51
|
|
52
|
Goode AG, Fields DM, Archer SD, Martínez Martínez J. Physiological responses of Oxyrrhis marina to a diet of virally infected Emiliania huxleyi. PeerJ 2019; 7:e6722. [PMID: 31041150 PMCID: PMC6476294 DOI: 10.7717/peerj.6722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/05/2019] [Indexed: 11/29/2022] Open
Abstract
The coccolithophore Emiliania huxleyi forms some of the largest phytoplankton blooms in the ocean. The rapid demise of these blooms has been linked to viral infections. E. huxleyi abundance, distribution, and nutritional status make them an important food source for the heterotrophic protists which are classified as microzooplankton in marine food webs. In this study we investigated the fate of E. huxleyi (CCMP 374) infected with virus strain EhV-86 in a simple predator-prey interaction. The ingestion rates of Oxyrrhis marina were significantly lower (between 26.9 and 50.4%) when fed virus-infected E. huxleyi cells compared to non-infected cells. Despite the lower ingestion rates, O. marina showed significantly higher growth rates (between 30 and 91.3%) when fed infected E. huxleyi cells, suggesting higher nutritional value and/or greater assimilation of infected E. huxleyi cells. No significant differences were found in O. marina cell volumes or fatty acids profiles. These results show that virally infected E. huxleyi support higher growth rates of single celled heterotrophs and in addition to the “viral shunt” hypothesis, viral infections may also divert more carbon to mesozooplankton grazers.
Collapse
Affiliation(s)
- Andrew G Goode
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America.,School of Marine Sciences, University of Maine, Orono, ME, United States of America
| | - David M Fields
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - Stephen D Archer
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | | |
Collapse
|
53
|
Larsen ML, Wilhelm SW, Lennon JT. Nutrient stoichiometry shapes microbial coevolution. Ecol Lett 2019; 22:1009-1018. [DOI: 10.1111/ele.13252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/10/2018] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Megan L. Larsen
- Department of Biology Indiana University Bloomington IN47405USA
| | - Steven W. Wilhelm
- Department of Microbiology University of Tennessee Knoxville TN37996 USA
| | - Jay T. Lennon
- Department of Biology Indiana University Bloomington IN47405USA
| |
Collapse
|
54
|
Bachy C, Charlesworth CJ, Chan AM, Finke JF, Wong CH, Wei CL, Sudek S, Coleman ML, Suttle CA, Worden AZ. Transcriptional responses of the marine green alga Micromonas pusilla and an infecting prasinovirus under different phosphate conditions. Environ Microbiol 2018; 20:2898-2912. [PMID: 29749714 DOI: 10.1111/1462-2920.14273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate-replete (0.65 ± 0.07 d-1 ) and 10-fold lower (low)-phosphate (0.11 ± 0.04 d-1 ) conditions, and infected by the phycodnavirus MpV-SP1. Expression of 17% of Micromonas genes in uninfected cells differed by >1.5-fold (q < 0.01) between nutrient conditions, with genes for P-metabolism and the uniquely-enriched Sel1-like repeat (SLR) family having higher relative transcript abundances, while phospholipid-synthesis genes were lower in low-P than P-replete. Approximately 70% (P-replete) and 30% (low-P) of cells were lysed 24 h post-infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low-P) hosts. All MpV-SP1 genes were expressed, and our analyses suggest responses to differing host-phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host-phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host-prasinovirus system that differ from other marine algal-virus systems.
Collapse
Affiliation(s)
- Charles Bachy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Christina J Charlesworth
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jan F Finke
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chee-Hong Wong
- Lawrence Berkeley National Laboratory, Sequencing Technology Group, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Chia-Lin Wei
- Lawrence Berkeley National Laboratory, Sequencing Technology Group, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.,Departments of Botany, and Microbiology & Immunology, and Institute of Oceans & Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada
| |
Collapse
|
55
|
Genes for Membrane Transport Proteins: Not So Rare in Viruses. Viruses 2018; 10:v10090456. [PMID: 30149667 PMCID: PMC6163359 DOI: 10.3390/v10090456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Some viruses have genes encoding proteins with membrane transport functions. It is unknown if these types of proteins are rare or are common in viruses. In particular, the evolutionary origin of some of the viral genes is obscure, where other viral proteins have homologs in prokaryotic and eukaryotic organisms. We searched virus genomes in databases looking for transmembrane proteins with possible transport function. This effort led to the detection of 18 different types of putative membrane transport proteins indicating that they are not a rarity in viral genomes. The most abundant proteins are K+ channels. Their predicted structures vary between different viruses. With a few exceptions, the viral proteins differed significantly from homologs in their current hosts. In some cases the data provide evidence for a recent gene transfer between host and virus, but in other cases the evidence indicates a more complex evolutionary history.
Collapse
|
56
|
Yau S, Caravello G, Fonvieille N, Desgranges É, Moreau H, Grimsley N. Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga. Viruses 2018; 10:v10080441. [PMID: 30126244 PMCID: PMC6116238 DOI: 10.3390/v10080441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Prasinoviruses are large dsDNA viruses commonly found in aquatic systems worldwide, where they can infect and lyse unicellular prasinophyte algae such as Ostreococcus. Host susceptibility is virus strain-specific, but resistance of susceptible Ostreococcus tauri strains to a virulent virus arises frequently. In clonal resistant lines that re-grow, viruses are usually present for many generations, and genes clustered on chromosome 19 show physical rearrangements and differential expression. Here, we investigated changes occurring during the first two weeks after inoculation of the prasinovirus OtV5. By serial dilutions of cultures at the time of inoculation, we estimated the frequency of resistant cells arising in virus-challenged O. tauri cultures to be 10-3⁻10-4 of the inoculated population. Re-growing resistant cells were detectable by flow cytometry 3 days post-inoculation (dpi), visible re-greening of cultures occurred by 6 dpi, and karyotypic changes were visually detectable at 8 dpi. Resistant cell lines showed a modified spectrum of host-virus specificities and much lower levels of OtV5 adsorption.
Collapse
Affiliation(s)
- Sheree Yau
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Gaëtan Caravello
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Nadège Fonvieille
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Élodie Desgranges
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Hervé Moreau
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms Laboratory (BIOM), CNRS UMR7232, 66650 Banuyls-sur-Mer, France.
- Sorbonne University, OOB, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
57
|
Coutinho FH, Gregoracci GB, Walter JM, Thompson CC, Thompson FL. Metagenomics Sheds Light on the Ecology of Marine Microbes and Their Viruses. Trends Microbiol 2018; 26:955-965. [PMID: 29937307 DOI: 10.1016/j.tim.2018.05.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 01/31/2023]
Abstract
Advances brought about by omics-based approaches have revolutionized our understanding of the diversity and ecological processes involving marine archaea, bacteria, and their viruses. This broad review discusses recent examples of how genomics, metagenomics, and ecogenomics have been applied to reveal the ecology of these biological entities. Three major topics are covered in this revision: (i) the novel roles of microorganisms in ecosystem processes; (ii) virus-host associations; and (iii) ecological associations of microeukaryotes and other microbes. We also briefly comment on the discovery of novel taxa from marine ecosystems; development of a robust taxonomic framework for prokaryotes; breakthroughs on the diversity and ecology of cyanobacteria; and advances on ecological modelling. We conclude by discussing limitations of the field and suggesting directions for future research.
Collapse
Affiliation(s)
- Felipe Hernandes Coutinho
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández (UMH), Alicante, Spain
| | | | - Juline Marta Walter
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Carneiro Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - CT2, SAGE-COPPE, Federal Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
58
|
Abstract
Viruses infect all kingdoms of marine life from bacteria to whales. Viruses in the world's oceans play important roles in the mortality of phytoplankton, and as drivers of evolution and biogeochemical cycling. They shape host population abundance and distribution and can lead to the termination of algal blooms. As discoveries about this huge reservoir of genetic and biological diversity grow, our understanding of the major influences viruses exert in the global marine environment continues to expand. This chapter discusses the key discoveries that have been made to date about marine viruses and the current direction of this field of research.
Collapse
Affiliation(s)
- Karen D Weynberg
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
59
|
Leger MM, Eme L, Stairs CW, Roger AJ. Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). Bioessays 2018; 40:e1700242. [DOI: 10.1002/bies.201700242] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/06/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-UPF); Pg. Marítim de la Barceloneta, Barcelona ES 08003 Spain
| | - Laura Eme
- Department of Cell and Molecular Biology; Science for Life Laboratory; Uppsala University; Box 596, Uppsala SE 751 25 Sweden
| | - Courtney W. Stairs
- Department of Cell and Molecular Biology; Science for Life Laboratory; Uppsala University; Box 596, Uppsala SE 751 25 Sweden
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics; Department of Biochemistry and Molecular Biology; Dalhousie University; P.O. Box 15000, Halifax CAN B3H 4R2 Nova Scotia Canada
| |
Collapse
|
60
|
Prasinovirus Attack of Ostreococcus Is Furtive by Day but Savage by Night. J Virol 2018; 92:JVI.01703-17. [PMID: 29187539 PMCID: PMC5790953 DOI: 10.1128/jvi.01703-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts.IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments.
Collapse
|