51
|
Peineau T, Belleudy S, Pietropaolo S, Bouleau Y, Dulon D. Synaptic Release Potentiation at Aging Auditory Ribbon Synapses. Front Aging Neurosci 2021; 13:756449. [PMID: 34733152 PMCID: PMC8558230 DOI: 10.3389/fnagi.2021.756449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hidden hearing loss is often described as a cochlear synaptopathy that results from a progressive degeneration of the inner hair cell (IHC) ribbon synapses. The functional changes occurring at these synapses during aging are not fully understood. Here, we characterized this aging process in IHCs of C57BL/6J mice, a strain which is known to carry a cadherin-23 mutation and experiences early hearing loss with age. These mice, while displaying a large increase in auditory brainstem thresholds due to 50% loss of IHC synaptic ribbons at middle age (postnatal day 365), paradoxically showed enhanced acoustic startle reflex suggesting a hyperacusis-like response. The auditory defect was associated with a large shrinkage of the IHCs' cell body and a drastic enlargement of their remaining presynaptic ribbons which were facing enlarged postsynaptic AMPAR clusters. Presynaptic Ca2+ microdomains and the capacity of IHCs to sustain high rates of exocytosis were largely increased, while on the contrary the expression of the fast-repolarizing BK channels, known to negatively control transmitter release, was decreased. This age-related synaptic plasticity in IHCs suggested a functional potentiation of synaptic transmission at the surviving synapses, a process that could partially compensate the decrease in synapse number and underlie hyperacusis.
Collapse
Affiliation(s)
- Thibault Peineau
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| | - Séverin Belleudy
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France
| | | | - Yohan Bouleau
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| | - Didier Dulon
- Neurophysiologie de la Synapse Auditive, INSERM UMRS 1120, Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France.,Institut de l'Audition, Centre Institut Pasteur/Inserm, Paris, France
| |
Collapse
|
52
|
Guo L, Cao W, Niu Y, He S, Chai R, Yang J. Autophagy Regulates the Survival of Hair Cells and Spiral Ganglion Neurons in Cases of Noise, Ototoxic Drug, and Age-Induced Sensorineural Hearing Loss. Front Cell Neurosci 2021; 15:760422. [PMID: 34720884 PMCID: PMC8548757 DOI: 10.3389/fncel.2021.760422] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) are the core components of the auditory system. However, they are vulnerable to genetic defects, noise exposure, ototoxic drugs and aging, and loss or damage of HCs and SGNs results in permanent hearing loss due to their limited capacity for spontaneous regeneration in mammals. Many efforts have been made to combat hearing loss including cochlear implants, HC regeneration, gene therapy, and antioxidant drugs. Here we review the role of autophagy in sensorineural hearing loss and the potential targets related to autophagy for the treatment of hearing loss.
Collapse
Affiliation(s)
- Lingna Guo
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuguang Niu
- Department of Ambulatory Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Jianming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
53
|
Sarrió D, Martínez-Val J, Molina-Crespo Á, Sánchez L, Moreno-Bueno G. The multifaceted roles of gasdermins in cancer biology and oncologic therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188635. [PMID: 34656686 DOI: 10.1016/j.bbcan.2021.188635] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
The involvement of the Gasdermin (GSDM) protein family in cancer and other pathologies is one of the hottest topics in biomedical research. There are six GSDMs in humans (GSDMA, B, C, D, GSDME/DFNA5 and PJVK/DFNB59) and, except PJVK, they can trigger cell death mostly by pyroptosis (a form of lytic and pro-inflammatory cell death) but also other mechanisms. The exact role of GSDMs in cancer is intricate, since depending on the biological context, these proteins have diverse cell-death dependent and independent functions, exhibit either pro-tumor or anti-tumor functions, and promote either sensitization or resistance to oncologic treatments. In this review we provide a comprehensive overview on the multifaceted roles of the GSDMs in cancer, and we critically discuss the possibilities of exploiting GSDM functions as determinants of anti-cancer treatment and as novel therapeutic targets, with special emphasis on innovative GSDM-directed nano-therapies. Finally, we discuss the issues to be resolved before GSDM-mediated oncologic therapies became a reality at the clinical level.
Collapse
Affiliation(s)
- David Sarrió
- Biochemistry Department, UAM, & IIBm "Alberto Sols" CSIC-UAM, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain.; Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain..
| | - Jeannette Martínez-Val
- Zoology, Genetics and Physical Anthropology Department, Santiago de Compostela University, Avda/ Alfonso X O Sabio s/n, 27002 Lugo, Spain
| | - Ángela Molina-Crespo
- Biochemistry Department, UAM, & IIBm "Alberto Sols" CSIC-UAM, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain.; Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Laura Sánchez
- Zoology, Genetics and Physical Anthropology Department, Santiago de Compostela University, Avda/ Alfonso X O Sabio s/n, 27002 Lugo, Spain
| | - Gema Moreno-Bueno
- Biochemistry Department, UAM, & IIBm "Alberto Sols" CSIC-UAM, c/ Arzobispo Morcillo 4, 28029 Madrid, Spain.; Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain.; MD Anderson Cancer Center Foundation, c/ Arturo Soria 270, 28033 Madrid, Spain..
| |
Collapse
|
54
|
Farooqi ZUR, Ahmad I, Zeeshan N, Ilić P, Imran M, Saeed MF. Urban noise assessment and its nonauditory health effects on the residents of Chiniot and Jhang, Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54909-54921. [PMID: 34018118 DOI: 10.1007/s11356-021-14340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Elevated noise level is an emerging global problem. Therefore, the present work is conducted that can improve, increase, and integrate the already known issue in literature with new information coming from an emerging country such as Pakistan. The objectives of this study were (i) to assess the urban noise levels and traffic density of Chiniot and Jhang and (ii) to determine nonauditory health effects of noise levels on the residents of both cities. Noise levels were examined from 181 locations (103 from Jhang and 78 from Chiniot) and categorized into hospitals, educational, religious and recreational, residential, industrial areas, and traffic intersections. A-weighted noise level measurements were taken using an integrated sound level meter which recorded short-term road traffic noise continuously for 15 min at each location (LAeq15). The urban noise data showed 82% of the sites in Jhang (LAmax = 103 dB) and 95% in Chiniot (LAmax = 120 dB) exceeded the noise limits set by the National Environment Quality Standard of Pakistan (NEQS-Pak) and World Health Organization (WHO). Moreover, higher intensity of noise levels (LAeq15 ≥ 100 dB) was recorded in Chiniot (17 sites) than in Jhang (1 site). Regression analysis showed a relatively strong relationship of traffic density with noise at Chiniot (R2 = 0.48) compared to Jhang (R2 = 0.31). However, spatial variability of noise with traffic density was observed in both cities. Survey study revealed that all the respondents in Jhang and Chiniot suffered from many noise-related health problems such as annoyance (53 and 51%), depression (45 and 47%), dizziness (61 and 65%), headache (67 and 64%), hypertension (71 and 56%), hearing loss (53 and 56%), physiological stress (65 and 65%), sleeplessness (81 and 84%), and tinnitus (70 and 62%) due to noise, respectively. We conclude that noise levels are higher in Chiniot primarily due to high road traffic and secondarily due to high population density. It is recommended that vehicle maintenance and family and urban planning could be effective measures to reduce urban noise levels.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Nukshab Zeeshan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Predrag Ilić
- PSRI Institute for Protection and Ecology of the Republic of Srpska, Banja Luka, Vidovdanska 43, 78000, Banja Luka, Bosnia and Herzegovina
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| |
Collapse
|
55
|
顾 晓, 戴 艳, 佘 万. [Research progress on antioxidant therapy and prevention in noise- induced hearing loss]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:850-853. [PMID: 34628844 PMCID: PMC10127829 DOI: 10.13201/j.issn.2096-7993.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 11/12/2022]
Abstract
Noise- induced hearing loss usually refers to auditory impairment which is caused by long-term exposure to noise. The occupational noise problem is serious and urgently needs to be addressed, along with the lack of effective treatments. Recent studies have shown that the imbalance between oxidation and antioxidation is the source of the disease. To correct the redox reaction imbalance and to maintain an equilibrium of the redox reaction have always been the research focus of the prevention and treatment in noise induced hearing loss. This article reviews antioxidant therapy and prevention in noise induced hearing loss, including antioxidants, antioxidant enzymes and herbal medicine.
Collapse
Affiliation(s)
- 晓娜 顾
- 南京中医药大学中西医结合鼓楼临床医学院(南京,210008)
- 南京中医药大学附属中西医结合医院耳鼻咽喉科
| | | | - 万东 佘
- 南京中医药大学中西医结合鼓楼临床医学院(南京,210008)
- 南京大学医学院附属鼓楼医院耳鼻咽喉头颈外科
| |
Collapse
|
56
|
Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta Pharm Sin B 2021; 11:2768-2782. [PMID: 34589396 PMCID: PMC8463274 DOI: 10.1016/j.apsb.2021.02.006] [Citation(s) in RCA: 398] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis is the process of inflammatory cell death. The primary function of pyroptosis is to induce strong inflammatory responses that defend the host against microbe infection. Excessive pyroptosis, however, leads to several inflammatory diseases, including sepsis and autoimmune disorders. Pyroptosis can be canonical or noncanonical. Upon microbe infection, the canonical pathway responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), while the noncanonical pathway responds to intracellular lipopolysaccharides (LPS) of Gram-negative bacteria. The last step of pyroptosis requires the cleavage of gasdermin D (GsdmD) at D275 (numbering after human GSDMD) into N- and C-termini by caspase 1 in the canonical pathway and caspase 4/5/11 (caspase 4/5 in humans, caspase 11 in mice) in the noncanonical pathway. Upon cleavage, the N-terminus of GsdmD (GsdmD-N) forms a transmembrane pore that releases cytokines such as IL-1β and IL-18 and disturbs the regulation of ions and water, eventually resulting in strong inflammation and cell death. Since GsdmD is the effector of pyroptosis, promising inhibitors of GsdmD have been developed for inflammatory diseases. This review will focus on the roles of GsdmD during pyroptosis and in diseases.
Collapse
Key Words
- 7DG, 7-desacetoxy-6,7-dehydrogedunin
- ADRA2B, α-2B adrenergic receptor
- AIM, absent in melanoma
- ASC, associated speck-like protein
- Ac-FLTD-CMK, acetyl-FLTD-chloromethylketone
- BMDM, bone marrow-derived macrophages
- CARD, caspase activation
- CD, Crohn’s disease
- CTM, Chinese traditional medicine
- CTSG, cathepsin G
- Caspase
- DAMP, damage-associated molecular pattern
- DFNA5, deafness autosomal dominant 5
- DFNB59, deafness autosomal recessive type 59
- DKD, diabetic kidney disease
- DMF, dimethyl fumarate
- Damage-associated molecular patterns (DAMPs)
- ELANE, neutrophil expressed elastase
- ESCRT, endosomal sorting complexes required for transport
- FADD, FAS-associated death domain
- FDA, U.S. Food and Drug Administration
- FIIND, function to find domain
- FMF, familial Mediterranean fever
- GI, gastrointestinal
- GPX, glutathione peroxidase
- Gasdermin
- GsdmA/B/C/D/E, gasdermin A/B/C/D/E
- HAMP, homeostasis altering molecular pattern
- HIN, hematopoietic expression, interferon-inducible nature, and nuclear localization
- HIV, human immunodeficiency virus
- HMGB1, high mobility group protein B1
- IBD, inflammatory bowel disease
- IFN, interferon
- ITPR1, inositol 1,4,5-trisphosphate receptor type 1
- Inflammasome
- Inflammation
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAP3K7, mitogen-activated protein kinase kinase kinase 7
- MCC950, N-[[(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)amino]carbonyl]-4-(1-hydroxy-1-methylethyl)-2-furansulfonamide
- NAIP, NLR family apoptosis inhibitory protein
- NBD, nucleotide-binding domain
- NEK7, NIMA-related kinase 7
- NET, neutrophil extracellular trap
- NIK, NF-κB inducing kinase
- NLR, NOD-like receptor
- NLRP, NLR family pyrin domain containing
- NSAID, non-steroidal anti-inflammatory drug
- NSCLC, non-small cell lung cancer
- NSP, neutrophil specific serine protease
- PAMP, pathogen-associated molecular pattern
- PKA, protein kinase A
- PKN1/2, protein kinase1/2
- PKR, protein kinase-R
- PRR, pattern recognition receptors
- PYD, pyrin domain
- Pathogen-associated molecular patterns (PAMPs)
- Pyroptosis
- ROS, reactive oxygen species
- STING, stimulator of interferon genes
- Sepsis
- TLR, Toll-like receptor
- UC, ulcerative colitis
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP–AMP synthase
- mtDNA, mitochondrial DNA
Collapse
Affiliation(s)
- Brandon E. Burdette
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Ashley N. Esparza
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Hua Zhu
- Department of Surgery, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shanzhi Wang
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| |
Collapse
|
57
|
Du T, Gao J, Li P, Wang Y, Qi Q, Liu X, Li J, Wang C, Du L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med 2021; 11:e492. [PMID: 34459122 PMCID: PMC8329701 DOI: 10.1002/ctm2.492] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
In response to a wide range of stimulations, host cells activate pyroptosis, a kind of inflammatory cell death which is provoked by the cytosolic sensing of danger signals and pathogen infection. In manipulating the cleavage of gasdermins (GSDMs), researchers have found that GSDM proteins serve as the real executors and the deterministic players in fate decisions of pyroptotic cells. Whether inflammatory characteristics induced by pyroptosis could cause damage the host or improve immune activity is largely dependent on the context, timing, and response degree. Here, we systematically review current points involved in regulatory mechanisms and the multidimensional roles of pyroptosis in several metabolic diseases and the tumor microenvironment. Targeting pyroptosis may reveal potential therapeutic avenues.
Collapse
Affiliation(s)
- Tiantian Du
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Jie Gao
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Peilong Li
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yunshan Wang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Qiuchen Qi
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Xiaoyan Liu
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Juan Li
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering and Technology Research Center for Tumor Marker DetectionJinanShandongChina
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandongChina
| | - Lutao Du
- Department of Clinical LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Engineering and Technology Research Center for Tumor Marker DetectionJinanShandongChina
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandongChina
| |
Collapse
|
58
|
He A, Dean JM, Lodhi IJ. Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol 2021; 31:656-670. [PMID: 33674166 PMCID: PMC8566112 DOI: 10.1016/j.tcb.2021.02.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Peroxisomes are involved in multiple metabolic processes, including fatty acid oxidation, ether lipid synthesis, and reactive oxygen species (ROS) metabolism. Recent studies suggest that peroxisomes are critical mediators of cellular responses to various forms of stress, including oxidative stress, hypoxia, starvation, cold exposure, and noise. As dynamic organelles, peroxisomes can modulate their proliferation, morphology, and movement within cells, and engage in crosstalk with other organelles in response to external cues. Although peroxisome-derived hydrogen peroxide has a key role in cellular signaling related to stress, emerging studies suggest that other products of peroxisomal metabolism, such as acetyl-CoA and ether lipids, are also important for metabolic adaptation to stress. Here, we review molecular mechanisms through which peroxisomes regulate metabolic and environmental stress.
Collapse
Affiliation(s)
- Anyuan He
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - John M Dean
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
59
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
60
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
61
|
Kuc-Ciepluch D, Ciepluch K, Arabski M. Gasdermin family proteins as a permeabilization factor
of cell membrane in pyroptosis process. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The type of cell death, i.e. apoptosis, autophagy, necrosis or pyroptosis, depends on the inducing
factor and the phase of the cell cycle. The main role in immunological response to microorganisms
is played by a process called pyroptosis. Pyroptosis induces various types of inflammatory
factors in response to molecular patterns associated with pathogens, e.g., bacterial lipopolysaccharide
in the canonical or non-canonical pathway depending on the type of caspases involved.
In pyroptosis, the gasdermin D protein belonging to the gasdermin protein family (A, B, C, D, E
and DFNB59) plays an important role, which is characterized by specific tissue gene expression
mainly in epithelial cells, skin and the digestive system and is responsible for regulating the proliferation
and differentiation of cells and is responsible for inhibiting or developing cancers in
various organs. The GSDM family is responsible for the formation of pores in the cell membrane,
enabling the secretion of proinflammatory cytokines (IL-1β and IL-18) involved in initiating inflammatory
response pathways by recruiting and activating immune cells at the site of infection.
The gasdermin D protein plays an essential role in the non-canonical pyroptosis process, whose
N-terminal forming pores in the cell membrane leads to edema, osmotic lysis and, consequently,
to the death of the infected cell.
Collapse
Affiliation(s)
- Dorota Kuc-Ciepluch
- Zakład Biologii Medycznej, Instytut Biologii, Uniwersytet Jana Kochanowskiego w Kielcach
| | - Karol Ciepluch
- Zakład Biologii Medycznej, Instytut Biologii, Uniwersytet Jana Kochanowskiego w Kielcach
| | - Michał Arabski
- Zakład Biologii Medycznej, Instytut Biologii, Uniwersytet Jana Kochanowskiego w Kielcach
| |
Collapse
|
62
|
Mechanisms and Functions of Pexophagy in Mammalian Cells. Cells 2021; 10:cells10051094. [PMID: 34063724 PMCID: PMC8147788 DOI: 10.3390/cells10051094] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022] Open
Abstract
Peroxisomes play essential roles in diverse cellular metabolism functions, and their dynamic homeostasis is maintained through the coordination of peroxisome biogenesis and turnover. Pexophagy, selective autophagic degradation of peroxisomes, is a major mechanism for removing damaged and/or superfluous peroxisomes. Dysregulation of pexophagy impairs the physiological functions of peroxisomes and contributes to the progression of many human diseases. However, the mechanisms and functions of pexophagy in mammalian cells remain largely unknown compared to those in yeast. This review focuses on mammalian pexophagy and aims to advance the understanding of the roles of pexophagy in human health and diseases. Increasing evidence shows that ubiquitination can serve as a signal for pexophagy, and ubiquitin-binding receptors, substrates, and E3 ligases/deubiquitinases involved in pexophagy have been described. Alternatively, pexophagy can be achieved in a ubiquitin-independent manner. We discuss the mechanisms of these ubiquitin-dependent and ubiquitin-independent pexophagy pathways and summarize several inducible conditions currently used to study pexophagy. We highlight several roles of pexophagy in human health and how its dysregulation may contribute to diseases.
Collapse
|
63
|
Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 2021; 20:384-405. [PMID: 33692549 PMCID: PMC7944254 DOI: 10.1038/s41573-021-00154-z] [Citation(s) in RCA: 476] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/09/2022]
Abstract
Gasdermins were recently identified as the mediators of pyroptosis - inflammatory cell death triggered by cytosolic sensing of invasive infection and danger signals. Upon activation, gasdermins form cell membrane pores, which release pro-inflammatory cytokines and alarmins and damage the integrity of the cell membrane. Roles for gasdermins in autoimmune and inflammatory diseases, infectious diseases, deafness and cancer are emerging, revealing potential novel therapeutic avenues. Here, we review current knowledge of the family of gasdermins, focusing on their mechanisms of action and roles in normal physiology and disease. Efforts to develop drugs to modulate gasdermin activity to reduce inflammation or activate more potent immune responses are highlighted.
Collapse
Affiliation(s)
- Xing Liu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Shiyu Xia
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
64
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1318] [Impact Index Per Article: 329.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
65
|
De Schutter E, Roelandt R, Riquet FB, Van Camp G, Wullaert A, Vandenabeele P. Punching Holes in Cellular Membranes: Biology and Evolution of Gasdermins. Trends Cell Biol 2021; 31:500-513. [PMID: 33771452 DOI: 10.1016/j.tcb.2021.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The gasdermin (GSDM) family has evolved as six gene clusters (GSDMA-E and Pejvakin, PJVK), and GSDM proteins are characterized by a unique N-terminal domain (N-GSDM). With the exception of PJVK, the N-GSDM domain is capable of executing plasma membrane permeabilization. Depending on the cell death modality, several protease- and kinase-dependent mechanisms directly regulate the activity of GSDME and GSDMD, the two most widely expressed and best-studied GSDMs. We provide an overview of all GSDMs in terms of biological function, tissue expression, activation, regulation, and structure. In-depth phylogenetic analysis reveals that GSDM genes show many gene duplications and deletions, suggesting that strong evolutionary forces and a unique position of the PJVK gene are associated with the occurrence of complex inner-ear development in vertebrates.
Collapse
Affiliation(s)
- Elke De Schutter
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Ria Roelandt
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Franck B Riquet
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Université de Lille, Lille, France
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Antwerp, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Antwerp, Belgium
| | - Andy Wullaert
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Methusalem program Cell Death Activity Regulation in Inflammation and Cancer (CEDAR-IC), Ghent University, Ghent, Belgium.
| |
Collapse
|
66
|
Molecular Mechanisms and Biological Functions of Autophagy for Genetics of Hearing Impairment. Genes (Basel) 2020; 11:genes11111331. [PMID: 33187328 PMCID: PMC7697636 DOI: 10.3390/genes11111331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
The etiology of hearing impairment following cochlear damage can be caused by many factors, including congenital or acquired onset, ototoxic drugs, noise exposure, and aging. Regardless of the many different etiologies, a common pathologic change is auditory cell death. It may be difficult to explain hearing impairment only from the aspect of cell death including apoptosis, necrosis, or necroptosis because the level of hearing loss varies widely. Therefore, we focused on autophagy as an intracellular phenomenon functionally competing with cell death. Autophagy is a dynamic lysosomal degradation and recycling system in the eukaryotic cell, mandatory for controlling the balance between cell survival and cell death induced by cellular stress, and maintaining homeostasis of postmitotic cells, including hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear. Autophagy is considered a candidate for the auditory cell fate decision factor, whereas autophagy deficiency could be one of major causes of hearing impairment. In this paper, we review the molecular mechanisms and biologic functions of autophagy in the auditory system and discuss the latest research concerning autophagy-related genes and sensorineural hearing loss to gain insight into the role of autophagic mechanisms in inner-ear disorders.
Collapse
|
67
|
Tang L, Lu C, Zheng G, Burgering BM. Emerging insights on the role of gasdermins in infection and inflammatory diseases. Clin Transl Immunology 2020; 9:e1186. [PMID: 33033617 PMCID: PMC7533414 DOI: 10.1002/cti2.1186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
The gasdermins, family of pore-forming proteins, are emerging key regulators of infection, autoinflammation and antitumor immunity. Multiple studies have recently characterised their crucial roles in driving pyroptosis, a lytic pro-inflammatory type of cell death. Additionally, gasdermins also act as key effectors of NETosis, secondary necrosis and apoptosis. In this review, we will address current understanding of the mechanisms of gasdermin activation and further describe the protective and detrimental roles of gasdermins in host defence and autoinflammatory diseases. These data suggest that gasdermins play a prominent role in innate immunity and autoinflammatory disorders, thereby providing potential new therapeutic avenues for the treatment of infection and autoimmune disease.
Collapse
Affiliation(s)
- Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China.,Department of Molecular Cancer Research Center Molecular Medicine University Medical Center Utrecht Utrecht The Netherlands
| | - Chuanjian Lu
- Department of Dermatology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Guangjuan Zheng
- Department of Pharmacology of Traditional Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China.,Department of Pathology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Boudewijn Mt Burgering
- Department of Molecular Cancer Research Center Molecular Medicine University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
68
|
Cheng YF, Tsai YH, Huang CY, Lee YS, Chang PC, Lu YC, Hsu CJ, Wu CC. Generation and pathological characterization of a transgenic mouse model carrying a missense PJVK mutation. Biochem Biophys Res Commun 2020; 532:675-681. [PMID: 32917362 DOI: 10.1016/j.bbrc.2020.07.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023]
Abstract
Hearing loss is the most prevalent hereditary sensory disorder in children. Approximately 2 in 1000 infants are affected by genetic hearing loss. The PJVK gene, which encodes the pejvakin protein, has been linked to autosomal recessive non-syndromic hearing loss DFNB59. Previous clinical studies have revealed that PJVK mutations might be associated with a wide spectrum of auditory manifestations, ranging from hearing loss of pure cochlear origin to that involving the retrocochlear central auditory pathway. The phenotypic variety makes the pathogenesis of this disease difficult to determine. Similarly, mouse models carrying different Pjvk defects show phenotypic variability and inconsistency. In this study, we generated a knockin mouse model carrying the c.874G > A (p.G292R) variant to model and investigate the auditory and vestibular phenotypes of DFNB59.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Hsiu Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Ying Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Shan Lee
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pin-Chun Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Chang Lu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Department of Otolaryngology, Taichung Tzu-Chi Hospital, Taichung, Taiwan.
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
69
|
The Evolutionary Origins of Programmed Cell Death Signaling. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036442. [PMID: 31818855 DOI: 10.1101/cshperspect.a036442] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Programmed cell death (PCD) pathways are found in many phyla, ranging from developmentally programmed apoptosis in animals to cell-autonomous programmed necrosis pathways that limit the spread of biotrophic pathogens in multicellular assemblies. Prominent examples for the latter include animal necroptosis and pyroptosis, plant hypersensitive response (HR), and fungal heterokaryon incompatibility (HI) pathways. PCD pathways in the different kingdoms show fundamental differences in execution mechanism, morphology of the dying cells, and in the biological sequelae. Nevertheless, recent studies have revealed remarkable evolutionary parallels, including a striking sequence relationship between the "HeLo" domains found in the pore-forming components of necroptosis and some types of plant HR and fungal HI pathways. Other PCD execution components show cross-kingdom conservation as well, or are derived from prokaryotic ancestors. The currently available data suggest a model, wherein the primordial eukaryotic PCD pathway used proteins similar to present-day plant R-proteins and caused necrotic cell death by direct action of Toll and IL-1 receptor (TIR) and HeLo-like domains.
Collapse
|
70
|
Karmakar M, Minns M, Greenberg EN, Diaz-Aponte J, Pestonjamasp K, Johnson JL, Rathkey JK, Abbott DW, Wang K, Shao F, Catz SD, Dubyak GR, Pearlman E. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat Commun 2020; 11:2212. [PMID: 32371889 PMCID: PMC7200749 DOI: 10.1038/s41467-020-16043-9] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gasdermin-D (GSDMD) in inflammasome-activated macrophages is cleaved by caspase-1 to generate N-GSDMD fragments. N-GSDMD then oligomerizes in the plasma membrane (PM) to form pores that increase membrane permeability, leading to pyroptosis and IL-1β release. In contrast, we report that although N-GSDMD is required for IL-1β secretion in NLRP3-activated human and murine neutrophils, N-GSDMD does not localize to the PM or increase PM permeability or pyroptosis. Instead, biochemical and microscopy studies reveal that N-GSDMD in neutrophils predominantly associates with azurophilic granules and LC3+ autophagosomes. N-GSDMD trafficking to azurophilic granules causes leakage of neutrophil elastase into the cytosol, resulting in secondary cleavage of GSDMD to an alternatively cleaved N-GSDMD product. Genetic analyses using ATG7-deficient cells indicate that neutrophils secrete IL-1β via an autophagy-dependent mechanism. These findings reveal fundamental differences in GSDMD trafficking between neutrophils and macrophages that underlie neutrophil-specific functions during inflammasome activation.
Collapse
Affiliation(s)
- Mausita Karmakar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Minns
- Department of Physiology and Biophysics, and the Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Elyse N Greenberg
- Department of Physiology and Biophysics, and the Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Jose Diaz-Aponte
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Joseph K Rathkey
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kun Wang
- National Institute of Biological Sciences, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | | | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| | - Eric Pearlman
- Department of Physiology and Biophysics, and the Department of Ophthalmology, University of California, Irvine, CA, USA.
| |
Collapse
|
71
|
Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports. J Clin Med 2020; 9:jcm9041074. [PMID: 32290039 PMCID: PMC7230308 DOI: 10.3390/jcm9041074] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by deteriorated speech perception, despite relatively preserved pure-tone detection thresholds. Affected individuals usually present with abnormal auditory brainstem responses (ABRs), but normal otoacoustic emissions (OAEs). These electrophysiological characteristics have led to the hypothesis that ANSD may be caused by various dysfunctions at the cochlear inner hair cell (IHC) and spiral ganglion neuron (SGN) levels, while the activity of outer hair cells (OHCs) is preserved, resulting in discrepancies between pure-tone and speech comprehension thresholds. The exact prevalence of ANSD remains unknown; clinical findings show a large variability among subjects with hearing impairment ranging from mild to profound hearing loss. A wide range of prenatal and postnatal etiologies have been proposed. The study of genetics and of the implicated sites of lesion correlated with clinical findings have also led to a better understanding of the molecular mechanisms underlying the various forms of ANSD, and may guide clinicians in better screening, assessment and treatment of ANSD patients. Besides OAEs and ABRs, audiological assessment includes stapedial reflex measurements, supraliminal psychoacoustic tests, electrocochleography (ECochG), auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs). Hearing aids are indicated in the treatment of ANSD with mild to moderate hearing loss, whereas cochlear implantation is the first choice of treatment in case of profound hearing loss, especially in case of IHC presynaptic disorders, or in case of poor auditory outcomes with conventional hearing aids.
Collapse
|
72
|
Gasdermin family: a promising therapeutic target for cancers and inflammation-driven diseases. J Cell Commun Signal 2020; 14:293-301. [PMID: 32236886 DOI: 10.1007/s12079-020-00564-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
This review focuses on current advances in researches of gasdermin family. The distinctive expression patterns and biological roles of members in this family were discussed. Most of them exhibit pore-forming activity on cell membranes and are executors for programmed cell death with cytokines release, and play roles in cancers and inflammation-driven diseases. Therefore, they can be used as potential therapeutic targets to treat related diseases.
Collapse
|
73
|
Uzor NE, McCullough LD, Tsvetkov AS. Peroxisomal Dysfunction in Neurological Diseases and Brain Aging. Front Cell Neurosci 2020; 14:44. [PMID: 32210766 PMCID: PMC7075811 DOI: 10.3389/fncel.2020.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisomes exist in most cells, where they participate in lipid metabolism, as well as scavenging the reactive oxygen species (ROS) that are produced as by-products of their metabolic functions. In certain tissues such as the liver and kidneys, peroxisomes have more specific roles, such as bile acid synthesis in the liver and steroidogenesis in the adrenal glands. In the brain, peroxisomes are critically involved in creating and maintaining the lipid content of cell membranes and the myelin sheath, highlighting their importance in the central nervous system (CNS). This review summarizes the peroxisomal lifecycle, then examines the literature that establishes a link between peroxisomal dysfunction, cellular aging, and age-related disorders that affect the CNS. This review also discusses the gap of knowledge in research on peroxisomes in the CNS.
Collapse
Affiliation(s)
- Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Louise D. McCullough
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
74
|
Germain K, Kim PK. Pexophagy: A Model for Selective Autophagy. Int J Mol Sci 2020; 21:ijms21020578. [PMID: 31963200 PMCID: PMC7013971 DOI: 10.3390/ijms21020578] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/03/2023] Open
Abstract
The removal of damaged or superfluous organelles from the cytosol by selective autophagy is required to maintain organelle function, quality control and overall cellular homeostasis. Precisely how substrate selectivity is achieved, and how individual substrates are degraded during selective autophagy in response to both extracellular and intracellular cues is not well understood. The aim of this review is to highlight pexophagy, the autophagic degradation of peroxisomes, as a model for selective autophagy. Peroxisomes are dynamic organelles whose abundance is rapidly modulated in response to metabolic demands. Peroxisomes are routinely turned over by pexophagy for organelle quality control yet can also be degraded by pexophagy in response to external stimuli such as amino acid starvation or hypoxia. This review discusses the molecular machinery and regulatory mechanisms governing substrate selectivity during both quality-control pexophagy and pexophagy in response to external stimuli, in yeast and mammalian systems. We draw lessons from pexophagy to infer how the cell may coordinate the degradation of individual substrates by selective autophagy across different cellular cues.
Collapse
Affiliation(s)
- Kyla Germain
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter K. Kim
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-813-5983
| |
Collapse
|
75
|
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 2019; 20:143-157. [PMID: 31690840 DOI: 10.1038/s41577-019-0228-2] [Citation(s) in RCA: 1034] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
The gasdermins are a family of recently identified pore-forming effector proteins that cause membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. Gasdermins contain a cytotoxic N-terminal domain and a C-terminal repressor domain connected by a flexible linker. Proteolytic cleavage between these two domains releases the intramolecular inhibition on the cytotoxic domain, allowing it to insert into cell membranes and form large oligomeric pores, which disrupts ion homeostasis and induces cell death. Gasdermin-induced pyroptosis plays a prominent role in many hereditary diseases and (auto)inflammatory disorders as well as in cancer. In this Review, we discuss recent developments in gasdermin research with a focus on mechanisms that control gasdermin activation, pore formation and functional consequences of gasdermin-induced membrane permeabilization.
Collapse
Affiliation(s)
- Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital 'Virgen de la Arrixaca', Murcia, Spain.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
76
|
Orning P, Lien E, Fitzgerald KA. Gasdermins and their role in immunity and inflammation. J Exp Med 2019; 216:2453-2465. [PMID: 31548300 PMCID: PMC6829603 DOI: 10.1084/jem.20190545] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is an important component of the innate immune system. Gasdermin D, the mediator of pyroptosis, has been shown to be crucial for optimal defense against microbial infection. In this review, the authors discuss gasdermin D and its role in disease. The gasdermins are a family of pore-forming proteins recently implicated in the immune response. One of these proteins, gasdermin D (GSDMD), has been identified as the executioner of pyroptosis, an inflammatory form of lytic cell death that is induced upon formation of caspase-1–activating inflammasomes. The related proteins GSDME and GSDMA have also been implicated in autoimmune diseases and certain cancers. Most gasdermin proteins are believed to have pore-forming capabilities. The best-studied member, GSDMD, controls the release of the proinflammatory cytokines IL-1ß and IL-18 and pyroptotic cell death. Because of its potential as a driver of inflammation in septic shock and autoimmune diseases, GSDMD represents an attractive drug target. In this review, we discuss the gasdermin proteins with particular emphasis on GSDMD and its mechanism of action and biological significance.
Collapse
Affiliation(s)
- Pontus Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|