51
|
Mechanics of the IL2RA gene activation revealed by modeling and atomic force microscopy. PLoS One 2011; 6:e18811. [PMID: 21533205 PMCID: PMC3076448 DOI: 10.1371/journal.pone.0018811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/16/2011] [Indexed: 01/22/2023] Open
Abstract
Transcription implies recruitment of RNA polymerase II and transcription factors (TFs) by DNA melting near transcription start site (TSS). Combining atomic force microscopy and computer modeling, we investigate the structural and dynamical properties of the IL2RA promoter and identify an intrinsically negative supercoil in the PRRII region (containing Elf-1 and HMGA1 binding sites), located upstream of a curved DNA region encompassing TSS. Conformational changes, evidenced by time-lapse studies, result in the progressive positioning of curvature apex towards the TSS, likely facilitating local DNA melting. In vitro assays confirm specific binding of the General Transcription Factors (GTFs) TBP and TFIIB over TATA-TSS position, where an inhibitory nucleosome prevented preinitiation complex (PIC) formation and uncontrolled DNA melting. These findings represent a substantial advance showing, first, that the structural properties of the IL2RA promoter are encoded in the DNA sequence and second, that during the initiation process DNA conformation is dynamic and not static.
Collapse
|
52
|
Hunt RA, Munde M, Kumar A, Ismail MA, Farahat AA, Arafa RK, Say M, Batista-Parra A, Tevis D, Boykin DW, Wilson WD. Induced topological changes in DNA complexes: influence of DNA sequences and small molecule structures. Nucleic Acids Res 2011; 39:4265-74. [PMID: 21266485 PMCID: PMC3105405 DOI: 10.1093/nar/gkq1362] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heterocyclic diamidines are compounds with antiparasitic properties that target the minor groove of kinetoplast DNA. The mechanism of action of these compounds is unknown, but topological changes to DNA structures are likely to be involved. In this study, we have developed a polyacrylamide gel electrophoresis-based screening method to determine topological effects of heterocyclic diamidines on four minor groove target sequences: AAAAA, TTTAA, AAATT and ATATA. The AAAAA and AAATT sequences have the largest intrinsic bend, whereas the TTTAA and ATATA sequences are relatively straight. The changes caused by binding of the compounds are sequence dependent, but generally the topological effects on AAAAA and AAATT are similar as are the effects on TTTAA and ATATA. A total of 13 compounds with a variety of structural differences were evaluated for topological changes to DNA. All compounds decrease the mobility of the ATATA sequence that is consistent with decreased minor groove width and bending of the relatively straight DNA into the minor groove. Similar, but generally smaller, effects are seen with TTTAA. The intrinsically bent AAAAA and AAATT sequences, which have more narrow minor grooves, have smaller mobility changes on binding that are consistent with increased or decreased bending depending on compound structure.
Collapse
Affiliation(s)
- Rebecca A Hunt
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Genetic variations within the ERE motif modulate plasticity and energetics of binding of DNA to the ERα nuclear receptor. Arch Biochem Biophys 2011; 507:262-70. [PMID: 21216218 DOI: 10.1016/j.abb.2011.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
Upon binding to estrogens, the ERα nuclear receptor acts as a transcription factor and mediates a multitude of cellular functions central to health and disease. Herein, using isothermal titration calorimetry (ITC) and circular dichroism (CD) in conjunction with molecular modeling (MM), we analyze the effect of symmetric introduction of single nucleotide variations within each half-site of the estrogen response element (ERE) on the binding of ERα nuclear receptor. Our data reveal that ERα exudes remarkable tolerance and binds to all genetic variants in the physiologically relevant nanomolar-micromolar range with the consensus ERE motif affording the highest affinity. We provide rationale for how genetic variations within the ERE motif may reduce its affinity for ERα by orders of magnitude at atomic level. Our data also suggest that the introduction of genetic variations within the ERE motif allows it to sample a much greater conformational space. Surprisingly, ERα displays no preference for binding to ERE variants with higher AT content, implying that any advantage due to DNA plasticity may be largely compensated by unfavorable entropic factors. Collectively, our study bears important consequences for how genetic variations within DNA promoter elements may fine-tune the physiological action of ERα and other nuclear receptors.
Collapse
|
54
|
Nair TM. Sequence periodicity in nucleosomal DNA and intrinsic curvature. BMC STRUCTURAL BIOLOGY 2010; 10 Suppl 1:S8. [PMID: 20487515 PMCID: PMC2873831 DOI: 10.1186/1472-6807-10-s1-s8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. RESULTS Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. CONCLUSIONS The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
Collapse
Affiliation(s)
- T Murlidharan Nair
- Department of Biological sciences, Indiana University South Bend, 1700 Mishawaka Ave, South Bend, IN-46634, USA.
| |
Collapse
|
55
|
Sequence Recognition of DNA by Protein-Induced Conformational Transitions. J Mol Biol 2010; 396:1145-64. [DOI: 10.1016/j.jmb.2009.12.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 11/21/2022]
|
56
|
Seldeen KL, McDonald CB, Deegan BJ, Bhat V, Farooq A. DNA plasticity is a key determinant of the energetics of binding of Jun-Fos heterodimeric transcription factor to genetic variants of TGACGTCA motif. Biochemistry 2010; 48:12213-22. [PMID: 19921846 DOI: 10.1021/bi901392k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Jun-Fos heterodimeric transcription factor is a target of a diverse array of signaling cascades that initiate at the cell surface and converge in the nucleus and ultimately result in the expression of genes involved in a multitude of cellular processes central to health and disease. Here, using isothermal titration calorimetry in conjunction with circular dichroism, we report the effect of introducing single nucleotide variations within the TGACGTCA canonical motif on the binding of bZIP domains of Jun-Fos heterodimer to DNA. Our data reveal that the Jun-Fos heterodimer exhibits differential energetics in binding to such genetic variants in the physiologically relevant micromolar to submicromolar range with the TGACGTCA canonical motif affording the highest affinity. Although binding energetics are largely favored by enthalpic forces and accompanied by entropic penalty, neither the favorable enthalpy nor the unfavorable entropy correlates with the overall free energy of binding in agreement with the enthalpy-entropy compensation phenomenon widely observed in biological systems. However, a number of variants including the TGACGTCA canonical motif bind to the Jun-Fos heterodimer with high affinity through having overcome such enthalpy-entropy compensation barrier, arguing strongly that better understanding of the underlying invisible forces driving macromolecular interactions may be the key to future drug design. Our data also suggest that the Jun-Fos heterodimer has a preference for binding to TGACGTCA variants with higher AT content, implying that the DNA plasticity may be an important determinant of protein-DNA interactions. This notion is further corroborated by the observation that the introduction of genetic variations within the TGACGTCA motif allows it to sample a much greater conformational space. Taken together, these new findings further our understanding of the role of DNA sequence and conformation on protein-DNA interactions in thermodynamic terms.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
57
|
Nikolova EN, Al-Hashimi HM. Preparation, resonance assignment, and preliminary dynamics characterization of residue specific 13C/15N-labeled elongated DNA for the study of sequence-directed dynamics by NMR. JOURNAL OF BIOMOLECULAR NMR 2009; 45:9-16. [PMID: 19636798 DOI: 10.1007/s10858-009-9350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/19/2009] [Indexed: 05/28/2023]
Abstract
DNA is a highly flexible molecule that undergoes functionally important structural transitions in response to external cellular stimuli. Atomic level spin relaxation NMR studies of DNA dynamics have been limited to short duplexes in which sensitivity to biologically relevant fluctuations occurring at nanosecond timescales is often inadequate. Here, we introduce a method for preparing residue-specific (13)C/(15)N-labeled elongated DNA along with a strategy for establishing resonance assignments and apply the approach to probe fast inter-helical bending motions induced by an adenine tract. Preliminary results suggest the presence of elevated A-tract independent end-fraying internal motions occurring at nanosecond timescales, which evade detection in short DNA constructs and that penetrate deep (7 bp) within the DNA helix and gradually fade away towards the helix interior.
Collapse
Affiliation(s)
- Evgenia N Nikolova
- Department of Chemistry, Biophysics and Chemical Biology Program, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
58
|
Nov Klaiman T, Hosid S, Bolshoy A. Upstream curved sequences in E. coli are related to the regulation of transcription initiation. Comput Biol Chem 2009; 33:275-82. [PMID: 19646927 DOI: 10.1016/j.compbiolchem.2009.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/17/2009] [Indexed: 01/03/2023]
Abstract
The advancement in Escherichia coli genome research has made the information regarding transcription start sites of many genes available. A study relying on the availability of transcription start locations was performed. The first question addressed was what an average DNA curvature profile upstream of genes would look like when these genes are aligned by transcription start sites in comparison to alignment by translation start sites. Since it was hypothesized that curvature plays a role in transcription regulation, the expectation was that curvature measurements relative to transcription starts, rather than translation, should strengthen the signal. Our study justified this expectation. The second question aimed to clarify the relation between DNA curvature and promoter strength. Through clustering based on DNA curvature profiles along promoter regions, a strong positive correlation between the promoter strength and the curved DNA was found. The third question dealt with dinucleotide periodicity in E. coli to see whether a periodicity pattern specific to promoter regions exists. Such unknown pattern might shed new light on transcription regulation mechanisms in E. coli. A sequence periodicity of about 11 bp is characteristic to the whole E. coli genome, and is especially well-expressed in intergenic regions. Here it was shown that regions of the size of about 100-150 bp centered 70-100 bp upstream to transcription starts carry hidden periodicity with a period of about 10.3 bp.
Collapse
Affiliation(s)
- Tamar Nov Klaiman
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | | | | |
Collapse
|
59
|
Tevis DS, Kumar A, Stephens CE, Boykin DW, Wilson WD. Large, sequence-dependent effects on DNA conformation by minor groove binding compounds. Nucleic Acids Res 2009; 37:5550-8. [PMID: 19578063 PMCID: PMC2760788 DOI: 10.1093/nar/gkp558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine what topological changes antiparasitic heterocyclic dications can have on kinetoplast DNA, we have constructed ligation ladders, with phased A5 and ATATA sequences in the same flanking sequence context, as models. Bending by the A5 tract is observed, as expected, while the ATATA sequence bends DNA very little. Complexes of these DNAs with three diamidines containing either furan, thiophene or selenophene groups flanked by phenylamidines were investigated along with netropsin. With the bent A5 ladder the compounds caused either a slight increase or decrease in the bending angle. Surprisingly, however, with ATATA all of the compounds caused significant bending, to values close to or even greater than the A5 bend angle. Results with a mixed cis sequence, which has one A5 and one ATATA, show that the compounds bend ATATA in the same direction as a reference A5 tract, that is, into the minor groove. These results are interpreted in terms of a groove structure for A5 which is largely pre-organized for a fit to the heterocyclic amidines. With ATATA the groove is intrinsically wider and must close to bind the compounds tightly. The conformational change at the binding site then leads to significant bending of the alternating DNA sequence.
Collapse
Affiliation(s)
- Denise S Tevis
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | | | |
Collapse
|
60
|
Abstract
AbstractShort runs of adenines are a ubiquitous DNA element in regulatory regions of many organisms. When runs of 4–6 adenine base pairs (‘A-tracts’) are repeated with the helical periodicity, they give rise to global curvature of the DNA double helix, which can be macroscopically characterized by anomalously slow migration on polyacrylamide gels. The molecular structure of these DNA tracts is unusual and distinct from that of canonical B-DNA. We review here our current knowledge about the molecular details of A-tract structure and its interaction with sequences flanking them of either side and with the environment. Various molecular models were proposed to describe A-tract structure and how it causes global deflection of the DNA helical axis. We review old and recent findings that enable us to amalgamate the various findings to one model that conforms to the experimental data. Sequences containing phased repeats of A-tracts have from the very beginning been synonymous with global intrinsic DNA bending. In this review, we show that very often it is the unique structure of A-tracts that is at the basis of their widespread occurrence in regulatory regions of many organisms. Thus, the biological importance of A-tracts may often be residing in their distinct structure rather than in the global curvature that they induce on sequences containing them.
Collapse
|
61
|
Marathe A, Karandur D, Bansal M. Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. BMC STRUCTURAL BIOLOGY 2009; 9:24. [PMID: 19393049 PMCID: PMC2687451 DOI: 10.1186/1472-6807-9-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/24/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND An important question of biological relevance is the polymorphism of the double-helical DNA structure in its free form, and the changes that it undergoes upon protein-binding. We have analysed a database of free DNA crystal structures to assess the inherent variability of the free DNA structure and have compared it with a database of protein-bound DNA crystal structures to ascertain the protein-induced variations. RESULTS Most of the dinucleotide steps in free DNA display high flexibility, assuming different conformations in a sequence-dependent fashion. With the exception of the AA/TT and GA/TC steps, which are 'A-phobic', and the GG/CC step, which is 'A-philic', the dinucleotide steps show no preference for A or B forms of DNA. Protein-bound DNA adopts the B-conformation most often. However, in certain cases, protein-binding causes the DNA backbone to take up energetically unfavourable conformations. At the gross structural level, several protein-bound DNA duplexes are observed to assume a curved conformation in the absence of any large distortions, indicating that a series of normal structural parameters at the dinucleotide and trinucleotide level, similar to the ones in free B-DNA, can give rise to curvature at the overall level. CONCLUSION The results illustrate that the free DNA molecule, even in the crystalline state, samples a large amount of conformational space, encompassing both the A and the B-forms, in the absence of any large ligands. A-form as well as some non-A, non-B, distorted geometries are observed for a small number of dinucleotide steps in DNA structures bound to the proteins belonging to a few specific families. However, for most of the bound DNA structures, across a wide variety of protein families, the average step parameters for various dinucleotide sequences as well as backbone torsion angles are observed to be quite close to the free 'B-like' DNA oligomer values, highlighting the flexibility and biological significance of this structural form.
Collapse
Affiliation(s)
- Arvind Marathe
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | | | |
Collapse
|
62
|
Takiya S, Saito S, Yokoyama T, Matsumoto D, Aizawa T, Kamiya M, Demura M, Kawano K. DNA-binding property of the novel DNA-binding domain STPR in FMBP-1 of the silkworm Bombyx mori. J Biochem 2009; 146:103-11. [PMID: 19304790 DOI: 10.1093/jb/mvp053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The STPR domain is a novel DNA-binding domain composed of repeats of 23 amino-acid-long peptide found in the fibroin-modulator-binding protein-1 (FMBP-1) of the silkworm Bombyx mori. Theoretical proteins having the STPR domain are highly conserved, particularly in vertebrates, but the functions are mostly unknown. In this study, the DNA-binding property of the STPR domain in FMBP-1 was examined. Use of reagents selecting the DNA groove and an oligonucleotide in which the dA:dT pairs of the probe were replaced with dI:dC pairs in mobility shift assay demonstrated that FMBP-1 approaches DNA from the major groove. Permutation electrophoresis using probes of the same length but containing the FMBP-1-binding site at different positions showed that FMBP-1 bends DNA through its binding. To induce the sharp bend of DNA, the STPR domain alone was insufficient and the long N-terminal extending region was necessary. Moreover, the basic region extending from the N-terminus of the STPR domain stabilized the DNA binding of the STPR domain. These results suggested that DNA-binding properties of the STPR domain are affected strongly by the structure of the flanking regions in the STPR domain-containing proteins.
Collapse
Affiliation(s)
- Shigeharu Takiya
- Department of Biological Sciences and Center for Genome Dynamics, Hokkaido University, Kita-Ku, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Acestor N, Panigrahi AK, Carnes J, Zíková A, Stuart KD. The MRB1 complex functions in kinetoplastid RNA processing. RNA (NEW YORK, N.Y.) 2009; 15:277-86. [PMID: 19096045 PMCID: PMC2648719 DOI: 10.1261/rna.1353209] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/24/2008] [Indexed: 05/20/2023]
Abstract
Mitochondrial (mt) gene expression in Trypanosoma brucei entails multiple types of RNA processing, including polycistronic transcript cleavage, mRNA editing, gRNA oligouridylation, and mRNA polyadenylation, which are catalyzed by various multiprotein complexes. We examined the novel mitochondrial RNA-binding 1 (MRB1) complex that has 16 associated proteins, four of which have motifs suggesting RNA interaction. RNase treatment or the lack of kDNA in mutants resulted in lower MRB1 complex sedimentation in gradients, indicating that MRB1 complex associates with kDNA transcripts. RNAi knockdowns of expression of the Tb10.406.0050 (TbRGGm, RGG motif), Tb927.6.1680 (C2H2 zinc finger), and Tb11.02.5390 (no known motif) MRB1 proteins each inhibited in vitro growth of procyclic form parasites and resulted in cells with abnormal numbers of nuclei. Knockdown of TbRGGm, but not the other two proteins, disrupted the MRB1 complex, indicating that it, but perhaps not the other two, is required for complex assembly and/or stability. The knockdowns resulted in similar but nonidentical patterns of altered in vivo abundances of edited, pre-edited, and preprocessed mt mRNAs, but did not appreciably affect the abundances of mRNAs that do not get edited. These results indicate that MRB1 complex is critical to the processing of mt RNAs, and although its specific function is unknown, it appears essential to parasite viability.
Collapse
Affiliation(s)
- Nathalie Acestor
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
64
|
Wells RD. Discovery of the role of non-B DNA structures in mutagenesis and human genomic disorders. J Biol Chem 2008; 284:8997-9009. [PMID: 19054760 DOI: 10.1074/jbc.x800010200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M System Health Science Center, The Texas Medical Center, Houston, Texas 77030-3303, USA.
| |
Collapse
|
65
|
Abstract
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction. Just as important, the technique has not failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.
Collapse
|
66
|
Liu Y, Collar CJ, Kumar A, Stephens CE, Boykin DW, Wilson WD. Heterocyclic diamidine interactions at AT base pairs in the DNA minor groove: effects of heterocycle differences, DNA AT sequence and length. J Phys Chem B 2008; 112:11809-18. [PMID: 18717551 PMCID: PMC2556899 DOI: 10.1021/jp804048c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the increasing significance of diamidines as DNA-targeted therapeutics and biotechnology reagents, it is important to establish the variations in thermodynamic quantities that characterize the interactions of closely related compounds to different sequence AT binding sites. In this study, an array of methods including biosensor-surface plasmon resonance (SPR), isothermal titration microcalorimetry (ITC), circular dichroism (CD), thermal melting (Tm) and molecular modeling have been used to characterize the binding of dicationic diamidines related to DB75 (amidine-phenyl-furan-phenyl-amidine) with alternating and nonalternating AT sequences. Conversion of the central furan of DB75 to other similar groups, such as thiophene or selenophene, can yield compounds with increased affinity and sequence binding selectivity for the minor groove. Calorimetric measurements revealed that the thermodynamic parameters (Delta G, Delta H, Delta S) that drive diamidine binding to alternating and nonalternating oligomers can be quite different and depend on both DNA sequence and length. Small changes in a compound can have major effects on DNA interactions. By choosing an appropriate central group it is possible to "tune" the shape of the molecule to match DNA for enhanced affinity and sequence recognition.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Chad E. Stephens
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
67
|
Koike K, Matsuyama T, Ebisuzaki T. Epigenetics: application of virtual image restriction landmark genomic scanning (Vi-RLGS). FEBS J 2008; 275:1608-16. [PMID: 18331348 DOI: 10.1111/j.1742-4658.2008.06329.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Restriction landmark genomic scanning (RLGS) is a powerful method for the systematic detection of genetic mutations in DNA length and epigenetic alteration due to DNA methylation. However, the identification of polymorphic spots is difficult because the resulting RLGS spots contain very little target DNA and many non-labeled DNA fragments. To overcome this, we developed a virtual image restriction landmark genomic scanning (Vi-RLGS) system to compare actual RLGS patterns with computer-simulated RLGS patterns (virtual RLGS patterns). Here, we demonstrate in detail the contents of the simulation program (rlgssim), based on the linear relationship between the reciprocal of mobility plotted against DNA fragment length and Vi-RLGS profiling of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kuniaki Koike
- Computational Astrophysics Laboratory, Discovery Research Institute, RIKEN, Saitama, Japan
| | | | | |
Collapse
|
68
|
Ababneh AM, Ababneh ZQ, Large CC. DNA A-tracts bending: polarization effects on electrostatic interactions across their minor groove. J Theor Biol 2008; 252:742-9. [PMID: 18396297 DOI: 10.1016/j.jtbi.2008.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Bending by the DNA A-tracts constitutes a contentious issue, suggesting deficiencies in the physics employed so far. Here, we inquire as to the importance in this bending of many-body polarization effects on the electrostatic interactions across their narrow minor groove. We have done this on the basis of the findings of Jarque and Buckingham who developed a procedure based on a Monte Carlo simulation for two charges of the same sign embedded in a polarizable medium. Remarkably, the present analysis reveals that for compact DNA conformations, which result from dynamic effects, an overall attractive interaction operates between the phosphate charges; this interaction is especially strong for the narrow minor groove of the A-tracts, suggesting a tendency for DNA to bend toward this groove. This tendency is in agreement with the conclusions of electrophoretic and NMR solution studies. The present analysis is also consistent with the experimental observations that the minor groove is much more easily compressible than the major groove and the bending propensity of the A-tracts is greatly reduced at "premelting" temperatures. By contrast, the dielectric screening model predicts a repulsion between the phosphate charges and is not consistent with the aforementioned bending tendency or experimental observations.
Collapse
Affiliation(s)
- Anas M Ababneh
- Physics Department, Yarmouk University, Irbid 211-63, Jordan.
| | | | | |
Collapse
|
69
|
Restriction landmark genomic scanning (RLGS) spot identification by second generation virtual RLGS in multiple genomes with multiple enzyme combinations. BMC Genomics 2007; 8:446. [PMID: 18053125 PMCID: PMC2235865 DOI: 10.1186/1471-2164-8-446] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022] Open
Abstract
Background Restriction landmark genomic scanning (RLGS) is one of the most successfully applied methods for the identification of aberrant CpG island hypermethylation in cancer, as well as the identification of tissue specific methylation of CpG islands. However, a limitation to the utility of this method has been the ability to assign specific genomic sequences to RLGS spots, a process commonly referred to as "RLGS spot cloning." Results We report the development of a virtual RLGS method (vRLGS) that allows for RLGS spot identification in any sequenced genome and with any enzyme combination. We report significant improvements in predicting DNA fragment migration patterns by incorporating sequence information into the migration models, and demonstrate a median Euclidian distance between actual and predicted spot migration of 0.18 centimeters for the most complex human RLGS pattern. We report the confirmed identification of 795 human and 530 mouse RLGS spots for the most commonly used enzyme combinations. We also developed a method to filter the virtual spots to reduce the number of extra spots seen on a virtual profile for both the mouse and human genomes. We demonstrate use of this filter to simplify spot cloning and to assist in the identification of spots exhibiting tissue-specific methylation. Conclusion The new vRLGS system reported here is highly robust for the identification of novel RLGS spots. The migration models developed are not specific to the genome being studied or the enzyme combination being used, making this tool broadly applicable. The identification of hundreds of mouse and human RLGS spot loci confirms the strong bias of RLGS studies to focus on CpG islands and provides a valuable resource to rapidly study their methylation.
Collapse
|
70
|
Marilley M, Milani P, Thimonier J, Rocca-Serra J, Baldacci G. Atomic force microscopy of DNA in solution and DNA modelling show that structural properties specify the eukaryotic replication initiation site. Nucleic Acids Res 2007; 35:6832-45. [PMID: 17933778 PMCID: PMC2175326 DOI: 10.1093/nar/gkm733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The replication origins (ORIs) of Schizosaccharomyces pombe, like those in most eukaryotes, are long chromosomal regions localized within A+T-rich domains. Although there is no consensus sequence, the interacting proteins are strongly conserved, suggesting that DNA structure is important for ORI function. We used atomic force microscopy in solution and DNA modelling to study the structural properties of the Spars1 origin. We show that this segment is the least stable of the surrounding DNA (9 kb), and contains regions of intrinsically bent elements (strongly curved and inherently supercoiled DNAs). The pORC-binding site co-maps with a superhelical DNA region, where the spatial arrangement of adenine/thymine stretches may provide the binding substrate. The replication initiation site (RIP) is located within a strongly curved DNA region. On pORC unwinding, this site shifts towards the apex of the curvature, thus potentiating DNA melting there. Our model is entirely consistent with the sequence variability, large size and A+T-richness of ORIs, and also accounts for the multistep nature of the initiation process, the specificity of pORC-binding site(s), and the specific location of RIP. We show that the particular DNA features and dynamic properties identified in Spars1 are present in other eukaryotic origins.
Collapse
Affiliation(s)
- Monique Marilley
- Régulation génique et fonctionnelle & microscopie champ proche, EA 3290, IFR 125, Faculté de Médecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille cedex 5, France.
| | | | | | | | | |
Collapse
|
71
|
Porschke D. Unique Physical Signature of DNA Curvature and Its Implications for Structure and Dynamics. J Phys Chem B 2007; 111:12004-11. [PMID: 17887666 DOI: 10.1021/jp073965e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A particularly sensitive birefringence technique is used to analyze a curved DNA fragment with 118 bp and a standard DNA with 119 bp. At salt concentrations from 0.5 to 10 mM, both fragments show the usual negative stationary birefringence and monotonic transients - differences are relatively small. At 100 mM salt the curved DNA shows a positive stationary birefringence and non-monotonic transients with processes having amplitudes of opposite sign, whereas signals of the standard DNA remain as usual. Transients induced by reversal of the field vector indicate the existence of a permanent dipole for the curved DNA. 2-MHz-ac pulses induce a negative stationary birefringence in both DNAs. These results are consistent with calculations on models for curved DNA predicting a quasi-permanent dipole and a positive dichroism/birefringence. The quasi-permanent dipole results from the loss of symmetry in the charge distribution of the curved polyelectrolyte. The appearance of the unique signature of curvature at high salt is mainly due to a strong decrease of the polarizability by about 2 orders of magnitude. The special mode of orientation resulting from the quasi-permanent dipole is expected to contribute to the gel migration anomaly. The time constants of birefringence decay for the curved fragment are shorter than those of the 119 bp fragment by a factor of approximately 1.10 at 0.6 mM salt, whereas this factor is approximately 1.20 at 100 mM Na+. If both fragments were normal DNA with 3.4 A rise per base pair, the factor would be approximately 1.02. At high salt and high electric field strengths the factor increases up to 1.37. The implications for the bending dynamics and the potential to distinguish static from dynamic persistence by field reversal experiments are discussed. The dependence of the curvature on the salt concentration indicated by the time constants is consistent with a clear decrease of the electrophoretic anomaly at decreasing salt concentration.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, AG Biomolecular Dynamics, 37077, Göttingen, Germany
| |
Collapse
|
72
|
Liu Y, Kumar A, Boykin DW, Wilson WD. Sequence and length dependent thermodynamic differences in heterocyclic diamidine interactions at AT base pairs in the DNA minor groove. Biophys Chem 2007; 131:1-14. [PMID: 17889984 PMCID: PMC2291445 DOI: 10.1016/j.bpc.2007.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 11/17/2022]
Abstract
With the goal of developing a better understanding of the antiparasitic biological action of DB75, we have evaluated its interaction with duplex alternating and nonalternating sequence AT polymers and oligomers. These DNAs provide an important pair of sequences in a detailed thermodynamic analysis of variations in interaction of DB75 with AT sites. The results for DB75 binding to the alternating and nonalternating AT sequences are quite different at the fundamental thermodynamic level. Although the Gibbs energies are similar, the enthalpies for DB75 binding with poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) are +3.1 and -4.5 kcal/mol, respectively, while the binding entropies are 41.7 and 15.2 cal/mol.K, respectively. The underlying thermodynamics of binding to AT sites in the minor groove plays a key role in the recognition process. It was also observed that DB75 binding with poly(dA).poly(dT) can induce T.A.T triplet formation and the compound binds strongly to the dT.dA.dT triplex.
Collapse
Affiliation(s)
| | | | | | - W. David Wilson
- *Corresponding author : W. David Wilson, Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, USA, Tel: +1-404-413-5503, Fax: +1-404-413-5505,
| |
Collapse
|
73
|
Sun Z, Mulligan C, McLaughlin LW. Removal of a single minor-groove functional group eliminates A-tract curvature. J Am Chem Soc 2007; 128:11756-7. [PMID: 16953605 DOI: 10.1021/ja0632310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Much of the work in studying the phenomenon of A-tract curvature has involved the insertion of modified residues into the A-tract sequence and then cross-correlation of the structural differences with the resulting curvature effects. In the A-tract sequence d(A-T)5, removal of a single functional group (the O2-carbonyl of the central dT residue) by its replacement with hydrogen completely eliminates the curvature properties. This atom-specific change was accomplished by using the C-nucleoside dm32P in which the O2-carbonyl is replaced with -H but normal Watson-Crick hydrogen bonding is maintained. Similar derivatives with -F (dF62P) or -CH3 (dm62P) when present for the central dT residue also eliminate curvature. Finally, we have shown that the extent of curvature for sequences containing this carbonyl are sensitive to the [Mg2+], while those lacking the carbonyl show little to no Mg2+ dependence, strongly suggesting, we believe, a role for Na+/Mg2+ cooperative interactions in the minor groove to explain the curvature phenomenon.
Collapse
|
74
|
Blouin S, Lafontaine DA. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA (NEW YORK, N.Y.) 2007; 13:1256-67. [PMID: 17585050 PMCID: PMC1924893 DOI: 10.1261/rna.560307] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The lysine riboswitch is associated to the lysC gene in Bacillus subtilis, and the binding of lysine modulates the RNA structure to allow the formation of an intrinsic terminator presumably involved in transcription attenuation. The complex secondary structure of the lysine riboswitch aptamer is organized around a five-way junction that undergoes structural changes upon ligand binding. Using single-round transcription assays, we show that a loop-loop interaction is important for lysine-induced termination of transcription. Moreover, upon close inspection of the secondary structure, we find that an unconventional kink-turn motif is present in one of the stems participating in the loop-loop interaction. We show that the K-turn adopts a pronounced kink and that it binds the K-turn-binding protein L7Ae of Archaeoglobus fulgidus in the low nanomolar range. The functional importance of this K-turn motif is revealed from single-round transcription assays, which show its importance for efficient transcription termination. This motif is essential for the loop-loop interaction, and consequently, for lysine binding. Taken together, our results depict for the first time the importance of a K-turn-dependent loop-loop interaction for the transcription regulation of a lysine riboswitch.
Collapse
Affiliation(s)
- Simon Blouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
75
|
|
76
|
Fiorini A, de Gouveia FS, de Soares MAM, Stocker AJ, Ciferri RR, Fernandez MA. DNA bending in the replication zone of the C3 DNA puff amplicon of Rhynchosciara americana (Diptera: Sciaridae). Mol Biol Rep 2007; 33:71-82. [PMID: 16636920 DOI: 10.1007/s11033-006-0009-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
Intrinsic bent DNA sites were identified in the 4289 bp segment encompassing the replication zone which directs DNA amplification and transcription of the C3-22 gene of Rhynchosciara americana. Restriction fragments showed reduced electrophoretic mobility in polyacrylamide gels. The 2D modeling of the 3D DNA path and the ENDS ratio values obtained from the dinucleotide wedge model of Trifonov revealed the presence of four major bent sites, positioned at nucleotides -6753, -5433, -5133 and -4757. Sequence analysis showed that these bends are composed of 2-6 bp dA.dT tracts in phase with the DNA helical repeat. The circular permutation analysis permitted the verification that the fragments containing the bending sites promote curvature in other sequence contexts. Computer analyses of the 4289 bp sequence revealed low helical stability (DeltaG values), negative roll angles indicating a narrow minor groove and a putative matrix attachment region. The data presented in this paper add to information about the structural features involved in this amplified segment.
Collapse
Affiliation(s)
- Adriana Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil
| | | | | | | | | | | |
Collapse
|
77
|
Shiraishi M, Sekiya T. Segregation of partly melted DNA molecules. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:463-73. [PMID: 16838839 DOI: 10.1080/15257770600684159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Segregation of partly melted DNA molecules is a convenient and efficient method to isolate DNA fragments associated with CpG islands. The method stands on the observation that the electrophoretic mobility of partly melted DNA fragments in a denaturing gradient gel is low and that they persist in the gel so long as the remaining helical part is sufficiently resistant to strand dissociation and dissociates slowly. Such features are observed in DNA fragments derived from CpG islands. These DNA fragments are preferentially retained in a denaturing gradient gel after prolonged electric field exposure, permitting the enrichment of DNA fragments derived from CpG islands. The principle and practical application of this method are reviewed.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- Department ofPharmaceutical Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan.
| | | |
Collapse
|
78
|
Fiorini A, Gouveia FDS, Fernandez MA. Scaffold/Matrix Attachment Regions and intrinsic DNA curvature. BIOCHEMISTRY (MOSCOW) 2006; 71:481-8. [PMID: 16732725 DOI: 10.1134/s0006297906050038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent approaches have failed to detect nucleotide sequence motifs in Scaffold/Matrix Attachment Regions (S/MARs). The lack of any known motifs, together with the confirmation that some S/MARs are not associated to any peculiar sequence, indicates that some structural elements, such as DNA curvature, have a role in chromatin organization and on their efficiency in protein binding. Similar to DNA curvature, S/MARs are located close to promoters, replication origins, and multiple nuclear processes like recombination and breakpoint sites. The chromatin structure in these regulatory regions is important to chromosome organization for accurate regulation of nuclear processes. In this article we review the biological importance of the co-localization between bent DNA sites and S/MARs.
Collapse
Affiliation(s)
- A Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá Maringá, Paraná 87020-900, Brazil
| | | | | |
Collapse
|
79
|
Lu Y, Stellwagen E, Stellwagen NC. Effect of organic cosolvents on the free solution mobility of curved and normal DNA molecules. Electrophoresis 2006; 27:1462-70. [PMID: 16609931 DOI: 10.1002/elps.200500941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The free solution mobilities of curved and normal 199-bp DNA fragments have been measured in buffer solutions containing various quantities of the organic cosolvents methanol, ethanol, 2-propanol, 2-methyl-2,4-pentanediol (MPD), ethylene glycol, and ACN, using CE. The curved fragment, taken from the VP1 gene of SV40, contains five unevenly spaced A- and T-tracts in a centrally located "curvature module"; the A- and T-tracts have been mutated to other sequences in the normal 199-bp fragment. The free solution mobility of the curved 199-bp fragment is significantly lower than that of its normal counterpart in aqueous solutions [Stellwagen, E., Lu, Y. J., Stellwagen, N. C., Nucleic Acids Res. 2005, 33, 4425-4432]. The mobilities of both the curved and normal fragments decrease with increasing cosolvent concentration, due to the effect of the cosolvent on the viscosity and dielectric constant of the solution. The mobility differences between the curved and normal 199-bp fragments and the mobility ratios decrease approximately linearly with the increasing mole fraction of cosolvent in the solution. Hence, MPD and other organic cosolvents affect DNA electrophoretic mobility by a common mechanism, most likely the preferential hydration of the DNA surface that occurs in aqueous cosolvents. The gradual loss of the anomalously slow mobility of the curved 199-bp fragment with increasing cosolvent concentration, combined with other data in the literature, suggests that preferential hydration gradually widens the narrow A-tract minor groove, releasing site-bound counterions in the minor groove and shifting the conformation toward that of normal DNA.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
80
|
Fire A, Alcazar R, Tan F. Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 2006; 173:1259-73. [PMID: 16648589 PMCID: PMC1526662 DOI: 10.1534/genetics.106.057364] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 04/21/2006] [Indexed: 11/18/2022] Open
Abstract
We describe a surprising long-range periodicity that underlies a substantial fraction of C. elegans genomic sequence. Extended segments (up to several hundred nucleotides) of the C. elegans genome show a strong bias toward occurrence of AA/TT dinucleotides along one face of the helix while little or no such constraint is evident on the opposite helical face. Segments with this characteristic periodicity are highly overrepresented in intron sequences and are associated with a large fraction of genes with known germline expression in C. elegans. In addition to altering the path and flexibility of DNA in vitro, sequences of this character have been shown by others to constrain DNA::nucleosome interactions, potentially producing a structure that could resist the assembly of highly ordered (phased) nucleosome arrays that have been proposed as a precursor to heterochromatin. We propose a number of ways that the periodic occurrence of An/Tn clusters could reflect evolution and function of genes that express in the germ cell lineage of C. elegans.
Collapse
Affiliation(s)
- Andrew Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.
| | | | | |
Collapse
|
81
|
White EW, Tanious F, Ismail MA, Reszka AP, Neidle S, Boykin DW, Wilson WD. Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge. Biophys Chem 2006; 126:140-53. [PMID: 16831507 DOI: 10.1016/j.bpc.2006.06.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/13/2006] [Accepted: 06/13/2006] [Indexed: 01/17/2023]
Abstract
Combining structure-specific recognition of nucleic acids with limited sequence reading is a promising method to reduce the size of the recognition unit required to achieve the necessary selectivity and binding affinity to control function. It has been demonstrated recently that G-quadruplex DNA structures can be targeted by organic cations in a structure-specific manner. Structural targets of quadruplexes include the planar end surfaces of the G-tetrad stacked columns and four grooves. These provide different geometries and functional groups relative to duplex DNA. We have used surface plasmon resonance and isothermal titration calorimetry to show that binding affinity and selectivity of a series of quadruplex end-stacking molecules to human telomeric DNA are sensitive to compound shape as well as substituent type and position. ITC results indicate that binding is largely enthalpy driven. Circular dichroism was also used to identify a group of structurally related compounds that selectively target quadruplex grooves.
Collapse
Affiliation(s)
- Elizabeth W White
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Moreno-Herrero F, Seidel R, Johnson SM, Fire A, Dekker NH. Structural analysis of hyperperiodic DNA from Caenorhabditis elegans. Nucleic Acids Res 2006; 34:3057-66. [PMID: 16738142 PMCID: PMC1474062 DOI: 10.1093/nar/gkl397] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several bioinformatics studies have identified an unexpected but remarkably prevalent approximately 10 bp periodicity of AA/TT dinucleotides (hyperperiodicity) in certain regions of the Caenorhabditis elegans genome. Although the relevant C.elegans DNA segments share certain sequence characteristics with bent DNAs from other sources (e.g. trypanosome mitochondria), the nematode sequences exhibit a much more extensive and defined hyperperiodicity. Given the presence of hyperperiodic structures in a number of critical C.elegans genes, the physical characteristics of hyperperiodic DNA are of considerable interest. In this work, we demonstrate that several hyperperiodic DNA segments from C.elegans exhibit structural anomalies using high-resolution atomic force microscopy (AFM) and gel electrophoresis. Our quantitative analysis of AFM images reveals that hyperperiodic DNA adopts a significantly smaller mean square end-to-end distance, hence a more compact coil structure, compared with non-periodic DNA of similar length. While molecules remain capable of adopting both bent and straight (rod-like) configurations, indicating that their flexibility is still retained, examination of the local curvatures along the DNA contour length reveals that the decreased mean square end-to-end distance can be attributed to the presence of long-scale intrinsic bending in hyperperiodic DNA. Such bending is not detected in non-periodic DNA. Similar studies of shorter, nucleosome-length DNAs that survived micrococcal nuclease digestion show that sequence hyperperiodicity in short segments can likewise induce strong intrinsic bending. It appears, therefore, that regions of the C.elegans genome display a significant correlation between DNA sequence and unusual mechanical properties.
Collapse
Affiliation(s)
| | | | - Steven M. Johnson
- Department of Pathology, Stanford University School of Medicine300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA
- Department of Genetics, Stanford University School of Medicine300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA
| | - Andrew Fire
- Department of Pathology, Stanford University School of Medicine300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA
- Department of Genetics, Stanford University School of Medicine300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA
| | - Nynke H. Dekker
- To whom correspondence should be addressed. Tel: +31 0 15 278 3219; Fax: +31 0 15 278 1202;
| |
Collapse
|
83
|
Stellwagen NC. Curved DNA molecules migrate anomalously slowly in polyacrylamide gels even at zero gel concentration. Electrophoresis 2006; 27:1163-8. [PMID: 16440397 DOI: 10.1002/elps.200500612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The electrophoretic mobilities of curved and normal DNA molecules of the same size have been measured in polyacrylamide gels containing various acrylamide concentrations and cross-linker ratios. Ferguson plots were constructed to extrapolate the observed mobilities to zero gel concentration. The DNA samples were two 147-bp restriction fragments, called 12A and 12B, obtained from the MspI digestion of plasmid pBR322, and head-to-tail multimers of each fragment. Fragment 12A is stably curved and migrates anomalously slowly in polyacrylamide gels; fragment 12B has the conformation of normal DNA and migrates with normal electrophoretic mobilities. The extrapolated mobilities of the curved fragment 12A and its multimers at zero gel concentration are lower than the extrapolated mobilities of the normal fragment 12B and its multimers. The free solution mobility of the curved fragment 12A, measured by CE, is also lower than that of the normal fragment 12B. The combined results indicate that the extrapolated mobilities observed for curved DNA molecules at zero polyacrylamide gel concentration reflect the intrinsic differences in their free solution mobilities.
Collapse
Affiliation(s)
- Nancy C Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
84
|
Zhou Y, Chirikjian GS. Conformational Statistics of Semi-Flexible Macromolecular Chains with Internal Joints. Macromolecules 2006; 39:1950-1960. [PMID: 21243113 DOI: 10.1021/ma0512556] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluctuations in the bending angles at internal irregularities of DNA and RNA (such as symmetric loops, bulges, and nicks/gaps) have been observed from various experiments. However, little effort has been made to computationally predict and explain the statistical behavior of semi-flexible chains with internal defects. In this paper, we describe the general structure of these macromolecular chains as inextensible elastic chains with one or more internal joints which have limited ranges of rotation, and propose a method to compute the probability density functions of the end-to-end pose of these macromolecular chains. Our method takes advantage of the operational properties of the non-commutative Fourier transform for the group of rigid-body motions in three-dimensional space, SE(3). Two representative types of joints, the hinge for planar rotation and the ball joint for spatial rotation, are discussed in detail. The proposed method applies to various stiffness models of semi-flexible chain-like macromolecules. Examples are calculated using the Kratky-Porod model with specified stiffness, angular fluctuation, and joint locations. Entropic effects associated with internal angular fluctuations of semi-flexible macromolecular chains with internal joints can be computed using this formulation. Our method also provides a potential tool to detect the existence of internal irregularities.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794
| | | |
Collapse
|
85
|
Hillebrand A, Wurm R, Menzel A, Wagner R. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem 2005; 386:523-34. [PMID: 16006239 DOI: 10.1515/bc.2005.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribosomal RNAs in E. coli are transcribed from seven operons, which are highly conserved in their organization and sequence. However, the upstream regulatory DNA regions differ considerably, suggesting differences in regulation. We have therefore analyzed the conformation of all seven DNA elements located upstream of the major E. coli rRNA P1 promoters. As judged by temperature-dependent gel electrophoresis with isolated DNA fragments comprising the individual P1 promoters and the complete upstream regulatory regions, all seven rRNA upstream sequences are intrinsically curved. The degree of intrinsic curvature was highest for the rrnB and rrnD fragments and less pronounced for the rrnA and rrnE operons. Comparison of the experimentally determined differences in curvature with programs for the prediction of DNA conformation revealed a generally high degree of conformity. Moreover, the analysis showed that the center of curvature is located at about the same position in all fragments. The different upstream regions were analyzed for their capacity to bind the transcription factors FIS and H-NS, which are known as antagonists in the regulation of rRNA synthesis. Gel retardation experiments revealed that both proteins interact with the upstream promoter regions of all seven rDNA fragments, with the affinities of the different DNA fragments for FIS and H-NS and the structure of the resulting complexes deviating considerably. FIS binding was non-cooperative, and at comparable protein concentrations the occupancy of the different DNA fragments varied between two and four binding sites. In contrast, H-NS was shown to bind cooperatively and intermediate states of occupancy could not be resolved for each fragment. The different gel electrophoretic mobilities of the individual DNA/protein complexes indicate variable structures and topologies of the upstream activating sequence regulatory complexes. Our results are highly suggestive of differential regulation of the individual rRNA operons.
Collapse
Affiliation(s)
- Annette Hillebrand
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
86
|
Lukes J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48:277-99. [PMID: 16215758 DOI: 10.1007/s00294-005-0027-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Kinetoplastids are flagellated protozoans, whose members include the pathogens Trypanosoma brucei, T. cruzi and Leishmania species, that are considered among the earliest diverging eukaryotes with a mitochondrion. This organelle has become famous because of its many unusual properties, which are unique to the order Kinetoplastida, including an extensive kinetoplast DNA network and U-insertion/deletion type RNA editing of its mitochondrial transcripts. In the last decade, considerable progress has been made in elucidating the complex machinery of RNA editing. Moreover, our understanding of the structure and replication of kinetoplast DNA has also dramatically improved. Much less however, is known, about the developmental regulation of RNA editing, its integration with other RNA maturation processes, stability of mitochondrial mRNAs, or evolution of the editing process itself. Yet the profusion of genomic data recently made available by sequencing consortia, in combination with methods of reverse genetics, hold promise in understanding the complexity of this exciting organelle, knowledge of which may enable us to fight these often medically important protozoans.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
87
|
Marilley M, Sanchez-Sevilla A, Rocca-Serra J. Fine mapping of inherent flexibility variation along DNA molecules: validation by atomic force microscopy (AFM) in buffer. Mol Genet Genomics 2005; 274:658-70. [PMID: 16261347 DOI: 10.1007/s00438-005-0058-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/14/2005] [Indexed: 11/28/2022]
Abstract
Curvature and flexibility are structural properties of central importance to genome function. However, due to the difficulties in finding suitable experimental conditions, methods for studying one without the interference of the other have proven to be difficult. We propose a new approach that provides a measure of inherent flexibility of DNA by taking advantage of two powerful techniques, X-ray crystallography and nuclear magnetic resonance. Both techniques are able to detect local curvature on DNA fragments but, while the first analyzes DNA in the solid state, the second works on DNA in solution. Comparison of the two data sets allowed us to calculate the relative contribution to flexibility of the three rotations and three translations, which relate successive base pair planes for the ten different dinucleotide steps. These values were then used to compute the variation of flexibility along a given nucleotide sequence. This allowed us to validate the method experimentally through comparisons with maps of local fluctuations in DNA molecule trajectory constructed from atomic force microscopy imaging in solution. We conclude that the six dinucleotide-step parameters defined here provide a powerful tool for the exploration of DNA structure and, consequently will make an important contribution to our understanding of DNA-sequence-dependent biological processes.
Collapse
Affiliation(s)
- Monique Marilley
- Laboratoire de régulation génique et fonctionnelle & microscopie champ proche (RGFCP), EA 3290, IFR 125, Faculté de Médecine, Réseau AFM Biologie, Université de la Méditerranée, 13385, Marseille cedex 5, France.
| | | | | |
Collapse
|
88
|
Stellwagen E, Lu Y, Stellwagen NC. Curved DNA molecules migrate anomalously slowly in free solution. Nucleic Acids Res 2005; 33:4425-32. [PMID: 16085753 PMCID: PMC1183105 DOI: 10.1093/nar/gki748] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The electrophoretic mobility of a curved DNA restriction fragment taken from the VP1 gene in the SV40 minichromosome has been measured in polyacrylamide gels and free solution, using capillary electrophoresis. The 199 bp restriction fragment has an apparent bend angle of 46 ± 2° located at SV40 sequence position 1922 ± 2 bp [Lu Y.J., Weers B.D. and Stellwagen N. C. (2005) Biophys. J., 88, 1191–1206]. The ‘curvature module’ surrounding the apparent bend center contains five unevenly spaced A- and T-tracts, which are responsible for the observed curvature. The parent 199 bp fragment and sequence mutants containing at least one A-tract in the curvature module migrate anomalously slowly in free solution, as well as in polyacrylamide gels. Hence, the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due in part to their anomalously slow mobilities in free solution. Analysis of the gel and free solution mobility decrements indicates that each A- or T-tract contributes independently, but not equally, to the curvature of the 199 bp fragment and its A-tract mutants. The relative contribution of each A- or T-tract to the observed curvature depends on its spacing with respect to the first A-tract in the curvature module.
Collapse
Affiliation(s)
- Earle Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA.
| | | | | |
Collapse
|
89
|
Anselmi C, DeSantis P, Scipioni A. Nanoscale mechanical and dynamical properties of DNA single molecules. Biophys Chem 2005; 113:209-21. [PMID: 15620506 DOI: 10.1016/j.bpc.2004.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/13/2004] [Accepted: 09/13/2004] [Indexed: 11/30/2022]
Abstract
Experimental evidence suggests DNA mechanical properties, in particular intrinsic curvature and flexibility, have a role in many relevant biological processes. Systematic investigations about the origin of DNA curvature and flexibility have been carried out; however, most of the applied experimental techniques need simplifying models to interpret the data, which can affect the results. Progress in the direct visualization of macromolecules allows the analysis of morphological properties and structural changes of DNAs directly from the digitised micrographs of single molecules. In addition, the statistical analysis of a large number of molecules gives information both on the local intrinsic curvature and the flexibility of DNA tracts at nanometric scale in relatively long sequences. However, it is necessary to extend the classical worm-like chain model (WLC) for describing conformations of intrinsically straight homogeneous polymers to DNA. This review describes the various methodologies proposed by different authors.
Collapse
Affiliation(s)
- Claudio Anselmi
- Dipartimento di Chimica, Università di Roma "La Sapienza", I-00185 Rome, Italy
| | | | | |
Collapse
|
90
|
Toporowski JW, Reddy SY, Bruice TC. Comparison of positively charged DNG with DNA duplexes: a computational approach. Bioorg Med Chem 2005; 13:3691-8. [PMID: 15862998 DOI: 10.1016/j.bmc.2005.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 03/14/2005] [Indexed: 11/16/2022]
Abstract
Molecular dynamics is used to investigate the structural properties of the cationic DNA analogue deoxynucleic guanidine (DNG), in which a guanidinium group replaces the phosphate moiety of DNA. This study examines the DNG duplex dodecamers d(Ag)(12).d(Tg)(12) and d(Gg)(12).d(Cg)(12), as well as their DNA counterparts. Watson-Crick base-pairing is maintained in the solvated DNG duplex models during the 5ns simulations. The idealized DNG dodecamers assume many parameters characteristic of the corresponding native DNA, assuming B-DNA conformations. Several helical parameters are rather unique to DNG, including buckle, slide, inclination, propeller, and X-displacement. Fewer transitions in backbone torsions occur in the DNG duplexes compared to those of the DNA, which may result from the greater rigidity of the sp(2) hybridized guanidinium group verses the flexible sp(3) phosphate group. The DNG helices have exceptionally shallow major grooves and very deep minor grooves. The major and minor groove widths of DNG are narrower than those of the respective DNA counterparts.
Collapse
Affiliation(s)
- Joseph W Toporowski
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
91
|
Hays FA, Teegarden A, Jones ZJR, Harms M, Raup D, Watson J, Cavaliere E, Ho PS. How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc Natl Acad Sci U S A 2005; 102:7157-62. [PMID: 15870206 PMCID: PMC1129101 DOI: 10.1073/pnas.0409455102] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fundamental question of how sequence defines conformation is explicitly answered if the structures of all possible sequences of a macromolecule are determined. We present here a crystallographic screen of all permutations of the inverted repeat DNA sequence d(CCnnnN6N7N8GG), where N6, N7, and N8 are any of the four naturally occurring nucleotides. At this point, 63 of the 64 possible permutations have been crystallized from a defined set of solutions. When combined with previous work, we have assembled a data set of 37 single-crystal structures from 29 of the sequences in this motif, representing three structural classes of DNA (B-DNA, A-DNA, and four-stranded Holliday junctions). This data set includes a unique set of amphimorphic sequence, those that crystallize in two different conformations and serve to bridge the three structural phases. We have thus constructed a map of DNA structures that can be walked through in single nucleotide steps. Finally, the resulting data set allows us to dissect in detail the stabilization of and conformational variations within structural classes and identify significant conformational deviations within a particular structural class that result from sequence rather than crystal or crystallization effects.
Collapse
Affiliation(s)
- Franklin A Hays
- Department of Biochemistry and Biophysics, Oregon State University, Agricultural and Life Sciences Building 2011, Corvallis, OR 97331-7305, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Woods KK, Maehigashi T, Howerton SB, Sines CC, Tannenbaum S, Williams LD. High-resolution structure of an extended A-tract: [d(CGCAAATTTGCG)]2. J Am Chem Soc 2005; 126:15330-1. [PMID: 15563130 DOI: 10.1021/ja045207x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of [d(CGCAAATTTGCG)]2 has been determined to 1.5 A resolution, representing the first high-resolution structure of this DNA fragment. The ion interactions are novel. A spermine molecule replaces a Mg2+ observed in analogous structures. Unlike lower-resolution structures, the minor groove is narrow and the major groove lacks extra Watson-Crick hydrogen bonds. In addition, a monolayer of solvent sites, including a "spine of hydration", is visible in the minor groove. The crystal of [d(CGCAAATTTGCG)]2 was grown from a solution containing spermine, magnesium, and lithium. The conformation recapitulates that of "monovalent-minus" DNA.
Collapse
Affiliation(s)
- Kristen Kruger Woods
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | |
Collapse
|
93
|
Dickman MJ. Effects of sequence and structure in the separation of nucleic acids using ion pair reverse phase liquid chromatography. J Chromatogr A 2005; 1076:83-9. [PMID: 15974072 DOI: 10.1016/j.chroma.2005.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion pair reverse phase high performance liquid chromatography on non-porous alkylated poly(styrene-divinylbenzene) particles enables the high resolution separation of double stranded DNA fragments. To further understand the separation mechanisms involved in ion pair reverse phase liquid chromatography we have analysed the effects of curved or "bent" DNA fragments with respect to their separation using both gel electrophoresis and ion pair reverse phase liquid chromatography. Size dependent separations of curved DNA fragments that migrate anomalously during gel electrophoresis were observed using ion pair reverse phase liquid chromatography. To further study the sequence effect and resulting changes in hydrophobicity of the duplex DNA, PCR fragments were generated that contain uracil in place of thymine. The resulting fragments were shown to elute with shorter retention times, demonstrating that sequence-specific effects can alter the retention of duplex DNA. The study was extended to the investigation of non-canonical B-DNA structures (Holliday junctions) under various chromatographic conditions, demonstrating that the coaxial stacking of the helices in such structures, in the presence of magnesium causes a change in retention.
Collapse
Affiliation(s)
- Mark J Dickman
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
94
|
Du Q, Vologodskaia M, Kuhn H, Frank-Kamenetskii M, Vologodskii A. Gapped DNA and cyclization of short DNA fragments. Biophys J 2005; 88:4137-45. [PMID: 15778443 PMCID: PMC1305644 DOI: 10.1529/biophysj.104.055657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We use the cyclization of small DNA molecules, approximately 200 bp in length, to study conformational properties of DNA fragments with single-stranded gaps. The approach is extremely sensitive to DNA conformational properties and, being complemented by computations, allows a very accurate determination of the fragment's conformational parameters. Sequence-specific nicking endonucleases are used to create the 4-nt-long gap. We determined the bending rigidity of the single-stranded region in the gapped DNA. We found that the gap of 4 nt in length makes all torsional orientations of DNA ends equally probable. Our results also show that the gap has isotropic bending rigidity. This makes it very attractive to use gapped DNA in the cyclization experiments to determine DNA conformational properties, since the gap eliminates oscillations of the cyclization efficiency with the DNA length. As a result, the number of measurements is greatly reduced in the approach, and the analysis of the data is greatly simplified. We have verified our approach on DNA fragments containing well-characterized intrinsic bends caused by A-tracts. The obtained experimental results and theoretical analysis demonstrate that gapped-DNA cyclization is an exceedingly sensitive and accurate approach for the determination of DNA bending.
Collapse
Affiliation(s)
- Quan Du
- Department of Chemistry, New York University, New York, 10003, USA
| | | | | | | | | |
Collapse
|
95
|
Dixit SB, Pitici F, Beveridge DL. Structure and axis curvature in two dA6 x dT6 DNA oligonucleotides: comparison of molecular dynamics simulations with results from crystallography and NMR spectroscopy. Biopolymers 2005; 75:468-79. [PMID: 15526331 DOI: 10.1002/bip.20157] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular dynamics (MD) simulations have been performed on the A6 containing DNA dodecamers d(GGCAAAAAACGG) solved by NMR and d(CGCAAAAAAGCG) solved by crystallography. The experimental structures differ in the direction of axis bending and in other small but important aspects relevant to the DNA curvature problem. Five nanosecond MD simulations of each sequence have been performed, beginning with both the NMR and crystal forms as well as canonical B-form DNA. The results show that all simulations converge to a common form in close proximity to the observed NMR structure, indicating that the structure obtained in the crystal is likely a strained form due to packing effects. A-tracts in the MD model are essentially straight. The origin of axis curvature is found at pyrimidine-purine steps in the flanking sequences.
Collapse
Affiliation(s)
- Surjit B Dixit
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA.
| | | | | |
Collapse
|
96
|
McAteer K, Aceves-Gaona A, Michalczyk R, Buchko GW, Isern NG, Silks LAP, Miller JH, Kennedy MA. Compensating bends in a 16-base-pair DNA oligomer containing a T(3)A(3) segment: A NMR study of global DNA curvature. Biopolymers 2005; 75:497-511. [PMID: 15526287 DOI: 10.1002/bip.20168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In-phase ligated DNA containing T(n)A(n) segments fail to exhibit the retarded polyacrylamide gel electrophoresis (PAGE) migration observed for in-phase ligated A(n)T(n) segments, a behavior thought to be correlated with macroscopic DNA curvature. The lack of macroscopic curvature in ligated T(n)A(n) segments is thought to be due to cancellation of bending in regions flanking the TpA steps. To address this issue, solution-state NMR, including residual dipolar coupling (RDC) restraints, was used to determine a high-resolution structure of [d(CGAGGTTTAAACCTCG)2], a DNA oligomer containing a T3A3 tract. The overall magnitude and direction of bending, including the regions flanking the central TpA step, was measured using a radius of curvature, Rc, analysis. The Rc for the overall molecule indicated a small magnitude of global bending (Rc = 138 +/- 23 nm) towards the major groove, whereas the Rc for the two halves (72 +/- 33 nm and 69 +/- 14 nm) indicated greater localized bending into the minor groove. The direction of bending in the regions flanking the TpA step is in partial opposition (109 degrees), contributing to cancellation of bending. The cancellation of bending did not correlate with a pattern of roll values at the TpA step, or at the 5' and 3' junctions, of the T3A3 segment, suggesting a simple junction/roll model is insufficient to predict cancellation of DNA bending in all T(n)A(n) junction sequence contexts. Importantly, Rc analysis of structures refined without RDC restraints lacked the precision and accuracy needed to reliably measure bending.
Collapse
Affiliation(s)
- Kathleen McAteer
- Department of Computer Science and Electrical Engineering, Washington State University Tri-Cities, Richland, WA 99352
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Lu Y, Weers BD, Stellwagen NC. Intrinsic curvature in the VP1 gene of SV40: comparison of solution and gel results. Biophys J 2004; 88:1191-206. [PMID: 15556988 PMCID: PMC1305122 DOI: 10.1529/biophysj.104.039834] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA restriction fragments that are stably curved are usually identified by polyacrylamide gel electrophoresis because curved fragments migrate more slowly than normal fragments containing the same number of basepairs. In free solution, curved DNA molecules can be identified by transient electric birefringence (TEB) because they exhibit rotational relaxation times that are faster than those of normal fragments of the same size. In this article, the results observed in free solution and in polyacrylamide gels are compared for a highly curved 199-basepair (bp) restriction fragment taken from the VP1 gene in Simian Virus 40 (SV40) and various sequence mutants and insertion derivatives. The TEB method of overlapping fragments was used to show that the 199-bp fragment has an apparent bend angle of 46 +/- 2 degrees centered at sequence position 1922 +/- 2 bp. Four unphased A- and T-tracts and a mixed A3T4-tract occur within a span of approximately 60 bp surrounding the apparent bend center; for brevity, this 60-bp sequence element is called a curvature module. Modifying any of the A- or T-tracts in the curvature module by site-directed mutagenesis decreases the curvature of the fragment; replacing all five A- and T-tracts by random-sequence DNA causes the 199-bp mutant to adopt a normal conformation, with normal electrophoretic mobilities and birefringence relaxation times. Hence, stable curvature in this region of the VP1 gene is due to the five unphased A- and T- tracts surrounding the apparent bend center. Discordant solution and gel results are observed when long inverted repeats are inserted within the curvature module. These insertion derivatives migrate anomalously slowly in polyacrylamide gels but have normal, highly flexible conformations in free solution. Discordant solution and gel results are not observed if the insert does not contain a long inverted repeat or if the long inverted repeat is added to the 199-bp fragment outside the curvature module. The results suggest that long inverted repeats can form hairpins or cruciforms when they are located within a region of the helix backbone that is intrinsically curved, leading to large mobility anomalies in polyacrylamide gels. Hairpin/cruciform formation is not observed in free solution, presumably because of rapid conformational exchange. Hence, DNA restriction fragments that migrate anomalously slowly in polyacrylamide gels are not necessarily stably curved in free solution.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
98
|
Hoischen C, Bolshoy A, Gerdes K, Diekmann S. Centromere parC of plasmid R1 is curved. Nucleic Acids Res 2004; 32:5907-15. [PMID: 15528638 PMCID: PMC528805 DOI: 10.1093/nar/gkh920] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The centromere sequence parC of Escherichia coli low-copy-number plasmid R1 consists of two sets of 11 bp iterated sequences. Here we analysed the intrinsic sequence-directed curvature of parC by its migration anomaly in polyacrylamide gels. The 159 bp long parC is strongly curved with anomaly values (k-factors) close to 2. The properties of the parC curvature agree with those of other curved DNA sequences. parC contains two regions of 5-fold repeated iterons separated by 39 bp. We modified 4 bp within this intermediate sequence so that we could analyse the two 5-fold repeated regions independently. The analysis shows that the two repeat regions are not independently curved parts of parC but that the overall curvature is a property of the whole fragment. Since the centromere sequence of an E.coli plasmid as well as eukaryotic centromere sequences show DNA curvature, we speculate that curvature might be a general property of centromeres.
Collapse
Affiliation(s)
- Christian Hoischen
- Institute for Molecular Biotechnology e.V., Beutenbergstr. 11, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
99
|
Hosid S, Trifonov EN, Bolshoy A. Sequence periodicity of Escherichia coli is concentrated in intergenic regions. BMC Mol Biol 2004; 5:14. [PMID: 15333140 PMCID: PMC516772 DOI: 10.1186/1471-2199-5-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Accepted: 08/26/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequence periodicity with a period close to the DNA helical repeat is a very basic genomic property. This genomic feature was demonstrated for many prokaryotic genomes. The Escherichia coli sequences display the period close to 11 base pairs. RESULTS Here we demonstrate that practically only ApA/TpT dinucleotides contribute to overall dinucleotide periodicity in Escherichia coli. The noncoding sequences reveal this periodicity much more prominently compared to protein-coding sequences. The sequence periodicity of ApC/GpT, ApT and GpC dinucleotides along the Escherichia coli K-12 is found to be located as well mainly within the intergenic regions. CONCLUSIONS The observed concentration of the dinucleotide sequence periodicity in the intergenic regions of E. coli suggests that the periodicity is a typical property of prokaryotic intergenic regions. We suppose that this preferential distribution of dinucleotide periodicity serves many biological functions; first of all, the regulation of transcription.
Collapse
Affiliation(s)
- Sergey Hosid
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mt. Carmel 31905 ISRAEL
| | - Edward N Trifonov
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mt. Carmel 31905 ISRAEL
| | - Alexander Bolshoy
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mt. Carmel 31905 ISRAEL
| |
Collapse
|
100
|
Travers AA, Thompson JMT. An introduction to the mechanics of DNA. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:1265-1279. [PMID: 15306450 DOI: 10.1098/rsta.2004.1392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article gives an overview of recent research on the mechanical properties and spatial deformations of the DNA molecule. Globally the molecule behaves like a uniform elastic rod, and its twisting and writhing govern its compaction and packaging within a cell. Meanwhile high mechanical stresses can induce structural transitions of DNA giving, for example, a phase diagram in the space of the applied tension and torque. Locally, the mechanical properties vary according to the local sequence organization. These variations play a vital role in the biological functioning of the molecule.
Collapse
Affiliation(s)
- A A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|