51
|
Paul F, Noé F, Weikl TR. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations. J Phys Chem B 2018. [PMID: 29522679 DOI: 10.1021/acs.jpcb.7b12146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.
Collapse
Affiliation(s)
- Fabian Paul
- Max Planck Institute of Colloids and Interfaces , Department of Theory and Bio-Systems , Science Park Golm , 14424 Potsdam , Germany.,Freie Universität Berlin , Department of Mathematics and Computer Science , Arnimallee 6 , 14195 Berlin , Germany
| | - Frank Noé
- Freie Universität Berlin , Department of Mathematics and Computer Science , Arnimallee 6 , 14195 Berlin , Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces , Department of Theory and Bio-Systems , Science Park Golm , 14424 Potsdam , Germany
| |
Collapse
|
52
|
Zheng Y, Cui Q. Multiple Pathways and Time Scales for Conformational Transitions in apo-Adenylate Kinase. J Chem Theory Comput 2018; 14:1716-1726. [PMID: 29378407 DOI: 10.1021/acs.jctc.7b01064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The open/close transition in adenylate kinase (AK) is regarded as a representative example for large-scale conformational transition in proteins, yet its mechanism remains unclear despite numerous experimental and computational studies. Using extensive (∼50 μs) explicit solvent atomistic simulations and Markov state analysis, we shed new lights on the mechanism of this transition in the apo form of AK. The closed basin of apo AK features an open NMP domain while the LID domain closes and rotates toward it. Therefore, although the computed structural properties of the closed ensemble are consistent with previously reported FRET and PRE measurements, our simulations suggest that NMP closure is likely to follow AMP binding, in contrast to the previous interpretation of FRET and PRE data that the apo state was able to sample the fully closed conformation for "ligand selection". The closed state ensemble is found to be kinetically heterogeneous; multiple pathways and time scales are associated with the open/close transition, providing new clues to the disparate time scales observed in different experiments. Besides interdomain interactions, a novel mutual information analysis identifies specific intradomain interactions that correlate strongly to transition kinetics, supporting observations from previous chimera experiments. While our results underscore the role of internal domain properties in determining the kinetics of open/close transition in apo AK, no evidence is observed for any significant degree of local unfolding during the transition. These observations about AK have general implications to our view of conformational states, transition pathways, and time scales of conformational changes in proteins. The key features and time scales of observed transition pathways are robust and similar from simulations using two popular fixed charge force fields.
Collapse
Affiliation(s)
- Yuqing Zheng
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Qiang Cui
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
53
|
Campitelli P, Guo J, Zhou HX, Ozkan SB. Hinge-Shift Mechanism Modulates Allosteric Regulations in Human Pin1. J Phys Chem B 2018; 122:5623-5629. [PMID: 29361231 DOI: 10.1021/acs.jpcb.7b11971] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery, which is regulation from distant sites, plays a major role in biology. While traditional allostery is described in terms of conformational change upon ligand binding as an underlying principle, it is possible to have allosteric regulations without significant conformational change through modulating the conformational dynamics by altering the local effective elastic modulus of the protein upon ligand binding. Pin1 utilizes this dynamic allostery to regulate its function. It is a modular protein containing a WW domain and a larger peptidyl prolyl isomerase domain (PPIase) that isomerizes phosphoserine/threonine-proline (pS/TP) motifs. The WW domain serves as a docking module, whereas catalysis solely takes place within the PPIase domain. Here, we analyze the change in the dynamic flexibility profile of the PPIase domain upon ligand binding to the WW domain. Substrate binding to the WW domain induces the formation of a new rigid hinge site around the interface of the two domains and loosens the flexibility of a rigid site existing in the Apo form around the catalytic site. This hinge-shift mechanism enhances the dynamic coupling of the catalytic positions with the PPIase domain, where the rest of the domain can cooperatively respond to the local conformational changes around the catalytic site, leading to an increase in catalytic efficiency.
Collapse
Affiliation(s)
- Paul Campitelli
- Department of Physics and Center for Biological Physics , Arizona State University , Tempe , Arizona 85287 , United States
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , China
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
54
|
Biswas M, Lickert B, Stock G. Metadynamics Enhanced Markov Modeling of Protein Dynamics. J Phys Chem B 2018; 122:5508-5514. [PMID: 29338243 DOI: 10.1021/acs.jpcb.7b11800] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.
Collapse
Affiliation(s)
- Mithun Biswas
- Biomolecular Dynamics, Institute of Physics , Albert Ludwigs University , 79104 Freiburg , Germany
| | - Benjamin Lickert
- Biomolecular Dynamics, Institute of Physics , Albert Ludwigs University , 79104 Freiburg , Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics , Albert Ludwigs University , 79104 Freiburg , Germany
| |
Collapse
|
55
|
High-Definition Mapping of Four Spatially Distinct Neutralizing Epitope Clusters on RiVax, a Candidate Ricin Toxin Subunit Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00237-17. [PMID: 29046307 DOI: 10.1128/cvi.00237-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVax's α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the "back side" (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed β-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species.
Collapse
|
56
|
Stucki-Buchli B, Johnson PJM, Bozovic O, Zanobini C, Koziol KL, Hamm P, Gulzar A, Wolf S, Buchenberg S, Stock G. 2D-IR Spectroscopy of an AHA Labeled Photoswitchable PDZ2 Domain. J Phys Chem A 2017; 121:9435-9445. [DOI: 10.1021/acs.jpca.7b09675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brigitte Stucki-Buchli
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Philip J. M. Johnson
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Olga Bozovic
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Claudio Zanobini
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Klemens L. Koziol
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Adnan Gulzar
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Steffen Wolf
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Sebastian Buchenberg
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Gerhard Stock
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
57
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|