51
|
Henderson RK, Fendler K, Poolman B. Coupling efficiency of secondary active transporters. Curr Opin Biotechnol 2018; 58:62-71. [PMID: 30502621 DOI: 10.1016/j.copbio.2018.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Secondary active transporters are fundamental to a myriad of biological processes. They use the electrochemical gradient of one solute to drive transport of another solute against its concentration gradient. Central to this mechanism is that the transport of one does not occur in the absence of the other. However, like in most of biology, imperfections in the coupling mechanism exist and we argue that these are innocuous and may even be beneficial for the cell. We discuss the energetics and kinetics of alternating-access in secondary transport and focus on the mechanistic aspects of imperfect coupling that give rise to leak pathways. Additionally, inspection of available transporter structures gives valuable insight into coupling mechanics, and we review literature where proteins have been altered to change their coupling efficiency.
Collapse
Affiliation(s)
- Ryan K Henderson
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Klaus Fendler
- Department of Biophysical Chemistry, Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
52
|
Selvam B, Mittal S, Shukla D. Free Energy Landscape of the Complete Transport Cycle in a Key Bacterial Transporter. ACS CENTRAL SCIENCE 2018; 4:1146-1154. [PMID: 30276247 PMCID: PMC6161048 DOI: 10.1021/acscentsci.8b00330] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 05/21/2023]
Abstract
PepTSo is a proton-coupled bacterial symporter, from the major facilitator superfamily (MFS), which transports di-/tripeptide molecules. The recently obtained crystal structure of PepTSo provides an unprecedented opportunity to gain an understanding of functional insights of the substrate transport mechanism. Binding of the proton and peptide molecule induces conformational changes into occluded (OC) and outward-facing (OF) states, which we are able to characterize using molecular dynamics (MD) simulations. The structural knowledge of the OC and OF state is important to fully understand the major energy barrier associated with the transport cycle. In order to gain functional insight into the interstate dynamics, we performed extensive all atom MD simulations. The Markov state model was constructed to identify the free energy barriers between the states, and kinetic information on intermediate pathways was obtained using the transition pathway theory (TPT). TPT shows that the OF state is obtained by the movement of TM1 and TM7 at the extracellular side approximately 12-16 Å away from each other, and the inward movement of TM4 and TM10 at the intracellular halves to 3-4 Å characterizes the OC state. Helix distance distributions obtained from MD simulations were compared with experimental double electron-electron resonance spectroscopy and were found to be in excellent agreement with previous studies. We also predicted the optimal positions for placement of methane thiosulfonate spin label probes to capture the slowest protein dynamics. Our finding sheds light on the conformational cycle of this key membrane transporter and the functional relationships between the multiple intermediate states.
Collapse
Affiliation(s)
- Balaji Selvam
- Department of Chemical and Biomolecular Engineering, Center for Biophysics and Quantitative
Biology, and Department
of Plant Biology, University of Illinois
at Urbana-Champaign, Urbana, Illinois, United States
| | - Shriyaa Mittal
- Department of Chemical and Biomolecular Engineering, Center for Biophysics and Quantitative
Biology, and Department
of Plant Biology, University of Illinois
at Urbana-Champaign, Urbana, Illinois, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, Center for Biophysics and Quantitative
Biology, and Department
of Plant Biology, University of Illinois
at Urbana-Champaign, Urbana, Illinois, United States
- E-mail:
| |
Collapse
|
53
|
Martinez Molledo M, Quistgaard EM, Löw C. Tripeptide binding in a proton-dependent oligopeptide transporter. FEBS Lett 2018; 592:3239-3247. [PMID: 30194725 PMCID: PMC6221056 DOI: 10.1002/1873-3468.13246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023]
Abstract
Proton-dependent oligopeptide transporters (POTs) are important for the uptake of di-/tripeptides in many organisms and for drug transport in humans. The binding mode of dipeptides has been well described. However, it is still debated how tripeptides are recognized. Here, we show that tripeptides of the sequence Phe-Ala-Xxx bind with similar affinities as dipeptides to the POT transporter from Streptococcus thermophilus (PepTS t ). We furthermore determined a 2.3-Å structure of PepTS t in complex with Phe-Ala-Gln. The phenylalanine and alanine residues of the peptide adopt the same positions as previously observed for the Phe-Ala dipeptide, while the glutamine side chain extends into a hitherto uncharacterized pocket. This pocket is adaptable in size and can likely accommodate a wide variety of peptide side chains.
Collapse
Affiliation(s)
- Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Esben M Quistgaard
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
54
|
Nagano M, Takumi T, Suzuki H. Critical roles of serotonin-oxytocin interaction during the neonatal period in social behavior in 15q dup mice with autistic traits. Sci Rep 2018; 8:13675. [PMID: 30209293 PMCID: PMC6135829 DOI: 10.1038/s41598-018-32042-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/29/2018] [Indexed: 12/01/2022] Open
Abstract
Disturbance of neurotransmitters and neuromodulators is thought to underlie the pathophysiology of autism spectrum disorder (ASD). Studies of 15q dup mouse models of ASD with human 15q11–13 duplication have revealed that restoring serotonin (5-HT) levels can partially reverse ASD-related symptoms in adults. However, it remains unclear how serotonin contributes to the behavioral symptoms of ASD. In contrast, oxytocin (OXT) has been found to involve social and affiliative behaviors. In this study, we examined whether serotonin-OXT interaction during the early postnatal period plays a critical role in the restoration of social abnormality in 15q dup mice. OXT or the 5-HT1A receptor agonist 8OH-DPAT treatment from postnatal day 7 (PD7) to PD21 ameliorated social abnormality in the three-chamber social interaction test in adult 15q dup mice. The effect of 8OH-DPAT was inhibited by blockade of OXT receptors in 15q dup mice. Thus, serotonin-OXT interaction via 5-HT1A receptors plays a critical role in the normal development of social behavior in 15q dup mice. Therefore, targeting serotonin-OXT interaction may provide a novel therapeutic strategy for treatment of ASD.
Collapse
Affiliation(s)
- Masatoshi Nagano
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
55
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
56
|
Minhas GS, Bawdon D, Herman R, Rudden M, Stone AP, James AG, Thomas GH, Newstead S. Structural basis of malodour precursor transport in the human axilla. eLife 2018; 7:e34995. [PMID: 29966586 PMCID: PMC6059767 DOI: 10.7554/elife.34995] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023] Open
Abstract
Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.
Collapse
Affiliation(s)
- Gurdeep S Minhas
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Daniel Bawdon
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Reyme Herman
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Andrew P Stone
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Gavin H Thomas
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Simon Newstead
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
57
|
Longo A, Miles NW, Dickstein R. Genome Mining of Plant NPFs Reveals Varying Conservation of Signature Motifs Associated With the Mechanism of Transport. FRONTIERS IN PLANT SCIENCE 2018; 9:1668. [PMID: 30564251 PMCID: PMC6288477 DOI: 10.3389/fpls.2018.01668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/26/2018] [Indexed: 05/04/2023]
Abstract
Nitrogen is essential for all living species and may be taken up from the environment in different forms like nitrate or peptides. In plants, members of a transporter family named NPFs transport nitrate and peptides across biological membranes. NPFs are phylogenetically related to a family of peptide transporters (PTRs) or proton-coupled oligopeptide transporters (POTs) that are evolutionarily conserved in all organisms except in Archaea. POTs are present in low numbers in bacteria, algae and animals. NPFs have expanded in plants and evolved to transport a wide range of substrates including phytohormones and glucosinolates. Functional studies have shown that most NPFs, like POTs, operate as symporters with simultaneous inwardly directed movement of protons. Here we focus on four structural features of NPFs/POTs/PTRs that have been shown by structural and functional studies to be essential to proton-coupled symport transport. The first two features are implicated in proton binding and transport: a conserved motif named ExxER/K, located in the first transmembrane helix (TMH1) and a D/E residue in TMH7 that has been observed in some bacterial and algal transporters. The third and fourth features are two inter-helical salt bridges between residues on TMH1 and TMH7 or TMH4 and TMH10. To understand if the mechanism of transport is conserved in NPFs with the expansion to novel substrates, we collected NPFs sequences from 42 plant genomes. Sequence alignment revealed that the ExxER/K motif is not strictly conserved and its conservation level is different in the NPF subfamilies. The proton binding site on TMH7 is missing in all NPFs with the exception of two NPFs from moss. The two moss NPFs also have a positively charged amino acid on TMH1 that can form the salt bridge with the TMH7 negative residue. None of the other NPFs we examined harbor residues that can form the TMH1-TMH7 salt bridge. In contrast, the amino acids required to form the TMH4-TMH10 salt bridge are highly conserved in NPFs, with some exceptions. These results support the need for further biochemical and structural studies of individual NPFs for a better understanding of the transport mechanism in this family of transporters.
Collapse
Affiliation(s)
- Antonella Longo
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
- *Correspondence: Antonella Longo,
| | - Nicholas W. Miles
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Rebecca Dickstein
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
58
|
Wen Z, Kaiser BN. Unraveling the Functional Role of NPF6 Transporters. FRONTIERS IN PLANT SCIENCE 2018; 9:973. [PMID: 30042774 PMCID: PMC6048437 DOI: 10.3389/fpls.2018.00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/15/2018] [Indexed: 05/20/2023]
Abstract
The nitrate transporter 1/peptide transporter (NPF) family represents a growing list of putative nitrate permeable transport proteins expressed within multiple cell types and tissues across a diverse range of plant species. Their designation as nitrate permeable and/or selective transporters is slowly being defined as more genes are characterized and their functional activities tested both in planta and in vitro. The most notable of the NPF family has been the Arabidopsis thaliana homolog, AtNPF6.3, previously known as AtNRT1.1 or CHL1. AtNPF6.3 has traditionally been characterized as a dual-affinity nitrate transporter contributing to root nitrate uptake in Arabidopsis. It has also been identified as a nitrate sensor which regulates the expression of high-affinity nitrate transport proteins NRT2s and lateral root development as a part of the primary nitrate response in plants. The sensor function of AtNPF6.3 has also been attributed to its auxin transport activity. Other homologs of AtNPF6.3 are now being described highlighting the variability in their functional capabilities (alternative substrates and kinetics) linking to structural aspects of the proteins. This review focusses on NPF6.3-like transport proteins and the knowledge that has been gained since their initial discovery over two decades ago. The review will investigate from a structural point of view how NPF6.3-like proteins may transport nitrate as well as other ions and what can be learned from structural uniqueness about predicted activities in plants.
Collapse
Affiliation(s)
- Zhengyu Wen
- *Correspondence: Zhengyu Wen, Brent N. Kaiser,
| | | |
Collapse
|