Maréchal E. Primary Endosymbiosis: Emergence of the Primary Chloroplast and the Chromatophore, Two Independent Events. Methods Mol Biol 2018; 1829:3-16. [PMID: 29987711 DOI: 10.1007/978-1-4939-8654-5_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The emergence of semiautonomous organelles, such as the mitochondrion, the chloroplast, and more recently, the chromatophore, are critical steps in the evolution of eukaryotes. They resulted from primary endosymbiotic events that seem to share general features, i.e., an acquisition of a bacterium/cyanobacteria likely via a phagocytic membrane, a genome reduction coinciding with an escape of genes from the organelle to the nucleus, and finally the appearance of an active system translocating nuclear-encoded proteins back to the organelles. An intense mobilization of foreign genes of bacterial origin, via horizontal gene transfers, plays a critical role. Some third partners, like Chlamydia, might have facilitated the transition from cyanobacteria to the early chloroplast. This chapter describes our current understanding of primary endosymbiosis, with a specific focus on primary chloroplasts considered to have emerged more than one billion years ago, and on the chromatophore, having emerged about one hundred million years ago.
Collapse
Affiliation(s)
- Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, CEA Grenoble, Institut National Recherche Agronomique, UMR5168, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
77
|
Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. Curr Top Microbiol Immunol 2018; 418:443-462. [DOI: 10.1007/82_2018_82] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
78
|
|
79
|
Miller WB. Biological information systems: Evolution as cognition-based information management. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:1-26. [PMID: 29175233 DOI: 10.1016/j.pbiomolbio.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses.
Collapse
|
80
|
Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D. Biotic interactions as drivers of algal origin and evolution. THE NEW PHYTOLOGIST 2017; 216:670-681. [PMID: 28857164 DOI: 10.1111/nph.14760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/07/2023]
Abstract
Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
Collapse
Affiliation(s)
- Juliet Brodie
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Steven G Ball
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille CNRS, F 59000, Lille, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, University Pierre et Marie Curie, University of Paris VI, CNRS, F-66650, Banyuls-sur-Mer, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281, S8, 9000, Gent, Belgium
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, F-29688, France
| | | | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Mahasweta Saha
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
81
|
Roy SW. Genomic and Transcriptomic Analysis Reveals Spliced Leader Trans-Splicing in Cryptomonads. Genome Biol Evol 2017; 9:468-473. [PMID: 28391323 PMCID: PMC5619915 DOI: 10.1093/gbe/evx012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 01/02/2023] Open
Abstract
Spliced leader trans-splicing (SLTS) is a poorly understood mechanism that is found in a diversity of eukaryotic lineages. In SLTS, a short RNA sequence is added near the 5′ ends of the transcripts of protein-coding genes by a modified spliceosomal reaction. Available data suggest that SLTS has evolved many times, and might be more likely to evolve in animals. That SLTS might be more likely to evolve in the context of the generally complex transcriptomes characteristic of animals suggests the possibility that SLTS functions in gene regulation or transcriptome diversification, however no general novel function for SLTS is known. Here, I report SLTS in a lineage of cellularly complex unicellular eukaryotes. Cryptomonads are a group of eukaryotic algae that acquired photosynthetic capacity by secondary endosymbiosis of a red alga, and that retain a reduced copy of the nucleus of the engulfed alga. I estimate that at least one-fifth of genes in the model cryptomonad Guillardia theta and its relative Hanusia phi undergo SLTS. I show that hundreds of genes in G. theta generate alternative transcripts by SLTS at alternative sites, however I find little evidence for alternative protein production by alternative SLTS splicing. Interestingly, I find no evidence for substantial operon structure in the G. theta genome, in contrast to previous findings in other lineages with SLTS. These results extend SLTS to another major group of eukaryotes, and heighten the mystery of the evolution of SLTS and its association with cellular and transcriptomic complexity.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, CA
| |
Collapse
|
82
|
Gentil J, Hempel F, Moog D, Zauner S, Maier UG. Review: origin of complex algae by secondary endosymbiosis: a journey through time. PROTOPLASMA 2017; 254:1835-1843. [PMID: 28290059 DOI: 10.1007/s00709-017-1098-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/03/2017] [Indexed: 05/19/2023]
Abstract
Secondary endosymbiosis-the merging of two eukaryotic cells into one photosynthetic cellular unit-led to the evolution of ecologically and medically very important organisms. We review the biology of these organisms, starting from the first proposal of secondary endosymbiosis up to recent phylogenetic models on the origin of secondarily evolved protists. In addition, we discuss the organelle character of the symbionts based on morphological features, gene transfers from the symbiont into the host and re-import of nucleus-encoded plastid proteins. Finally, we hypothesize that secondary endosymbiosis is more than enslaving a eukaryotic, phototrophic cell, but reflects a complex interplay between host and symbiont, leading to the inseparability of the two symbiotic partners generating a cellular entity.
Collapse
Affiliation(s)
- J Gentil
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - F Hempel
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - D Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - S Zauner
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - U G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
83
|
Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora. Curr Biol 2017; 27:2763-2773.e5. [DOI: 10.1016/j.cub.2017.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 01/03/2023]
|
84
|
Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM, Gachon C, Grossman AR, Mock T, Raven JA, Smith AG, Yoon HS, Bhattacharya D. The Algal Revolution. TRENDS IN PLANT SCIENCE 2017; 22:726-738. [PMID: 28610890 DOI: 10.1016/j.tplants.2017.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 05/28/2023]
Abstract
Algae are (mostly) photosynthetic eukaryotes that occupy multiple branches of the tree of life, and are vital for planet function and health. In this review, we highlight a transformative period in studies of the evolution and functioning of this extraordinary group of organisms and their potential for novel applications, wrought by high-throughput 'omic' and reverse genetic methods. We cover the origin and diversification of algal groups, explore advances in understanding the link between phenotype and genotype, consider algal sex determination, and review progress in understanding the roots of algal multicellularity. Experimental evolution studies to determine how algae evolve in changing environments are highlighted, as is their potential as production platforms for compounds of commercial interest, such as biofuel precursors, nutraceuticals, or therapeutics.
Collapse
Affiliation(s)
- Juliet Brodie
- Natural History Museum, Department of Life Sciences, London SW7 5BD, UK
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Olivier De Clerck
- Research Group Phycology, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Susana M Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Claire Gachon
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA 94305, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - John A Raven
- Permanent address: Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK; School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
85
|
On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing. J Mol Evol 2017; 85:37-45. [DOI: 10.1007/s00239-017-9803-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023]
|
86
|
Abstract
Endosymbiosis is an idea that provided a remarkable amount of explanatory power about the origins of eukaryotic organelles. But it also promoted a number of assumptions that have also been influential, but are less well-examined. Here we look at two of these to see whether or not they fit current evidence. The assumption we first address is that endosymbiotic relationships such as nutritional symbioses and eukaryotic organelles are mutualisms. We argue instead that they are more one-sided associations that can be regarded as context-dependent power struggles like any other ecological interaction. The second assumption is that during endosymbiotic interactions (such as the origin of organelles), the host genomes will acquire a great many genes from endosymbionts that assume functions in host systems (as opposed to the well-documented genes whose products are simply targeted back to the endosymbiont or organelle). The idea that these genes exist in large numbers has been influential in a number of hypotheses about organelle evolution and distribution, but in the most carefully-examined systems no such mass migration of genes is evident. Overall, we argue that both the nature and impact of endosymbiosis need to be constantly re-evaluated to fully understand what roles it really plays in both cell biology and evolution.
Collapse
|
87
|
Rockwell NC, Lagarias JC. Phytochrome diversification in cyanobacteria and eukaryotic algae. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:87-93. [PMID: 28445833 PMCID: PMC5483197 DOI: 10.1016/j.pbi.2017.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 05/12/2023]
Abstract
Phytochromes control almost every aspect of plant biology, including germination, growth, development, and flowering, in response to red and far-red light. These photoreceptors thus hold considerable promise for engineering crop plant responses to light. Recently, structural research has shed new light on how phytochromes work. Genomic and transcriptomic studies have improved our understanding of phytochrome loss, retention, and diversification during evolution. We are also beginning to understand phytochrome function in cyanobacteria and eukaryotic algae.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, 31 Briggs Hall, One Shields Avenue, University of California, Davis, CA 95616, United States of America
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, 31 Briggs Hall, One Shields Avenue, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
88
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
89
|
Mergaert P, Kikuchi Y, Shigenobu S, Nowack ECM. Metabolic Integration of Bacterial Endosymbionts through Antimicrobial Peptides. Trends Microbiol 2017; 25:703-712. [PMID: 28549825 DOI: 10.1016/j.tim.2017.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are massively produced by eukaryotic hosts during symbiotic interactions with bacteria. Among other roles, these symbiotic AMPs have the capacity to permeabilize symbiont membranes and facilitate metabolite flow across the host-symbiont interface. We propose that an ancestral role of these peptides is to facilitate metabolic exchange between the symbiotic partners through membrane permeabilization. This function may be particularly critical for integration of endosymbiont and host metabolism in interactions involving bacteria with strongly reduced genomes lacking most small metabolite transporters. Moreover, AMPs could have acted in a similar way at the onset of plastid and mitochondrion evolution, after a host cell took up a bacterium and needed to extract nutrients from it in the absence of dedicated solute transporters.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Eva C M Nowack
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
90
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
91
|
Cenci U, Bhattacharya D, Weber APM, Colleoni C, Subtil A, Ball SG. Biotic Host-Pathogen Interactions As Major Drivers of Plastid Endosymbiosis. TRENDS IN PLANT SCIENCE 2017; 22:316-328. [PMID: 28089380 DOI: 10.1016/j.tplants.2016.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/21/2016] [Accepted: 12/12/2016] [Indexed: 05/22/2023]
Abstract
The plastid originated 1.5 billion years ago through a primary endosymbiosis involving a heterotrophic eukaryote and an ancient cyanobacterium. Phylogenetic and biochemical evidence suggests that the incipient endosymbiont interacted with an obligate intracellular chlamydial pathogen that housed it in an inclusion. This aspect of the ménage-à-trois hypothesis (MATH) posits that Chlamydiales provided critical novel transporters and enzymes secreted by the pathogens in the host cytosol. This initiated the efflux of photosynthate to both the inclusion lumen and host cytosol. Here we review the experimental evidence supporting the MATH and focus on chlamydial genes that replaced existing cyanobacterial functions. The picture emerging from these studies underlines the importance of chlamydial host-pathogen interactions in the metabolic integration of the primary plastid.
Collapse
Affiliation(s)
- Ugo Cenci
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Christophe Colleoni
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
| | - Agathe Subtil
- Institut Pasteur, Unité de Biologie Cellulaire de l'Infection Microbienne, 25 Rue du Dr Roux, 75015 Paris, France
| | - Steven G Ball
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
92
|
Zhang R, Nowack ECM, Price DC, Bhattacharya D, Grossman AR. Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:221-234. [PMID: 28182317 DOI: 10.1111/tpj.13488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Plastid evolution has been attributed to a single primary endosymbiotic event that occurred about 1.6 billion years ago (BYA) in which a cyanobacterium was engulfed and retained by a eukaryotic cell, although early steps in plastid integration are poorly understood. The photosynthetic amoeba Paulinella chromatophora represents a unique model for the study of plastid evolution because it contains cyanobacterium-derived photosynthetic organelles termed 'chromatophores' that originated relatively recently (0.09-0.14 BYA). The chromatophore genome is about a third the size of the genome of closely related cyanobacteria, but 10-fold larger than most plastid genomes. Several genes have been transferred from the chromatophore genome to the host nuclear genome through endosymbiotic gene transfer (EGT). Some EGT-derived proteins could be imported into chromatophores for function. Two photosynthesis-related genes (psaI and csos4A) are encoded by both the nuclear and chromatophore genomes, suggesting that EGT in Paulinella chromatophora is ongoing. Many EGT-derived genes encode proteins that function in photosynthesis and photoprotection, including an expanded family of high-light-inducible (ncHLI) proteins. Cyanobacterial hli genes are high-light induced and required for cell viability under excess light. We examined the impact of light on Paulinella chromatophora and found that this organism is light sensitive and lacks light-induced transcriptional regulation of chromatophore genes and most EGT-derived nuclear genes. However, several ncHLI genes have reestablished light-dependent regulation, which appears analogous to what is observed in cyanobacteria. We postulate that expansion of the ncHLI gene family and its regulation may reflect the light/oxidative stress experienced by Paulinella chromatophora as a consequence of the as yet incomplete integration of host and chromatophore metabolisms.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Eva C M Nowack
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Dana C Price
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
93
|
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 2017; 26:2212-2236. [PMID: 27997046 PMCID: PMC6534505 DOI: 10.1111/mec.13959] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|