51
|
Bakowski MA, Shiroodi RK, Liu R, Olejniczak J, Yang B, Gagaring K, Guo H, White PM, Chappell L, Debec A, Landmann F, Dubben B, Lenz F, Struever D, Ehrens A, Frohberger SJ, Sjoberg H, Pionnier N, Murphy E, Archer J, Steven A, Chunda VC, Fombad FF, Chounna PW, Njouendou AJ, Metuge HM, Ndzeshang BL, Gandjui NV, Akumtoh DN, Kwenti TDB, Woods AK, Joseph SB, Hull MV, Xiong W, Kuhen KL, Taylor MJ, Wanji S, Turner JD, Hübner MP, Hoerauf A, Chatterjee AK, Roland J, Tremblay MS, Schultz PG, Sullivan W, Chu XJ, Petrassi HM, McNamara CW. Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections. Sci Transl Med 2019; 11:11/491/eaav3523. [DOI: 10.1126/scitranslmed.aav3523] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targetsWolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination ofWolbachiain the in vivoLitomosoides sigmodontisfilarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantifyWolbachiaelimination inBrugia pahangifilarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed inL. sigmodontis,Brugia malayi, andOnchocerca ochengiin vivo preclinical models of filarial disease and in vitro selectivity againstLoa loa(a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.
Collapse
|
52
|
Clare RH, Clark R, Bardelle C, Harper P, Collier M, Johnston KL, Plant H, Plant D, McCall E, Slatko BE, Cantin L, Wu B, Ford L, Murray D, Rich K, Wigglesworth M, Taylor MJ, Ward SA. Development of a High-Throughput Cytometric Screen to Identify Anti- Wolbachia Compounds: The Power of Public-Private Partnership. SLAS DISCOVERY 2019; 24:537-547. [PMID: 30958712 PMCID: PMC6537165 DOI: 10.1177/2472555219838341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Anti-Wolbachia (A·WOL) consortium at the Liverpool School of
Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening
(HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected
tropical diseases (NTDs). The A·WOL consortium aims to identify novel
macrofilaricidal drugs targeting the essential bacterial symbiont
(Wolbachia) of the filarial nematodes causing
onchocerciasis and lymphatic filariasis. Working in collaboration, we have
validated a robust high-throughput assay capable of identifying compounds that
selectively kill Wolbachia over the host insect cell. We
describe the development and validation process of this complex, phenotypic
high-throughput assay and provide an overview of the primary outputs from
screening the AstraZeneca library of 1.3 million compounds.
Collapse
Affiliation(s)
- Rachel H Clare
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Roger Clark
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Catherine Bardelle
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Paul Harper
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Matthew Collier
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Kelly L Johnston
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Helen Plant
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Darren Plant
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Eileen McCall
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Barton E Slatko
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Lindsey Cantin
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Bo Wu
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Louise Ford
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - David Murray
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Kirsty Rich
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Mark Wigglesworth
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Mark J Taylor
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Stephen A Ward
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
53
|
Jacobs RT, Lunde CS, Freund YR, Hernandez V, Li X, Xia Y, Carter DS, Berry PW, Halladay J, Rock F, Stefanakis R, Easom E, Plattner JJ, Ford L, Johnston KL, Cook DAN, Clare R, Cassidy A, Myhill L, Tyrer H, Gamble J, Guimaraes AF, Steven A, Lenz F, Ehrens A, Frohberger SJ, Koschel M, Hoerauf A, Hübner MP, McNamara CW, Bakowski MA, Turner JD, Taylor MJ, Ward SA. Boron-Pleuromutilins as Anti- Wolbachia Agents with Potential for Treatment of Onchocerciasis and Lymphatic Filariasis. J Med Chem 2019; 62:2521-2540. [PMID: 30730745 PMCID: PMC6421521 DOI: 10.1021/acs.jmedchem.8b01854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/07/2023]
Abstract
A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti- Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti- Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.
Collapse
Affiliation(s)
- Robert T. Jacobs
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Christopher S. Lunde
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Yvonne R. Freund
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Vincent Hernandez
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Xianfeng Li
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Yi Xia
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - David S. Carter
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Pamela W. Berry
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Jason Halladay
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Fernando Rock
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Rianna Stefanakis
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Eric Easom
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Jacob J. Plattner
- Anacor
Pharmaceuticals, 1020
East Meadow Circle, Palo Alto, California 94303, United States
| | - Louise Ford
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Kelly L. Johnston
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Darren A. N. Cook
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Rachel Clare
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Andrew Cassidy
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Laura Myhill
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Hayley Tyrer
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Joanne Gamble
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Ana F. Guimaraes
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Andrew Steven
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Franziska Lenz
- Institute
for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Alexandra Ehrens
- Institute
for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Stefan J. Frohberger
- Institute
for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute
for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute
for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Marc P. Hübner
- Institute
for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Case W. McNamara
- Calibr, 11119 North
Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Malina A. Bakowski
- Calibr, 11119 North
Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Joseph D. Turner
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Mark J. Taylor
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| | - Stephen A. Ward
- Centre
for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K.
| |
Collapse
|