51
|
Dowling LM, Crewther WG, Parry DA. Secondary structure of component 8c-1 of alpha-keratin. An analysis of the amino acid sequence. Biochem J 1986; 236:705-12. [PMID: 2431680 PMCID: PMC1146902 DOI: 10.1042/bj2360705] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The amino acid sequence of component 8c-1 from alpha-keratin was analysed by using secondary-structure prediction techniques, homology search methods, fast Fourier-transform techniques to detect regularities in the linear disposition of amino acids, interaction counts to assess possible modes of chain aggregation and assessment of hydrophilicity distribution. The analyses show the following. The molecule has two lengths of coiled-coil structure, each about 20 nm long, one from residues 56-202 with a discontinuity from about residue 91 to residue 101, and the other from residues 219-366 with discontinuities from about residue 238 to residue 245 and at about residue 306. The acidic and basic residues in the coiled-coil segment between residues 102 and 202 show a 9,4-residue structural period in their linear disposition, whereas between residues 246 and 366 a period of 9.9 residues is observed in the positioning of ionic residues. Acidic and basic residues are out of phase by 180 degrees. Similar repeats occur in corresponding regions of other intermediate-filament proteins. The overall mean values for the repeats are 9.55 residues in the N-terminal region and 9.85 residues in the C-terminal region. The regions at each end of the protein chain (residues 1-55 and 367-412) are not alpha-helical and contain many potential beta-bends. The regions specified in have a significant degree of homology mainly due to a semi-regular disposition of proline and half-cystine residues on a three-residue grid; this is especially apparent in the C-terminal segment, in which short (Pro-Cys-Xaa)n regions occur. The coiled-coil segments of component 8c-1 bear a striking similarity to corresponding segments of other intermediate-filament proteins as regards sequence homology, structural periodicity of ionic residues and secondary/tertiary-structure predictions. The assessments of the probabilities that these homologies occurred by chance indicate that there are two populations of keratin filament proteins. The non-coiled-coil regions at each end of the chain are less hydrophilic than the coiled-coil regions. Ionic interactions between the heptad regions of components 8c-1 and 7c from the microfibrils of alpha-keratin are optimized when a coiled-coil structure is formed with the heptad regions of the constituent chains both parallel and in register.
Collapse
|
52
|
Dowling LM, Crewther WG, Inglis AS. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Biochem J 1986; 236:695-703. [PMID: 2431679 PMCID: PMC1146901 DOI: 10.1042/bj2360695] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Component 8c-1, one of four highly homologous component-8 subunit proteins present in the microfibrils of wool, was isolated as its S-carboxymethyl derivative and its amino acid sequence was determined. Large peptides were isolated after cleaving the protein chemically or enzymically and the sequence of each was determined with an automatic Sequenator. The peptides were ordered by sequence overlaps and, in some instances, by homology with known sequences from other component-8 subunits. The C-terminal residues were identified by three procedures. Full details of the various procedures used have been deposited as Supplementary Publication SUP 50133 (4 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1986) 233, 5. The result showed that the protein comprises 412 residues and has an Mr, including the N-terminal acetyl group, of 48,300. The sequence of residues 98-200 of component 8c-1 was found to correspond to the partial or complete sequences of four homologous type I helical segments previously isolated from helical fragments recovered from chymotryptic digests of microfibrillar proteins of wool [Crewther & Dowling (1971) Appl. Polym. Symp. 18, 1-20; Crewther, Gough, Inglis & McKern (1978) Text. Res. J. 48, 160-162; Gough, Inglis & Crewther (1978) Biochem. J. 173, 385]. Considered in relation to amino acid sequences of other intermediate-filament proteins, the sequence is in accord with the view that keratin filament proteins are of two types [Hanukoglu & Fuchs (1983) Cell (Cambridge, Mass.) 33, 915-924]. Filament proteins from non-keratinous tissues, such as desmin, vimentin, neurofilament proteins and the glial fibrillary acidic protein, which form monocomponent filaments, constitute a third type. It is suggested that as a whole the proteins from intermediate filaments be classed as filamentins, the three types at present identified forming subgroups of this class. The significant homologies between types I, II and III occur almost exclusively in segments of the chain that have been identified as having a coiled-coil structure together with the relatively short sections connecting these segments. The non-coiled-coil segments at the C- and N-termini show no significant homology between types, nor is homology in these segments apparent in all members of one type. Component 8c-1 does not show homology in its terminal segments with the known sequence of any other filamentin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
53
|
Eichner R, Sun TT, Aebi U. The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. J Cell Biol 1986; 102:1767-77. [PMID: 2422179 PMCID: PMC2114194 DOI: 10.1083/jcb.102.5.1767] [Citation(s) in RCA: 217] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The four major keratins of normal human epidermis (molecular mass 50, 56.5, 58, and 65-67 kD) can be subdivided on the basis of charge into two subfamilies (acidic 50-kD and 56.5-kD keratins vs. relatively basic 58-kD and 65-67-kD keratins) or subdivided on the basis of co-expression into two "pairs" (50-kD/58-kD keratin pair synthesized by basal cells vs. 56.5-kD/65-67-kD keratin pair expressed in suprabasal cells). Acidic and basic subfamilies were separated by ion exchange chromatography in 8.5 M urea and tested for their ability to reassemble into 10-nm filaments in vitro. The two keratins in either subfamily did not reassemble into 10-nm filaments unless combined with members of the other subfamily. While electron microscopy of acidic and basic keratins equilibrated in 4.5 M urea showed that keratins within each subfamily formed distinct oligomeric structures, possibly representing precursors in filament assembly, chemical cross-linking followed by gel analysis revealed dimers and larger oligomers only when subfamilies were combined. In addition, among the four major keratins, the acidic 50-kD and basic 58-kD keratins showed preferential association even in 8.5 M urea, enabling us to isolate a 50-kD/58-kD keratin complex by gel filtration. This isolated 50-kD/58-kD keratin pair readily formed 10-nm filaments in vitro. These results demonstrate that in tissues containing multiple keratins, two keratins are sufficient for filament assembly, but one keratin from each subfamily is required. More importantly, these data provide the first evidence for the structural significance of specific co-expressed acidic/basic keratin pairs in the formation of epithelial 10-nm filaments.
Collapse
|
54
|
Huang FL, Roop DR, De Luca LM. Vitamin A deficiency and keratin biosynthesis in cultured hamster trachea. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1986; 22:223-30. [PMID: 2422152 DOI: 10.1007/bf02623307] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tracheas from vitamin A-deficient hamsters in organ culture in vitamin A-free medium developed squamous metaplasia. Addition of retinyl acetate to the medium prevented squamous metaplasia and a mucociliary epithelium was maintained. Indirect immunofluorescent staining with antikeratin antibodies AE1 and AE3 indicated positive reactions with epithelium of tracheas either cultured in vitamin A-free or retinyl acetate (RAc)-containing medium. The "stratum corneum"-like squames in metaplastic tracheas were strongly stained by AE3. Immunoprecipitation of cytoskeletal extracts from [35S]methionine labeled tracheas with a multivalent keratin antiserum indicated that the concentration of keratins synthesized in tracheas cultured in vitamin A-free medium was greater than that observed in tracheas cultured in the presence of RAc. In addition, new species of keratin were expressed in tracheas cultured in RAc-free medium. Alterations in the program of keratin synthesis were clearly detectable after 1 d in vitamin A-free medium, even though squamous metaplasia was not yet obvious. Squamous tracheas were shown by immunoblot analysis to contain keratins of 50, 48, 46.5, and 45 kilodalton (kd) detected with AE1; and 58, 56, and 52 kd detected with AE3. Immunoblot analysis with monospecific antimouse keratin sera also demonstrated the presence of 60, 55, and 50 kd keratins in the metaplastic tracheas. All these various species of keratins were either absent or present in much reduced quantity in mucociliary tracheas in RAc-containing medium. Interestingly, the induction of squamous metaplasia in tracheal epithelium did not result in the expression of the 59 and 67 kd keratins which are characteristically expressed in the differentiated layers of the epidermis. Therefore, this study shows that squamous metaplasia of tracheas due to vitamin A-free cultivation is accompanied by an increase in keratin synthesis as well as by the appearance of keratin species not normally present in mucociliary tracheal epithelium.
Collapse
|
55
|
Romano V, Hatzfeld M, Magin TM, Zimbelmann R, Franke WW, Maier G, Ponstingl H. Cytokeratin expression in simple epithelia. I. Identification of mRNA coding for human cytokeratin no. 18 by a cDNA clone. Differentiation 1986; 30:244-53. [PMID: 2422083 DOI: 10.1111/j.1432-0436.1986.tb00787.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To study the regulation of the expression of cytokeratins characteristic of simple epithelia, i.e., human cytokeratins nos. 7, 8, 18, and 19, we prepared several cDNA clones coding for these proteins and their bovine counterparts. In the present study, we describe a cDNA clone of the mRNA coding for human cytokeratin no. 18, which was isolated from an expression library using the monoclonal antibody, KG 8.13. This clone (756 nucleotides, excluding the polyA portion), encodes approximately one-half of the mRNA (approximately 1.4 kb), identifies one mRNA band in Northern-hybridization blots, and specifically selects one mRNA species coding for cytokeratin no. 18, as demonstrated by translation in vitro. Comparison of the deduced amino acid sequence--confirmed by direct amino-acid-sequence analyses of some polypeptide fragments produced by cleavage with cyanogen bromide--indicated that cytokeratin no. 18 is a member of the acidic (type I) subfamily of cytokeratins. It has only limited sequence homologies in common with other intermediate-sized filament proteins, and these are essentially restricted to certain domains of the alpha-helical rod portion. The carboxyterminal tail sequence does not contain glycine-rich elements, thus distinguishing this cytokeratin from those acidic (type I) cytokeratins that are characterized by this feature. The similarities and differences between cytokeratin no. 18 and previously described epidermal cytokeratins are discussed in relation to the differences in the stability of the complexes which this cytokeratin forms with basic (type II) cytokeratins, as well as in relation to possible functional differences of cytokeratins in simple and stratified epithelia.
Collapse
|
56
|
Magin TM, Jorcano JL, Franke WW. Cytokeratin expression in simple epithelia. II. cDNA cloning and sequence characteristics of bovine cytokeratin A (no. 8). Differentiation 1986; 30:254-64. [PMID: 2422084 DOI: 10.1111/j.1432-0436.1986.tb00788.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokeratin A (no. 8) is a cytoskeletal protein (Mr, approximately 53,000 in bovine cells) which is typical of all simple epithelia, is widespread in all cultured epithelial cells, and together with its partner cytokeratin D, is the first cytokeratin expressed during embryogenesis (synonyms for this protein are Endo A and TROMA-1 antigen). We isolated a clone (pKB8(1] from a pUC8 cDNA library prepared from poly(A)+-RNA of bovine bladder urothelium which contains the 3' nontranslated portion and the sequence coding for the carboxyterminal tail and almost the whole of the alpha-helical rod (369 amino acids). Northern-blot analysis showed that the mRNA coding for this cytokeratin is specifically synthesized in various epithelial tissues and in epithelial cell culture lines. The amino acid sequence of this cytokeratin, when compared with the sequences of other intermediate filament (IF) proteins, exhibits a high and specific homology with other cytokeratins of the basic (type II) subfamily; this homology is, however, restricted to the rod portion. The tail region, which is rich in hydroxy-amino acids (approximately 35%), is unique among the type-II cytokeratins in that it does not exhibit subdivision in three domains, specifically lacking the glycine-rich middle domain. Sequence comparison with a partial sequence of the corresponding cytokeratin of the amphibian species, Xenopus laevis, indicated high evolutionary conservation. The high sequence homology of bovine cytokeratin A with published sequences of human tissue polypeptide antigen (TPA), a soluble serum component used as tumor marker in clinical oncology, supports the view that TPA is a proteolytically solubilized fragment containing the rod portion of human cytokeratin no. 8. Our analysis of clone pKB8(1) made possible the first comparison of a simple epithelial cytokeratin with epidermal keratins and other IF proteins. This showed that, in some important molecular features, cytokeratin A (no. 8) differs drastically from the epidermal members of the same cytokeratin subfamily, probably reflecting different cellular functions of the tail region in stratified and simple epithelia.
Collapse
|
57
|
RayChaudhury A, Marchuk D, Lindhurst M, Fuchs E. Three tightly linked genes encoding human type I keratins: conservation of sequence in the 5'-untranslated leader and 5'-upstream regions of coexpressed keratin genes. Mol Cell Biol 1986; 6:539-48. [PMID: 2431270 PMCID: PMC367544 DOI: 10.1128/mcb.6.2.539-548.1986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have isolated and subcloned three separate segments of human DNA which share strong sequence homology with a previously sequenced gene encoding a type I keratin, K14 (50 kilodaltons). Restriction endonuclease mapping has demonstrated that these three genes are tightly linked chromosomally, whereas the K14 gene appears to be separate. As judged by positive hybridization-translation and Northern blot analyses, the central linked gene encodes a keratin, K17, which is expressed in abundance with K14 and two other type I keratins in cultured human epidermal cells. None of these other epidermal keratin mRNAs appears to be generated from the K17 gene through differential splicing of its transcript. The sequence of the K17 gene reveals striking homologies not only with the coding portions and intron positions of the K14 gene, but also with its 5'-noncoding and 5'-upstream sequences. These similarities may provide an important clue in elucidating the molecular mechanisms underlying the coexpression of the two genes.
Collapse
|
58
|
Knapp B, Rentrop M, Schweizer J, Winter H. Nonepidermal members of the keratin multigene family: cDNA sequences and in situ localization of the mRNAs. Nucleic Acids Res 1986; 14:751-63. [PMID: 2418416 PMCID: PMC339462 DOI: 10.1093/nar/14.2.751] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A keratin set which consists of a type I 47kd and a type II 57kd protein occurs as a major constituent of the keratin patterns of various internal stratified epithelia of the mouse. We have isolated specific cDNA clones of the two complementary keratin subunits from a cDNA library constructed with polyA+RNA of mouse tongue epithelium and present the complete nucleotide and deduced amino acid sequences of the 57kd protein and about 75% of the corresponding data of the 47kd protein. The comparison of the sequence data with those of known epidermal keratin mRNAs coding for the two types of keratin proteins reveals a fundamentally identical and type-specific organization of the mRNAs into both highly conserved and variable domains. In order to avoid cross-reactions with other members of the keratin multigene family, appropriately taylored 35S-labeled cDNA probes comprising the low and non-homologous 3' coding and noncoding domains of the mRNAs were used for in situ hybridization to tissue sections. The localization and distribution of the corresponding transcripts indicates a strongly compartmentalized keratin expression in mouse tongue epithelium.
Collapse
|
59
|
Singer PA, Trevor K, Oshima RG. Molecular cloning and characterization of the Endo B cytokeratin expressed in preimplantation mouse embryos. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36125-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
60
|
Glass C, Kim KH, Fuchs E. Sequence and expression of a human type II mesothelial keratin. J Biophys Biochem Cytol 1985; 101:2366-73. [PMID: 2415537 PMCID: PMC2114014 DOI: 10.1083/jcb.101.6.2366] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using mRNA from cultured human mesothelial cells, we constructed bacterial plasmids and lambda phage vectors that contained cDNA sequences specific for the keratins expressed in these cells. A cloned cDNA encoding keratin K7 (55 kD) was identified by positive hybrid selection. Southern Blot analysis indicated that this sequence is represented only once in the human genome, and Northern Blot analysis demonstrated that the gene encoding K7 is expressed in abundance in cultured bronchial and mesothelial cells, but only weakly in cultured epidermal cells and not at all in liver, colon, or exocervical tissue. The predicted amino acid sequence of this keratin has revealed a striking difference between this keratin and the type II keratins expressed in epidermal cells: whereas all of the epidermal type II keratins thus far sequenced have long nonhelical termini rich in glycine and serine, this mesothelial type II keratin has amino and carboxy terminal regions that are unusually short and lack the inexact repeats of glycine and serine residues.
Collapse
|
61
|
Hatzfeld M, Franke WW. Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol 1985; 101:1826-41. [PMID: 2414304 PMCID: PMC2113979 DOI: 10.1083/jcb.101.5.1826] [Citation(s) in RCA: 263] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokeratins are expressed in different types of epithelial cells in certain combinations of polypeptides of the acidic (type I) and basic (type II) subfamilies, showing "expression pairs." We have examined in vitro the ability of purified and denatured cytokeratin polypeptides of human, bovine, and rat origin to form the characteristic heterotypic subunit complexes, as determined by various electrophoretic techniques and chemical cross-linking, and, subsequently, intermediate-sized filaments (IFs), as shown by electron microscopy. We have found that all of the diverse type I cytokeratin polypeptides examined can form complexes and IFs when allowed to react with equimolar amounts of any of the type II polypeptides. Examples of successful subunit complex and IF formation in vitro include combinations of polypeptides that have never been found to occur in the same cell type in vivo, such as between epidermal cytokeratins and those from simple epithelia, and also heterologous combinations between cytokeratins from different species. The reconstituted complexes and IFs show stability properties, as determined by gradual "melting" and reassociation, that are similar to those of comparable native combinations or characteristic for the specific new pair combination. The results show that cytokeratin complex and IF formation in vitro requires the pairing of one representative of each the type I and type II subfamilies into the heterotypic tetramer but that there is no structural incompatibility between any of the members of the two subfamilies. These findings suggest that the co-expression of specific pair combinations observed in vivo has other reasons than general structural requirements for IF formation and probably rather reflects the selection of certain regulatory programs of expression during cell differentiation. Moreover, the fact that certain cytokeratin polypeptide pairs that readily form complexes in vitro and coexist in the same cells in vivo nevertheless show preferential, if not exclusive, partner relationships in the living cell points to the importance of differences of stabilities among cytokeratin complexes and/or the existence of extracytokeratinous factors involved in the specific formation of certain cytokeratin pairs.
Collapse
|
62
|
Roop DR, Cheng CK, Toftgard R, Stanley JR, Steinert PM, Yuspa SH. The use of cDNA clones and monospecific antibodies as probes to monitor keratin gene expression. Ann N Y Acad Sci 1985; 455:426-35. [PMID: 2417524 DOI: 10.1111/j.1749-6632.1985.tb50426.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
63
|
Winkles JA, Sargent TD, Parry DA, Jonas E, Dawid IB. Developmentally regulated cytokeratin gene in Xenopus laevis. Mol Cell Biol 1985; 5:2575-81. [PMID: 2426572 PMCID: PMC366992 DOI: 10.1128/mcb.5.10.2575-2581.1985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have determined the sequence of cloned cDNAs derived from a 1,665-nucleotide mRNA which transiently accumulates during Xenopus laevis embryogenesis. Computer analysis of the deduced amino acid sequence revealed that this mRNA encodes a 47-kilodalton type I intermediate filament subunit, i.e., a cytokeratin. As is common to all intermediate filament subunits so far examined, the predicted polypeptide, named XK70, contains N- and C-terminal domains flanking a central alpha-helical rod domain. The overall amino acid homology between XK70 and a human 50-kilodalton type I keratin is 47%; homology within the alpha-helical domain is 57%. The N-terminal domain, which is not completely contained in our cDNAs, is basic, contains 42% serine plus alanine, and includes five copies of a six-amino-acid repeating unit. The C-terminal domain has a high alpha-helical content and contains a region with sequence homology to the C-terminal domains of other type I and type III intermediate filament proteins. We suggest that different keratin filament subtypes may have different functional roles during amphibian oogenesis and embryogenesis.
Collapse
|
64
|
Rieger M, Jorcano JL, Franke WW. Complete sequence of a bovine type I cytokeratin gene: conserved and variable intron positions in genes of polypeptides of the same cytokeratin subfamily. EMBO J 1985. [PMID: 2416562 PMCID: PMC554495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The complete sequence of a bovine gene encoding an epidermal cytokeratin of mol. wt. 54 500 (No VIb) of the acidic (type I) subfamily is presented, including an extended 5' upstream region. The gene (4377 bp, seven introns) which codes for a representative of the glycine-rich subtype of cytokeratins of this subfamily, is compared with genes coding for: another subtype of type I cytokeratin; a basic (type II) cytokeratin gene; and vimentin, a representative of another intermediate filament (IF) protein class. The positions of the five introns located within the highly homologous alpha-helix-rich rod domain are identical or equivalent, i.e., within the same triplet, in the two cytokeratin I genes. Four of these intron positions are also identical with intron sites in the vimentin gene, and three of these intron positions are identical or similar in the type I and type II cytokeratin subfamilies. On the other hand, the gene organization of both type I cytokeratins differs from that of the type II cytokeratin in the rod region in five intron positions and in the introns located in the carboxy-terminal tail region, with the exception of one position at the rod-tail junction. Remarkably, the two type I cytokeratins also differ from each other in the positions of two introns located at and in the region coding for the hypervariable, carboxy-terminal portion. The introns and the 5' upstream regions of the cytokeratin VIb gene do not display notable sequence homologies with the other IF protein genes, but sequences identical with--or very similar to--certain viral and immunoglobulin enhancers have been identified.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
65
|
Abstract
DG81 is a cDNA clone derived from a subtracted library containing those RNA molecules that are present in gastrulae but absent from eggs of the frog Xenopus laevis. DG RNAs (where DG indicates differentially expressed in gastrula) represent the products of new transcription activated in the embryo at the midblastula transition or shortly thereafter. DG81 RNA is first detected in middle to late gastrulae, peaks in abundance in early tadpoles, and declines to background levels by the end of metamorphosis. Sequence analysis of an almost full-length cDNA clone homologous to DG81 allows deduction of a protein sequence that shows extensive homology to known intermediate filament proteins, most notably to epidermal type I cytokeratins. Consequently, the protein encoded by DG81 has been named XK81, for Xenopus keratin 81. In concert with keratins analyzed previously, XK81 has a central coiled-coil alpha-helical domain of 312 amino acids, which accounts for most of the homology to other keratins. This rod-like region is flanked by more divergent domains of 73 amino acids at the NH2 terminus and 44 amino acids at the COOH terminus. XK81 provides an example of a cytokeratin whose expression is limited to pre-adult developmental stages. We suggest that XK81 functions specifically in the differentiation of the tadpole epidermis.
Collapse
|
66
|
The sequence of a type II keratin gene expressed in human skin: conservation of structure among all intermediate filament genes. Proc Natl Acad Sci U S A 1985; 82:4683-7. [PMID: 2410904 PMCID: PMC390450 DOI: 10.1073/pnas.82.14.4683] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report here the coding sequence of the gene for a 56-kDa type II keratin (designated K6b). Using a subclone specific for a unique 3' noncoding region of the encoded mRNA, we have shown that this gene is one of at least two 56-kDa keratin genes expressed in abundance in human epidermis. Segmenting the coding portion of this gene are eight introns, six of which are identically positioned with those of a distantly related type III intermediate filament gene (vimentin), and five of which are identically positioned with those of a distantly related type I gene (50-kDa keratin). These results indicate a common ancestral origin for all three classes of intermediate filament genes. All of the highly conserved intron positions are located within, but do not demarcate, the four central alpha-helical domains common to all intermediate filament polypeptides, suggesting that these genes were probably not created piecemeal by recombination-mediated linkage of separate structural domains as they presently are known.
Collapse
|
67
|
Abstract
In a previous communication (Biosci. Rep. 3, 517-525, 1983) we described quantitative X-ray diffraction studies of alpha-keratin which were shown to be consistent with the presence of finite arrays of repeating units, successive arrays being set down at axial intervals of 470 A. In addition the axial interval between repeating units in an array was shown to be 197.9 A. It was suggested that this could most readily be explained by supposing that a surface lattice was present which contained a dislocation along a helical path with unit height h = 470 A and unit twist magnitude of t = 49.1 degrees. The number of repeating units was shown to be in the range 7-9. With 7 repeats the mismatch of the lattice along the dislocation is small and this choice was used to develop a detailed model for the filament. Subsequent studies of molecular interactions have shown however that the coiled-coil rope segments in the rod domain of the molecule are most probably oriented parallel to the dislocation, and so minimization of lattice mismatch may be less important than originally supposed. In the present communication it is shown that the choice of 8, rather than 7, for the number of repeating units yields a model which is more compatible with estimates of the linear density and also provides the basis for a general model for polymorphism in intermediate filament lattices.
Collapse
|
68
|
Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88900-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
69
|
Krieg TM, Schafer MP, Cheng CK, Filpula D, Flaherty P, Steinert PM, Roop DR. Organization of a type I keratin gene. Evidence for evolution of intermediate filaments from a common ancestral gene. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88905-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
70
|
Johnson LD, Idler WW, Zhou XM, Roop DR, Steinert PM. Structure of a gene for the human epidermal 67-kDa keratin. Proc Natl Acad Sci U S A 1985; 82:1896-900. [PMID: 2580302 PMCID: PMC397440 DOI: 10.1073/pnas.82.7.1896] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present the structure and nucleotide sequence of a gene encoding the human epidermal 67-kDa keratin. Three genomic clones were isolated from a lambda Charon 4A human genomic library by hybridization to a specific cDNA probe. One clone of 12.3 kilobase pairs was shown by R-loop, DNA sequence, and primer-extension analyses to encode an entire gene of about 6.25 kilobase pairs. Of eight identified introns, seven are located within the region that encodes the central coiled-coil alpha-helical domain of the protein. Except for one intron located at the end of the region encoding this domain, these do not delineate apparent structural subdomains. The positions of five of the introns exactly coincide with the positions of introns previously reported in the hamster gene for the intermediate filament protein vimentin [Quax, W., Egberts, W.V., Hendricks, W., Quax-Jeuken, Y. & Bloemandal, H. (1983) Cell 35, 215-233]. These findings suggest that the human 67-kDa keratin and vimentin genes arose from a common ancestral gene.
Collapse
|