51
|
Al-Majdoub M, Koy C, Lorenz P, Thiesen HJ, Glocker MO. Mass spectrometric and peptide chip characterization of an assembled epitope: analysis of a polyclonal antibody model serum directed against the Sjøgren/systemic lupus erythematosus autoantigen TRIM21. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:651-659. [PMID: 23722955 DOI: 10.1002/jms.3208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
We demonstrate the development of a mass spectrometry-based epitope-mapping procedure in combination with Western blot analysis that works also with antigens that are insoluble in nondenaturing buffers consuming minute amounts of antigen (approximately 200 pmol) and antibody (approximately 15 pmol), respectively. A polyclonal anti-TRIM21 rabbit antibody serum is applied as a model serum for future patient analyses to set up the system. The major epitope that is recognized by the anti-TRIM21 serum spans the central TRIM21 region LQ-ELEKDEREQLRILGE-KE, showing that immunization with a 139-amino acid residue long peptide resulted in a 'monospecific' polyclonal antibody repertoire. Protein structure investigations, secondary structure predictions, and surface area calculations revealed that the best matching partial sequence to fulfill all primary and secondary structure requirements was the four amino acid spanning motif 'L-E-Q-L', which is present in both the sequential and the α-helical peptide conformation. Peptide chip analyses confirmed the mass spectrometric results and showed that the peptide chip platform is an appropriate method for displaying secondary structure-relying epitope conformations. As the same secondary structures are present in vivo, patient antibody screening, e.g., to identify subgroups of patients according to distinct epitope antibody reactivities, is feasible.
Collapse
Affiliation(s)
- M Al-Majdoub
- Proteome Center Rostock, University of Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
52
|
Paraschiv G, Vincke C, Czaplewska P, Manea M, Muyldermans S, Przybylski M. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry. J Mol Recognit 2012; 26:1-9. [DOI: 10.1002/jmr.2210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/13/2012] [Accepted: 06/20/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Gabriela Paraschiv
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis; University of Konstanz; 78457; Konstanz; Germany
| | | | | | | | | | - Michael Przybylski
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis; University of Konstanz; 78457; Konstanz; Germany
| |
Collapse
|
53
|
Madian AG, Rochelle NS, Regnier FE. Mass-linked immuno-selective assays in targeted proteomics. Anal Chem 2012; 85:737-48. [PMID: 22950521 DOI: 10.1021/ac302071k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ashraf G Madian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
54
|
Petre BA, Ulrich M, Stumbaum M, Bernevic B, Moise A, Döring G, Przybylski M. When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1831-1840. [PMID: 22907170 DOI: 10.1007/s13361-012-0461-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar K(D) values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.
Collapse
Affiliation(s)
- Brînduşa-Alina Petre
- Steinbeis Research and Transfer Center for Biopolymer Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
55
|
Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA–MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem 2012; 404:423-32. [DOI: 10.1007/s00216-012-6130-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/19/2012] [Accepted: 05/20/2012] [Indexed: 01/20/2023]
|
56
|
Maftei M, Tian X, Manea M, Exner TE, Schwanzar D, von Arnim CAF, Przybylski M. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer's β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J Pept Sci 2012; 18:373-82. [PMID: 22522311 DOI: 10.1002/psc.2404] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 02/02/2023]
Abstract
Humanin (HN) is a linear 24-aa peptide recently detected in human Alzheimer's disease (AD) brain. HN specifically inhibits neuronal cell death in vitro induced by ß-amyloid (Aß) peptides and by amyloid precursor protein and its gene mutations in familial AD, thereby representing a potential therapeutic lead structure for AD; however, its molecular mechanism of action is not well understood. We report here the identification of the binding epitopes between HN and Aß(1-40) and characterization of the interaction structure through a molecular modeling study. Wild-type HN and HN-sequence mutations were synthesized by SPPS and the HPLC-purified peptides characterized by MALDI-MS. The interaction epitopes between HN and Aß(1-40) were identified by affinity-MS using proteolytic epitope excision and extraction, followed by elution and mass spectrometric characterization of the affinity-bound peptides. The affinity-MS analyses revealed HN(5-15) as the epitope sequence of HN, whereas Aß(17-28) was identified as the Aß interaction epitope. The epitopes and binding sites were ascertained by ELISA of the complex of HN peptides with immobilized Aß(1-40) and by ELISA with Aß(1-40) and Aß-partial sequences as ligands to immobilized HN. The specificity and affinity of the HN-Aß interaction were characterized by direct ESI-MS of the HN-Aß(1-40) complex and by bioaffinity analysis using a surface acoustic wave biosensor, providing a K(D) of the complex of 610 nm. A molecular dynamics simulation of the HN-Aß(1-40) complex was consistent with the binding specificity and shielding effects of the HN and Aß interaction epitopes. These results indicate a specific strong association of HN and Aß(1-40) polypeptide and provide a molecular basis for understanding the neuroprotective function of HN.
Collapse
Affiliation(s)
- Madalina Maftei
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
57
|
Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 2012; 25:114-24. [DOI: 10.1002/jmr.1169] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
58
|
Vlad C, Lindner K, Karreman C, Schildknecht S, Leist M, Tomczyk N, Rontree J, Langridge J, Danzer K, Ciossek T, Petre A, Gross ML, Hengerer B, Przybylski M. Autoproteolytic fragments are intermediates in the oligomerization/aggregation of the Parkinson's disease protein alpha-synuclein as revealed by ion mobility mass spectrometry. Chembiochem 2011; 12:2740-4. [PMID: 22162214 DOI: 10.1002/cbic.201100569] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Indexed: 12/29/2022]
Abstract
Gas-phase protein separation by ion mobility: With its ability to separate the Parkinson's disease protein α-synuclein and its autoproteolytic products-despite the small concentrations of the latter-ion-mobility MS has enabled the characterization of intermediate fragments in in vitro oligomerization-aggregation. In particular, a possible key fragment, the highly aggregating C-terminal fragment, αSyn(72-140), has been revealed.
Collapse
Affiliation(s)
- Camelia Vlad
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Jones LM, B Sperry J, A Carroll J, Gross ML. Fast photochemical oxidation of proteins for epitope mapping. Anal Chem 2011; 83:7657-61. [PMID: 21894996 PMCID: PMC3193551 DOI: 10.1021/ac2007366] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing use of monoclonal antibodies as therapeutics underscores the importance of epitope mapping as an essential step in characterizing antibody-antigen complexes. The use of protein footprinting coupled with mass spectrometry, which is emerging as a tool in structural biology, offers opportunities to map antibody-binding regions of antigens. We report here the use of footprinting via fast photochemical oxidation of proteins (FPOP) with OH radicals to characterize the epitope of the serine protease thrombin. The data correlate well with previously published results that determined the epitope of thrombin. This study marks the first time oxidative labeling has been used for epitope mapping.
Collapse
Affiliation(s)
- Lisa M Jones
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
| | | | | | | |
Collapse
|
60
|
Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, Blakney GT, Zhang HM, Marshall AG. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2011; 83:7129-36. [PMID: 21861454 PMCID: PMC3173601 DOI: 10.1021/ac201501z] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epitopes of a homohexameric food allergen protein, cashew Ana o 2, identified by two monoclonal antibodies, 2B5 and 1F5, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and the results were compared to previous mapping by immunological and mutational analyses. Antibody 2B5 defines a conformational epitope, and 1F5 defines a linear epitope. Intact murine IgG antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen-monoclonal antibody (Ag-mAb) complexes. mAb-complexed and uncomplexed (free) rAna o 2 were then subjected to HDX. HDX instrumentation and automation were optimized to achieve high sequence coverage by protease XIII digestion. The regions protected from H/D exchange upon antibody binding overlap and thus confirm the previously identified epitope-bearing segments: the first extension of HDX monitored by mass spectrometry to a full-length antigen-antibody complex in solution.
Collapse
Affiliation(s)
- Qian Zhang
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - LeAnna N. Willison
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Pallavi Tripathi
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Shridhar K. Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306
| | - Kenneth H. Roux
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Mark R. Emmett
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Greg T. Blakney
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Hui-Min Zhang
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Alan G. Marshall
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| |
Collapse
|
61
|
Moise A, André S, Eggers F, Krzeminski M, Przybylski M, Gabius HJ. Toward Bioinspired Galectin Mimetics: Identification of Ligand-Contacting Peptides by Proteolytic-Excision Mass Spectrometry. J Am Chem Soc 2011; 133:14844-7. [DOI: 10.1021/ja201967v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Adrian Moise
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Frederike Eggers
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Mickael Krzeminski
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Michael Przybylski
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
62
|
Jiang M, Zhao Y, Shen F, Wang F, He Y, Ruan C. Epitope mapping of human VWF A3 recognized by monoclonal antibody SZ-123 and SZ-125 using MALDI mass spectrometry. Int J Hematol 2011; 94:241-247. [DOI: 10.1007/s12185-011-0904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
63
|
Röwer C, Ziems B, Radtke A, Schmitt O, Reimer T, Koy C, Thiesen HJ, Gerber B, Glocker MO. Toponostics of invasive ductal breast carcinoma: combination of spatial protein expression imaging and quantitative proteome signature analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:454-467. [PMID: 21738817 PMCID: PMC3127067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/27/2011] [Indexed: 05/31/2023]
Abstract
Due to enormous advances in quantitative proteomics and in immunohistochemistry (pathology), the two research areas have now reached the state to be successfully interwoven in order to tackle challenges in toponostics and to open tumor-targeted systems pathology approaches. In this study the differential expressions of candidate proteins nucleophosmin, nucleoside diphosphate kinase A/B (NDKA/B), osteoinducive factor (mimecan), and pyru-vate kinase M2 from a quantitative proteome signature for invasive ductal breast cancer were determined by immunohistochemistry on 53 tissue slices from formalin-fixed and paraffin-embedded tumor and control tissue samples from ten patients and fourteen controls. In addition, 87 images from the Human Protein Atlas representing seven tumor and nine normal breast tissue samples were investigated by computer-assisted semi-quantitative density measurements on nucleophosmin, nucleoside diphosphate kinase A/B (NDKA/B), osteoinducive factor (mimecan), pyruvate kinase M2, glyceraldehyde-3-phosphate dehydro-genase (GAP-DH), and mimecan (osteoinductive factor). Both IHC data sets match well to each other and support the quantitative proteome analysis data. Determining spatial distribution of signature protein expressions by protein imaging on morphologically intact tissue samples at the sub-cellular level and, hence, keeping all topological information, presents an added value to quantitative proteome data. Such comprehensive data sets are needed for both, pathway analyses and for "next generation clinical diagnostics" approaches.
Collapse
Affiliation(s)
- Claudia Röwer
- Proteome Center Rostock, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Stefanescu R, Born R, Moise A, Ernst B, Przybylski M. Epitope structure of the carbohydrate recognition domain of asialoglycoprotein receptor to a monoclonal antibody revealed by high-resolution proteolytic excision mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:148-157. [PMID: 21472553 DOI: 10.1007/s13361-010-0010-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.
Collapse
Affiliation(s)
- Raluca Stefanescu
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
65
|
Tu T, Drăguşanu M, Petre BA, Rempel DL, Przybylski M, Gross ML. Protein-peptide affinity determination using an h/d exchange dilution strategy: application to antigen-antibody interactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1660-1667. [PMID: 20444623 PMCID: PMC2932787 DOI: 10.1016/j.jasms.2010.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 05/27/2023]
Abstract
A new methodology using hydrogen/deuterium amide exchange (HDX) to determine the binding affinity of protein-peptide interactions is reported. The method, based on our previously established approach, protein ligand interaction by mass spectrometry, titration, and H/D exchange (PLIMSTEX) [J. Am. Chem. Soc.2003, 125, 5252-5253], makes use of a dilution strategy (dPLIMSTEX) for HDX, using the mass of the peptide ligand as readout. We employed dPLIMSTEX to study the interaction of calcium-saturated calmodulin with the opioid peptide β-endorphin as a model system; the affinity results are in good agreement with those from traditional PLIMSTEX and with literature values obtained by using other methods. We show that the dPLIMSTEX method is feasible to quantify an antigen-antibody interaction involving a 3-nitrotyrosine modified peptide in complex with a monoclonal anti-nitrotyrosine antibody. A dissociation constant in the low nanomolar range was determined, and a binding stoichiometry of antibody/peptide of 1:2 was confirmed. In addition, we determined that the epitope in the binding interface contains a minimum of five amino acids. The dPLIMSTEX approach is a sensitive and powerful tool for the quantitative determination of peptide affinities with antibodies, complementary to conventional immuno-analytical techniques.
Collapse
Affiliation(s)
- Tingting Tu
- Center for Biomedical and Bioorganic Mass Spectrometry, Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Mihaela Drăguşanu
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Brînduşa-Alina Petre
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Don L. Rempel
- Center for Biomedical and Bioorganic Mass Spectrometry, Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael Przybylski
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Michael L. Gross
- Center for Biomedical and Bioorganic Mass Spectrometry, Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
66
|
Doucet J, Avrameas A. A novel method for quantitative measurement of a therapeutic monoclonal antibody in the presence of its target protein using enzymatic digestion. J Pharm Biomed Anal 2010; 52:565-70. [DOI: 10.1016/j.jpba.2010.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/14/2010] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
|
67
|
El-Kased RF, Koy C, Lorenz P, Drynda S, Guthke R, Qian Z, Koczan D, Li Y, Kekow J, Thiesen HJ, Glocker MO. Mass spectrometric and peptide chip epitope analysis on the RA33 autoantigen with sera from rheumatoid arthritis patients. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:443-451. [PMID: 20530829 DOI: 10.1255/ejms.1046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
As the potential of epitope chips for routine application in diagnostics relies on the careful selection of peptides, reliable epitope mapping results are of utmost interest to the medical community. Mass spectrometric epitope mapping in combination with peptide chip analysis showed that autoantibodies from patients who suffered from rheumatoid arthritis (RA) were directed against distinct surface structures on the full-length human autoantigen RA33 as well as against partial sequences. Using the combined mass spectrometric epitope extraction and peptide chip analysis approach, four sequence motifs on RA33 emerged as immuno-positive, showing that epitopes were not randomly distributed on the entire RA33 amino acid sequence. A sequential epitope motif ((245)GYGGG(249)) was determined on the C-terminal part of RA33 which matched with the Western blot patient screening results using the full-length protein and, thus, was regarded as a disease-associated epitope. Other epitope motifs were found on N-terminal partial sequences ((59)RSRGFGF(65), (111)KKLFVG(116)) and again on the C-terminal part ((266)NQQPSNYG(273)) of RA33. As recognition of these latter three motifs was also recorded by peptide chip analysis using control samples which were negative in the Western blot screening, these latter motifs were regarded as "cryptic epitopes". Knowledge of disease-associated epitopes is crucial for improving the design of a customized epitope peptide chip for RA and mass spectrometric epitope mapping pivotally assisted with selecting the most informative peptide(s) to be used for future diagnostic purposes.
Collapse
Affiliation(s)
- R F El-Kased
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Polystyrene beads as an alternative support material for epitope identification of a prion-antibody interaction using proteolytic excision–mass spectrometry. Anal Bioanal Chem 2009; 395:1395-401. [DOI: 10.1007/s00216-009-3119-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 08/24/2009] [Accepted: 08/29/2009] [Indexed: 10/20/2022]
|
69
|
A broad screen for targets of immune complexes decorating arthritic joints highlights deposition of nucleosomes in rheumatoid arthritis. Proc Natl Acad Sci U S A 2009; 106:15867-72. [PMID: 19720992 DOI: 10.1073/pnas.0908032106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deposits of Ig and complement are abundant in affected joints of patients with rheumatoid arthritis (RA) and in animal models of RA in which antibodies are demonstrably pathogenic. To identify molecular targets of the Igs deposited in arthritic joints, which may activate local inflammation, we used a combination of mass spectrometry (MS) and protein microarrays. Immune complexes were affinity-purified from surgically removed joint tissues of 26 RA and osteoarthritis (OA) patients. Proteins complexed with IgG were identified by proteomic analysis using tandem MS. A striking diversity of components of the extracellular matrix, and some intracellular components, copurified specifically with IgG from RA and OA tissues. A smaller set of autoantigens was observed only in RA eluates. In complementary experiments, IgG fractions purified from joint immune complexes were tested on protein microarrays against a range of candidate autoantigens. These Igs bound a diverse subset of proteins and peptides from synovium and cartilage, different from that bound by normal serum Ig. One type of intracellular protein detected specifically in RA joints (histones H2A/B) was validated by immunohistology and found to be deposited on the cartilage surface of RA but not OA joints. Thus, autoantibodies to many determinants (whether deposited as "neoantigens" or normal constituents of the extracellular matrix) have the potential to contribute to arthritic inflammation.
Collapse
|
70
|
Coales SJ, Tuske SJ, Tomasso JC, Hamuro Y. Epitope mapping by amide hydrogen/deuterium exchange coupled with immobilization of antibody, on-line proteolysis, liquid chromatography and mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:639-647. [PMID: 19170039 DOI: 10.1002/rcm.3921] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The epitope of horse cytochrome c against monoclonal antibody E8 was determined using amide hydrogen/deuterium (H/D) exchange combined with immobilized antibody, on-line pepsin proteolysis, liquid chromatography (LC), and mass spectrometry (MS). The results were generally in good agreement with contact residues identified by an X-ray co-crystal structure of the E8-cytochrome c complex and results obtained by H/D exchange with nuclear magnetic resonance (NMR) spectrometry. The H/D exchange reaction of cytochrome c was carried out in the presence or absence of immobilized E8 antibody. Regions that gained less deuterium in the presence of the antibody than in its absence are defined as the epitope by the H/D exchange MS method. Control experiments were carefully designed to help identify the epitope with high confidence.
Collapse
Affiliation(s)
- Stephen J Coales
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ 08852, USA
| | | | | | | |
Collapse
|
71
|
Dhungana S, Williams JG, Fessler MB, Tomer KB. Epitope mapping by proteolysis of antigen-antibody complexes. Methods Mol Biol 2009; 524:87-101. [PMID: 19377939 DOI: 10.1007/978-1-59745-450-6_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to accurately characterize an epitope on an antigen is essential to understand the pathogenesis of an infectious material, and for the design and development of drugs and vaccines. Emergence of a new contagious microbial or viral variant necessitates the need for robust identification and characterization of the antigenic determinant. Recent advances have made mass spectrometry (MS) a robust and sensitive analytical tool with high mass accuracy. The use of MS to characterize peptides and proteins has gained popularity in the research arena involving protein-protein interactions. Combining the modern mass spectrometric principles of protein-protein interaction studies with the classical use of limited proteolysis, a linear epitope on a peptide or a protein antigen can be accurately mapped in a short time, compared with other traditional techniques available for epitope mapping. Additionally, complete MS analyses can be achieved with very little sample consumption. Here we discuss the overall approach to characterize the detailed interaction between a linear antigen (either a peptide or a protein antigen) and its corresponding monoclonal antibody by using MS. The steps involved in epitope excision, epitope extraction, and indirect immunosorption are outlined thoroughly. Conditions required for MS analysis using either matrix assisted laser desorption ionization (MALDI) or electrospray ionization (ESI) sources are summarized, with special emphasis on the experimental protocols.
Collapse
Affiliation(s)
- Suraj Dhungana
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, 111 T.W. Alexander Drive, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
72
|
El-Kased RF, Koy C, Deierling T, Lorenz P, Qian Z, Li Y, Thiesen HJ, Glocker MO. Mass spectrometric and peptide chip epitope mapping of rheumatoid arthritis autoantigen RA33. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:747-759. [PMID: 19940341 DOI: 10.1255/ejms.1040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The protein termed RA33 was determined to be one major autoantigen in rheumatoid arthritis (RA) patients and antiRA33 auto-antibodies were found to appear shortly after onset of RA. They are often detectable before a final diagnosis can be made in the clinic. The aim of our study is to characterise the epitope of a monoclonal antiRA33 antibody on recombinant RA33 using mass spectrometric epitope mapping. Recombinant RA33 has been subjected to BrCN cleavage and fragments were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Subsequent in-gel proteolytic digestion and mass spectrometric analysis determined the partial sequences in the protein bands. Western blotting of SDS-PAGE-separated protein fragments revealed immuno-positive, i.e. epitope-containing bands. BrCN-derived RA33 fragments were also separated by high- performance liquid chromatography (HPLC) and immuno-reactivity of peptides was measured by dot-blot analysis with the individual HPLC fractions after partial amino acid sequences were determined. The epitope region identified herewith was compared to data from peptide chip analysis with 15-meric synthetic peptides attached to a glass surface. Results from all three analyses consistently showed that the epitope of the monoclonal antiRA33 antibody is located in the aa79-84 region on recombinant RA33; the epitope sequence is MAARPHSIDGRVVEP. Sequence comparisons of the 15 best scoring peptides from the peptide chip analysis revealed that the epitope can be separated into two adjacent binding parts. The N-terminal binding parts comprise the amino acid residues "DGR", resembling the general physico-chemical properties "acidic/polar-small-basic". The C-terminal binding parts contain the amino acid residues "VVE", with the motif "hydrophobic-gap-acidic". The matching epitope region that emerged from our analysis on both the full-length protein and the 15-meric surface bound peptides suggests that peptide chips are indeed suitable tools for screening patterns of autoantibodies in patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- R F El-Kased
- Proteome Center Rostock, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 2008; 8:215-25. [PMID: 18723842 DOI: 10.1074/mcp.m800187-mcp200] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine acetylation and its regulatory enzymes are known to have pivotal roles in mammalian cellular physiology. However, the extent and function of this modification in prokaryotic cells remain largely unexplored, thereby presenting a hurdle to further functional study of this modification in prokaryotic systems. Here we report the first global screening of lysine acetylation, identifying 138 modification sites in 91 proteins from Escherichia coli. None of the proteins has been previously associated with this modification. Among the identified proteins are transcriptional regulators, as well as others with diverse functions. Interestingly, more than 70% of the acetylated proteins are metabolic enzymes and translation regulators, suggesting an intimate link of this modification to energy metabolism. The new dataset suggests that lysine acetylation could be abundant in prokaryotic cells. In addition, these results also imply that functions of lysine acetylation beyond regulation of gene expression are evolutionarily conserved from bacteria to mammals. Furthermore, we demonstrate that bacterial lysine acetylation is regulated in response to stress stimuli.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Iacob RE, Keck Z, Olson O, Foung SKH, Tomer KB. Structural elucidation of critical residues involved in binding of human monoclonal antibodies to hepatitis C virus E2 envelope glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:530-42. [PMID: 18230369 DOI: 10.1016/j.bbapap.2007.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/03/2007] [Accepted: 12/24/2007] [Indexed: 02/03/2023]
Abstract
Human monoclonal antibodies derived from B cells of HCV-infected individuals provide information on the immune response to native HCV envelope proteins as they are recognized during infection. Monoclonal antibodies have been useful in the determination of the function and structure of specific immunogenic domains of proteins and should also be useful for the structure/function characterization of HCV E1 and E2 envelope glycoproteins. The HCV E2 envelope glycoprotein has at least three immunodistinctive conformation domains, designated A, B, and C. Conformational epitopes within domain B and C are neutralizing antibody targets on HCV pseudoparticles as well as from infectious cell culture virus. In this study, a combination of differential surface modification and mass spectrometric limited proteolysis followed by alanine mutagenesis was used to provide insight into potential conformational changes within the E2 protein upon antibody binding. The arginine guanidine groups in the E2 protein were modified with CHD in both the affinity bound and free states followed by mass spectrometric analysis, and the regions showing protection upon antibody binding were identified. This protection can arise by direct contact between the residues and the monoclonal antibody, or by antibody-induced conformational changes. Based on the mass spectrometric data, site-directed mutagenesis experiments were performed which clearly identified additional amino acid residues on E2 distant from the site of antibody interaction, whose change to alanine inhibited antibody recognition by inducing conformational changes within the E2 protein.
Collapse
Affiliation(s)
- Roxana E Iacob
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
75
|
Petre BA, Drăguşanu M, Przybylski M. Molecular Recognition Specificity of anti-3-nitrotyrosine Antibodies Revealed by Affinity-Mass Spectrometry and Immunoanalytical Methods. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-1-4020-8811-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
76
|
Marquardt A, Muyldermans S, Przybylski M. A synthetic camel anti-lysozyme peptide antibody (peptibody) with flexible loop structure identified by high-resolution affinity mass spectrometry. Chemistry 2007; 12:1915-23. [PMID: 16358348 DOI: 10.1002/chem.200500785] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe the synthesis and characterisation of the fully functional molecular recognition structure of a 26-amino acid residue peptide antibody, referred to as peptibody, designed from a monoclonal single-domain antibody fragment derived from a camel heavy-chain antibody. The CDR3 region (CDR = complementarity determining region) of the cAbLys3 camel antibody fragment, which binds to the active site of hen eggwhite lysozyme (HEL) and acts as a potent enzyme inhibitor by mimicking an oligosaccharide substrate, was prepared by solid-phase peptide synthesis. To obtain a closed loop-like structure resembling that in the crystal structure, N- and C-terminal cysteine residues were added to the linear peptide and oxidised to a cyclic disulfide-bridged peptide by using dimethylsulfoxide. A further, internal cysteine-12 residue was acetamidomethyl-protected to prevent possible oxidative byproducts. Affinity separation on a lysozyme microcolumn combined with MALDI-TOF mass spectrometry revealed that the peptide resumed high affinity to lysozyme only after deprotection of Cys-12, suggesting the importance of this paratope sequence for epitope recognition. The complex of lysozyme and active peptibody was characterised directly by conducting high-resolution ESI-FTICR mass spectrometry, which provided a molecular comparison of affinities for linear and cyclic peptibodies.
Collapse
Affiliation(s)
- Andreas Marquardt
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Konstanz, 78457 Konstanz (Germany)
| | | | | |
Collapse
|
77
|
Stefanescu R, Iacob RE, Damoc EN, Marquardt A, Amstalden E, Manea M, Perdivara I, Maftei M, Paraschiv G, Przybylski M. Mass spectrometric approaches for elucidation of antigenantibody recognition structures in molecular immunology. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:69-75. [PMID: 17878542 DOI: 10.1255/ejms.849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mass spectrometric approaches have recently gained increasing access to molecular immunology and several methods have been developed that enable detailed chemical structure identification of antigen-antibody interactions. Selective proteolytic digestion and MS-peptide mapping (epitope excision) has been successfully employed for epitope identification of protein antigens. In addition, "affinity proteomics" using partial epitope excision has been developed as an approach with unprecedented selectivity for direct protein identification from biological material. The potential of these methods is illustrated by the elucidation of a beta-amyloid plaque-specific epitope recognized by therapeutic antibodies from transgenic mouse models of Alzheimer's disease. Using an immobilized antigen and antibody-proteolytic digestion and analysis by high resolution Fourier transform ion cyclotron resonance mass spectrometry has lead to a new approach for the identification of antibody paratope structures (paratope-excision; "parex-prot"). In this method, high resolution MS-peptide data at the low ppm level are required for direct identification of paratopes using protein databases. Mass spectrometric epitope mapping and determination of "molecular antibody-recognition signatures" offer high potential, especially for the development of new molecular diagnostics and the evaluation of new vaccine lead structures.
Collapse
Affiliation(s)
- Raluca Stefanescu
- University of Konstanz, Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Universitaetsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Mass spectrometry has evolved as a technique suitable for the characterization of peptides and proteins beyond their linear sequence. The advantages of mass spectrometric sample analysis are high sensitivity, high mass accuracy, rapid analysis time and low sample consumption. In epitope mapping, the molecular structure of an antigen (the epitope or antigenic determinant) that interacts with the paratope (recognition surface) of the antibody is identified. To obtain information on linear, conformational and/or discontinuous epitopes, various approaches have been developed in conjunction with mass spectrometry. These methods include limited proteolysis and epitope footprinting, epitope excision and epitope extraction for linear epitopes and probing the surface accessibility of residues by differential chemical modifications of specific amino acid side chains or by differential hydrogen/deuterium exchange of the protein backbone amides for conformational and discontinuous epitopes. Epitope mapping by mass spectrometry is applicable in basic biochemical research and, with increasing robustness, should soon find its implementation in routine clinical diagnosis.
Collapse
Affiliation(s)
- Christine Hager-Braun
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
79
|
Gao J, Gao Y, Ju Y, Yang J, Wu Q, Zhang J, Du X, Wang Z, Song Y, Li H, Luo X, Ren F, Li J, Chen Y, Wang L, Xu H, Liu X, Wang J, Zhang Y, Cai Y, Cui Y, Qian X, He F, Li M, Sun QH. Proteomics-based generation and characterization of monoclonal antibodies against human liver mitochondrial proteins. Proteomics 2006; 6:427-37. [PMID: 16342244 DOI: 10.1002/pmic.200500409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monoclonal antibodies (mAbs) have the potential to be a very powerful tool in proteomics research to determine protein expression, quantification, localization and modification, as well as protein-protein interactions, especially when combined with microarray technology. Thus, a large amount of well-characterized and highly qualified antibodies are needed in proteomics. Purified antigen, which is not always available, has proven to be one of the rate-limiting steps in mAb large-scale generation. Here we describe our strategies to establish a murine hybridoma cell bank for human liver mitochondria using unknown native proteins as the immunogens. The antibody-recognized mitochondrial proteins were identified by MS following immunoprecipitation (IP), and by screening of human liver cDNA expression library. We found that the established antibodies reacted specifically with a number of important enzymes in mitochondria. The subcellular localization of these antigens in mitochondria was further confirmed by immunohistocytochemistry. A panel of antibodies was also tested for their ability to capture and deplete the targeting proteins and complexes from the total mitochondrial proteins. We believe these well-characterized antibodies would be useful in various applications for Human Liver Proteome Project (HLPP) when the scale of this hybridoma cell bank is enlarged significantly in the near future.
Collapse
Affiliation(s)
- Jianen Gao
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Wong JWH, Downard KM. Performance of the computer algorithm COMPLX for the detection of protein complexes in the mass spectra of simulated biological mixtures. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1187-96. [PMID: 16106416 DOI: 10.1002/jms.894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The performance of the algorithm COMPLX for detecting protein-ligand or other macromolecular complexes has been tested for highly complex data sets. These data contain m/z values for ions of proteins of the SWISS-PROT database within simulated biological mixtures where each component shares a similar molecular weight and/or isoelectric point (pI). As many as 1600 ion signals were entered to challenge the algorithm to identify ion signals associated with a single protein complex that has been ionised and detected within a mass spectrometer. Despite the complexity of such data sets, the algorithm is shown to be able to identify the presence of individual bimolecular complexes. The output data can be re-evaluated by the user as necessary in light of any additional information that is known concerning the nature of predicted associations, as well as the quality of the data-set in terms of errors in m/z values as a direct consequence of the mass calibration or resolution achieved. The data presented illustrates that the best results are obtained when output results are ranked according to the largest continuous series of ion pairs detected for a protein or macromolecule and its complex for which the ligand mass is assigned the lowest mass error.
Collapse
Affiliation(s)
- Jason W H Wong
- School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
81
|
Warren EN, Jiang J, Parker CE, Borchers CH. Absolute quantitation of cancer-related proteins using an MS-based peptide chip. Biotechniques 2005; Suppl:7-11. [PMID: 16528910 DOI: 10.2144/05386su01] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
New technologies are needed that can diagnose cancer more rapidly and accurately. These technologies must also have the ability to identify the particular cellular abnormalities contributing to the malignancy, thus directing the appropriate treatments. Such technologies should permit absolute quantitation of specific tumor biomarkers and their level of posttranslational modifications. Quantitative molecular profiling of cancer signaling networks would provide a more detailed understanding of the contribution of protein expression and posttranslational modification levels to tumorigenesis. We have developed a unique approach for absolute quantitation of protein expression that integrates affinity capture of proteolytic peptides with mass spectrometry and thus provides detection, identification, and quantitation of their cognate proteins. We have previously shown the high sensitivity and specificity of this approach. Here we demonstrate the absolute quantitation of a model peptide using our technology. We have used this approach to capture epitope-containing peptides from proteolytically digested target proteins, including p53, epidermal growth factor receptor (EGFR), and prostate-specific antigen (PSA). Our technology can easily be extended to the absolute quantitation of protein modification levels, in addition to the determination of protein expression levels, and can be readily adapted for use in a microarray format. This method offers an improved approach to protein chip technology that should prove useful for clinical diagnosis and drug development applications.
Collapse
Affiliation(s)
- Erin N Warren
- University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
82
|
Warren EN, Elms PJ, Parker CE, Borchers CH. Development of a protein chip: a MS-based method for quantitation of protein expression and modification levels using an immunoaffinity approach. Anal Chem 2005; 76:4082-92. [PMID: 15253646 DOI: 10.1021/ac049880g] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein chip technology permits analysis of the expression and modification status of numerous targeted proteins within a single experiment, mainly through the use of antibody-based microarrays. Despite recent improvements in these protein chips, their applications are still limited for a variety of reasons, which include technical challenges in fabrication of the antibody chips as well as the very low specificity achieved by current detection methods. We have developed a unique approach for relative and/or absolute quantitation of protein expression and modification based on the capture of epitope peptides on affinity beads, which can be used to develop a mass-spectrometry-based protein chip technology. This new method, which utilizes antibodies immobilized on beads for the capture of target peptides, instead of proteins, eliminates many of the problems previously associated with protein chips. We present here several proof-of-principle experiments examining model peptides by this technique. These experiments show that the method is capable of (i). detecting peptides bound to a single antibody bead, (ii). detecting peptides at low (fmol) levels, (iii). producing MS/MS data of suitable quality for protein identification via database searching or de novo sequencing, (iv). quantitating peptides affinity-bound to antibody beads, (v). specifically detecting target peptides in complex mixtures over wide dynamic ranges, and (vi) is compatible with a microarray format for high-throughput analysis. Because our novel method uses antibody beads instead of a derivatized capture surface, and peptides instead of proteins for affinity capture, it can overcome many of the pitfalls of previous protein chip fabrications. Therefore, this method offers an improved approach to protein chip technology that should prove useful for diagnostics and drug development applications.
Collapse
Affiliation(s)
- Erin N Warren
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, CB# 7260, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
83
|
Limited proteolysis combined with isotope labeling and quantitative LC-MALDI MS for monitoring protein conformational changes: a study on calcium-binding sites of cardiac Troponin C. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
84
|
Schlosser G, Vékey K, Malorni A, Pocsfalvi G. Combination of solid-phase affinity capture on magnetic beads and mass spectrometry to study non-covalent interactions: example of minor groove binding drugs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3307-14. [PMID: 16217838 DOI: 10.1002/rcm.2193] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A simple and novel approach was developed to detect non-covalent interactions. It is based on combination of solid-phase affinity capture with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). One of the interacting molecules is bound to magnetic beads and is incubated with the target molecules in solution. The complex bound on the solid support is removed from the solution and transferred for MALDI analysis. Mass spectrometry is used only to detect the target compound, which is far more straightforward than detecting the intact non-covalent complex. To demonstrate the applicability of the method, an AT-rich oligonucleotide (5'-CCCCCAATTCCCCC-3') and its complementary biotinylated sequence (5'-biotin-GGGGGAATTGGGGG-3') were hybridized and immobilized to paramagnetic particles by streptavidin-biotin interaction. The immobilized duplex oligonucleotide was reacted with minor groove binding drugs, Netropsin, Distamycin A, Hoechst 33258 and 4',6-diamidino-2-phenylindole. The resulting DNA-drug complex bound to the particles was separated and analyzed by linear MALDI-TOFMS after washing. Drugs were selectively detected in the spectra. Relative binding strengths were also estimated using competitive complexation.
Collapse
Affiliation(s)
- Gitta Schlosser
- Proteomic and Biomolecular Mass Spectrometry Center (CeSMa-ProBio), Institute of Food Science and Technology, C.N.R., via Roma 52 a/c, 83100 Avellino, Italy
| | | | | | | |
Collapse
|
85
|
Rhodin NR, Cutalo JM, Tomer KB, McArthur WP, Brady LJ. Characterization of the Streptococcus mutans P1 epitope recognized by immunomodulatory monoclonal antibody 6-11A. Infect Immun 2004; 72:4680-8. [PMID: 15271929 PMCID: PMC470667 DOI: 10.1128/iai.72.8.4680-4688.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/12/2004] [Accepted: 05/13/2004] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibody (MAb) 6-11A directed against Streptococcus mutans surface adhesin P1 was shown previously to influence the mucosal immunogenicity of this organism in BALB/c mice. The specificity of anti-P1 serum immunoglobulin G (IgG) and secretory IgA antibodies and the subclass distribution of anti-P1 serum IgG antibodies were altered, and the ability of elicited serum antibodies to inhibit S. mutans adherence in vitro was in certain cases increased. MAb 6-11A is known to recognize an epitope dependent on the presence of the proline-rich region of the protein, although it does not bind directly to the isolated P-region domain. In this report, we show that MAb 6-11A recognizes a complex discontinuous epitope that requires the simultaneous presence of the alanine-rich repeat domain (A-region) and the P-region. Formation of the core epitope requires the interaction of these segments of P1. Residues amino terminal to the A-region also contributed to recognition by MAb 6-11A but were not essential for binding. Characterization of the MAb 6-11A epitope will enable insight into potential mechanisms of immunomodulation and broaden our understanding of the tertiary structure of P1.
Collapse
Affiliation(s)
- Nikki R Rhodin
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | |
Collapse
|
86
|
Weiler T, Sauder P, Cheng K, Ens W, Standing K, Wilkins JA. A proteomics-based approach for monoclonal antibody characterization. Anal Biochem 2004; 321:217-25. [PMID: 14511687 DOI: 10.1016/s0003-2697(03)00469-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The determination of monoclonal antibody specificity is dependent upon the availability of purified antigen. Such material is not always available and this has proven to be one of the rate-limiting steps in monoclonal antibody production. The aim of the present study was to develop a generic approach to defining antibody specificity that bypassed the need for pure antigens through the use of proteomics. The scheme and its application to several biological mixtures are described. The results demonstrate the ability of the approach to identify antibodies against both the major components and the minor contaminants of a protein mixture. This approach should markedly enhance the characterization of antibodies to complex antigen mixtures.
Collapse
Affiliation(s)
- Tracey Weiler
- Rheumatic Diseases Research Laboratory, Department of Internal Medicine, University of Manitoba, MB, Winnipeg R3E 3P4, Canada
| | | | | | | | | | | |
Collapse
|
87
|
Macht M, Marquardt A, Deininger SO, Damoc E, Kohlmann M, Przybylski M. "Affinity-proteomics": direct protein identification from biological material using mass spectrometric epitope mapping. Anal Bioanal Chem 2004; 378:1102-11. [PMID: 12955276 DOI: 10.1007/s00216-003-2159-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Revised: 06/30/2003] [Accepted: 07/04/2003] [Indexed: 11/28/2022]
Abstract
We describe here a new approach for the identification of affinity-bound proteins by proteolytic generation and mass spectrometric analysis of their antibody bound epitope peptides (epitope excision). The cardiac muscle protein troponin T was chosen as a protein antigen because of its diagnostic importance in myocardial infarct, and its previously characterised epitope structure. Two monoclonal antibodies (IgG1-1B10 and IgG1-11.7) raised against intact human troponin T were found to be completely cross reactive with bovine heart troponin T. A combination of immuno-affinity isolation, partial proteolytic degradation (epitope excision), mass spectrometric peptide mapping, and database analysis was used for the direct identification of Tn T from bovine heart cell lysate. Selective binding of the protein was achieved by addition of bovine heart cell lysate to the Sepharose-immobilised monoclonal antibodies, followed by removal of supernatant material containing unbound protein. While still bound to the affinity matrix the protein was partially degraded thereby generating a set of affinity-bound, overlapping peptide fragments comprising the epitope. Following dissociation from the antibody the epitope peptides were analysed by matrix assisted laser desorption-ionisation (MALDI) and electrospray-ionisation (ESI) mass spectrometry. The peptide masses identified by mass spectrometry were used to perform an automated database search, combined with a search for a common "epitope motif". This procedure resulted in the unequivocal identification of the protein from biological material with only a minimum number of peptide masses, and requiring only limited mass-determination accuracy. The dramatic increase of selectivity for identification of the protein by combining the antigen-antibody specificity with the redundancy of peptide sequences renders this "affinity-proteomics" approach a powerful tool for mass spectrometric identification of proteins from biological material.
Collapse
Affiliation(s)
- Marcus Macht
- Department of Chemistry, Analytical Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Purcell AW, Gorman JJ. Immunoproteomics: Mass spectrometry-based methods to study the targets of the immune response. Mol Cell Proteomics 2004; 3:193-208. [PMID: 14718575 DOI: 10.1074/mcp.r300013-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian immune system has evolved to display fragments of protein antigens derived from microbial pathogens to immune effector cells. These fragments are typically peptides liberated from the intact antigens through distinct proteolytic mechanisms that are subsequently transported to the cell surface bound to chaperone-like receptors known as major histocompatibility complex (MHC) molecules. These complexes are then scrutinized by effector T cells that express clonally distributed T cell receptors with specificity for specific MHC-peptide complexes. In normal uninfected cells, this process of antigen processing and presentation occurs continuously, with the resultant array of self-antigen-derived peptides displayed on the surface of these cells. Changes in this peptide landscape of cells act to alert immune effector cells to changes in the intracellular environment that may be associated with infection, malignant transformation, or other abnormal cellular processes, resulting in a cascade of events that result in their elimination. Because peptides play such a crucial role in informing the immune system of infection with viral or microbial pathogens and the transformation of cells in malignancy, the tools of proteomics, in particular mass spectrometry, are ideally suited to study these immune responses at a molecular level. Here we review recent advances in the studies of immune responses that have utilized mass spectrometry and associated technologies, with specific examples from collaboration between our laboratories.
Collapse
Affiliation(s)
- A W Purcell
- Department of Microbiology and Immunology and ImmunoID, The University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
89
|
Otto M, Hawlisch H, Monk PN, Müller M, Klos A, Karp CL, Köhl J. C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J Biol Chem 2003; 279:142-51. [PMID: 14570896 DOI: 10.1074/jbc.m310078200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anaphylatoxin C5a exerts a plethora of biologic activities critical in the pathogenesis of systemic inflammatory diseases. Recently, we reported on a C5a mutant, jun/fos-A8, as a potent antagonist for the human and mouse C5a receptor (CD88). Addressing the molecular mechanism accounting for CD88 receptor antagonism by site-directed mutagenesis, we found that a positively charged amino acid at position 69 is crucial. Replacements by either hydrophobic or negatively charged amino acids switched the CD88 antagonist jun/fos-A8 to a CD88 agonist. In addition to CD88, the seven-transmembrane receptor C5L2 has recently been found to provide high affinity binding sites for C5a and its desarginated form, C5adesArg74. A jun/fos-A8 mutant in which the jun/ fos moieties and amino acids at positions 71-73 were deleted, A8Delta71-73, blocked C5a and C5adesArg74 binding to CD88 and C5L2. In contrast, the cyclic C5a C-terminal analog peptide AcF-[OP-d-ChaWR] inhibited binding of the two anaphylatoxins to CD88 but not to C5L2, suggesting that the C5a core segment is important for high affinity binding to C5L2. Both receptors are coexpressed on human monocytes and the human mast cell line HMC-1; however, C5L2 expression on monocytes is weaker as compared with HMC-1 cells and highly variable. In contrast, no C5L2 expression was found on human neutrophils. A8Delta71-73 is the first antagonist that blocks C5a and C5adesArg74 binding to both C5a receptors, CD88 and C5L2, making it a valuable tool for studying C5L2 functions and for blocking the biological activities of C5a and C5adesArg74 in mice and humans.
Collapse
Affiliation(s)
- Magnus Otto
- Institute of Medical Microbiology, Medical School Hannover, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
90
|
Raska CS, Parker CE, Sunnarborg SW, Pope RM, Lee DC, Glish GL, Borchers CH. Rapid and sensitive identification of epitope-containing peptides by direct matrix-assisted laser desorption/ionization tandem mass spectrometry of peptides affinity-bound to antibody beads. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:1076-1085. [PMID: 14530088 DOI: 10.1016/s1044-0305(03)00405-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A method has been developed for rapid and sensitive identification of epitope-containing peptides, based on direct MALDI-MS/MS analysis of epitope-containing peptides affinity bound to affinity beads. This technique provides sequence information of the epitope that allows unambiguous identification of the epitope either by database searching or de novo sequencing. With MALDI-MS, affinity beads with bound peptides can be placed directly on the MALDI target and analyzed. Coupling a MALDI source to an orthogonal injection quadrupole time-of-flight (QqTOF) mass spectrometer allows direct sequencing of the bound peptides. In contrast to ESI-MS/MS, elution of the affinity-bound peptides followed by additional concentration and purification steps is not required, thus reducing the potential for sample loss. Direct mass spectrometric sequencing of affinity-bound peptides eliminates the need for chemical or enzymatic sequencing. Other advantages of this direct MALDI-MS/MS analysis of epitope-containing peptides bound to the affinity beads include its sensitivity (femtomole levels) and speed. In addition, direct analysis of peptides on affinity beads does not adversely affect the high mass accuracy of a QqTOF, and database searching can be performed on the MS/MS spectra obtained. In proof-of-principle experiments, this method has been demonstrated on beads containing immobilized antibodies against phosphotyrosine, the c-myc epitope tag, as well as immobilized avidin. Furthermore, de novo sequencing of epitope-containing peptides is demonstrated. The first application of this method was with anti-FLAG-tag affinity beads, where direct MALDI MS/MS was used to determine an unexpected enzymatic cleavage site on a growth factor protein.
Collapse
Affiliation(s)
- Christina S Raska
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Mackun K, Downard KM. Strategy for identifying protein-protein interactions of gel-separated proteins and complexes by mass spectrometry. Anal Biochem 2003; 318:60-70. [PMID: 12782032 DOI: 10.1016/s0003-2697(03)00191-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A strategy for identifying and characterizing protein interactions among gel-separated proteins and complexes has been developed and tested. The method involves the efficient recovery of proteins or complexes from native gels without affecting their conformational integrity. The use of limited proteolysis of protein complexes, isolated from the gel or formed from the interaction of gel-recovered proteins with potential binding partners, has enabled local binding domains to be efficiently identified using a combination of microfiltration and mass spectrometric analysis. The application of mass spectrometry affords high detection sensitivities, enabling the strategy to be applied to low levels of protein and protein mixtures. The approach is demonstrated for both antigen-antibody and peptide-protein complexes for which protein-binding regions are characterized among simple peptide mixtures and proteolytic digests. The strategy can be easily adapted to achieve high sample throughput and automation using gel-excision robotics and provides a means to study protein interactions in complex biological mixtures and extracts.
Collapse
Affiliation(s)
- Kenneth Mackun
- School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
92
|
Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J Pept Sci 2003; 9:255-81. [PMID: 12803494 DOI: 10.1002/psc.456] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Analytical biochemistry and synthetic peptide based chemistry have helped to reveal the pivotal role that peptides play in determining the specificity, magnitude and quality of both humoral (antibody) and cellular (cytotoxic and helper T cell) immune responses. In addition, peptide based technologies are now at the forefront of vaccine design and medical diagnostics. The chemical technologies used to assemble peptides into immunogenic structures have made great strides over the past decade and assembly of highly pure peptides which can be incorporated into high molecular weight species, multimeric and even branched structures together with non-peptidic material is now routine. These structures have a wide range of applications in designer vaccines and diagnostic reagents. Thus the tools of the peptide chemist are exquisitely placed to answer questions about immune recognition and along the way to provide us with new and improved vaccines and diagnostics.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
93
|
Doucette A, Craft D, Li L. Mass spectrometric study of the effects of hydrophobic surface chemistry and morphology on the digestion of surface-bound proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:203-214. [PMID: 12648927 DOI: 10.1016/s1044-0305(02)00909-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Our previous work has demonstrated that reversed-phase chromatographic micro-beads can be used to capture proteins from complex biological matrices and the surface-bound proteins can be enzymatically digested for protein identification by mass spectrometry (MS). Here we examine the peptides generated from digestion of proteins bound to various types of micro-bead surfaces in order to determine the effects of surface chemistry and surface morphology on the digestion process. Detailed examinations of site cleavages and sequence coverage are carried out for a tryptic digestion of cytochrome c adsorbed on reversed-phase polystyrene divinylbenzene (Poros R2 beads) versus C(18) bonded-phase silica beads. It is shown that although the surface does not completely hinder the digestion of cleavage sites of the protein, the digestion products are clearly different than those obtained from a solution digest. Specifically, a partial digestion results from surface digestion, resulting in a greater number of missed cleavages than a comparable solution digest. Subsequent comparisons of peptide mass maps generated from the digestion of various proteins on surfaces with altering chemistry (C(4), C(8), C(18), and R2 beads), or with different surface morphology, were performed. The results reveal that surface chemistry plays only a minor role in affecting the peptide mass maps, and surface morphology had no noticeable effects on the resulting peptide mass maps. It is also shown that the mass spectrometric detection method used to analyze the digested peptides can significantly influence the information content on cleavage sites and the extent of sequence coverage. The use of a combination of MALDI, LC/off-line MALDI, and LC/ESI MS is demonstrated to be crucial in revealing subtle changes in the peptide mass maps.
Collapse
Affiliation(s)
- Alan Doucette
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
94
|
Afonso C, Fenselau C. Use of bioactive glass slides for matrix-assisted laser desorption/ionization analysis: application to microorganisms. Anal Chem 2003; 75:694-7. [PMID: 12585503 DOI: 10.1021/ac025869+] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glass slides are widely used in high-throughput analysis and are available commercially with surfaces activated, etched, and channeled. Thin glass microscope slides are shown here to be suitable sample supports for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. As a demonstration, lectins immobilized on glass slides with activated surfaces are used to concentrate and purify agglutinated Bacillis spores. It is expected that such slides will provide a rapid, inexpensive way to evaluate and implement new strategies involving MALDI MS readout.
Collapse
Affiliation(s)
- Carlos Afonso
- Chemistry and Biochemistry Department, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
95
|
Schlosser G, Pocsfalvi G, Malorni A, Puerta A, de Frutos M, Vékey K. Detection of immune complexes by matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2741-2747. [PMID: 14673821 DOI: 10.1002/rcm.1239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to detect an immune complex formed between beta-lactoglobulin and polyclonal anti-beta-lactoglobulin antibody in the gas phase. The most important experimental parameters to detect such a specific antibody-antigen complex by MALDI were the use of solutions at near-neutral pH and of sinapinic acid matrix prepared by the dried-droplet method. Under such conditions, predominantly one but also two molecules of antigen protein were complexed by the antibody. Specific formation of the antibody-antigen complex was confirmed by performing competitive reactions. Addition of antibody to a 1:1 mixture of beta-lactoglobulin and one control protein resulted not only in the appearance of the expected antibody-antigen complex, but also in a strong decrease in the free beta-lactoglobulin signal, while the abundance of the control protein was not influenced.
Collapse
Affiliation(s)
- Gitta Schlosser
- Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
96
|
McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon MHL, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount HTJ, Przybylski M, St George-Hyslop P. Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 2002; 8:1263-9. [PMID: 12379850 DOI: 10.1038/nm790] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Accepted: 10/01/2002] [Indexed: 11/09/2022]
Abstract
Immunization of transgenic mouse models of Alzheimer disease using amyloid-beta peptide (Abeta) reduces both the Alzheimer disease-like neuropathology and the spatial memory impairments of these mice. However, a therapeutic trial of immunization with Abeta42 in humans was discontinued because a few patients developed significant meningo-encephalitic cellular inflammatory reactions. Here we show that beneficial effects in mice arise from antibodies selectively directed against residues 4-10 of Abeta42, and that these antibodies inhibit both Abeta fibrillogenesis and cytotoxicity without eliciting an inflammatory response. These findings provide the basis for improved immunization antigens as well as attempts to design small-molecule mimics as alternative therapies.
Collapse
Affiliation(s)
- J McLaurin
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Baerga-Ortiz A, Hughes CA, Mandell JG, Komives EA. Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci 2002; 11:1300-8. [PMID: 12021429 PMCID: PMC2373625 DOI: 10.1110/ps.4670102] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The epitope of a monoclonal antibody raised against human thrombin has been determined by hydrogen/deuterium exchange coupled to MALDI mass spectrometry. The antibody epitope was identified as the surface of thrombin that retained deuterium in the presence of the monoclonal antibody compared to control experiments in its absence. Covalent attachment of the antibody to protein G beads and efficient elution of the antigen after deuterium exchange afforded the analysis of all possible epitopes in a single MALDI mass spectrum. The epitope, which was discontinuous, consisting of two peptides close to anion-binding exosite I, was readily identified. The epitope overlapped with, but was not identical to, the thrombomodulin binding site, consistent with inhibition studies. The antibody bound specifically to human thrombin and not to murine or bovine thrombin, although these proteins share 86% identity with the human protein. Interestingly, the epitope turned out to be the more structured of two surface regions in which higher sequence variation between the three species is seen.
Collapse
Affiliation(s)
- Abel Baerga-Ortiz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
98
|
Parker CE, Tomer KB. MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Mol Biotechnol 2002; 20:49-62. [PMID: 11876299 DOI: 10.1385/mb:20:1:049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteolytic digestion of proteins bound to immobilized antibodies, combined with matrix assisted laser desorption (MALDI) mass spectrometric identification of the affinity-bound peptides, can be a powerful technique for epitope determination. Binding of the protein to the antibody is done while the protein is in its native, folded state. A purified protein is not required for this procedure, because only proteins containing the antigenic determinant will bind to the antibody in the initial step. The method makes use of the resistance of the antibody to enzymatic digestion. Enzymatic cleavage products of the antigenic protein not containing the epitope are washed off the beads, leaving the epitope-containing fragments affinity bound to the immobilized antibody. Dissociation of the antigen-antibody complex prior to mass spectrometric analysis is unnecessary because the affinity-bound peptides are released by the MALDI matrix crystallization process, although the antibody remains covalently attached to the sepharose beads. This epitope-mapping protocol has been used in the determination of both continuous and discontinuous epitopes on both glycosylated and unglycosylated proteins.
Collapse
Affiliation(s)
- Carol E Parker
- Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
99
|
Kelly MA, McLellan TJ, Rosner PJ. Strategic use of affinity-based mass spectrometry techniques in the drug discovery process. Anal Chem 2002; 74:1-9. [PMID: 11795774 DOI: 10.1021/ac010569y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in biomolecular mass spectrometry (Bio-MS) have made this technique an invaluable tool for analytical chemists and biochemists alike. The applicability of Bio-MS approaches in drug discovery now encompasses in vitro, cellular, and in vivo pharmacological and clinical applications in an unprecedented expansion of utility. As a result, the role of Bio-MS in pharmaceutical discovery continues to proliferate for both structural and functional characterization of biomolecules. From target characterization to lead optimization, affinity techniques have been used to purify, probe, and enrich analytes of interest. Affinity selection employed prior to MS analysis can "edit" out extraneous noise and enable the researcher to examine only what is important. These affinity-based methods can be used as an alternative strategy when classical biochemical techniques are insufficient in advancing difficult projects. We have applied various affinity techniques in conjunction with mass spectrometry throughout the drug discovery process. This perspective will describe affinity-based mass spectrometry methodologies and related concepts, illustrated with original results.
Collapse
Affiliation(s)
- Michele A Kelly
- Exploratory Medicinal Sciences, Pfizer Global R&D, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
100
|
Michel S, Forest E, Pétillot Y, Deléage G, Heuzé-Vourc'h N, Courty Y, Lascoux D, Jolivet M, Jolivet-Reynaud C. Involvement of the C-terminal end of the prostrate-specific antigen in a conformational epitope: characterization by proteolytic degradation of monoclonal antibody-bound antigen and mass spectrometry. J Mol Recognit 2001; 14:406-13. [PMID: 11757074 DOI: 10.1002/jmr.552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prostate-specific antigen (PSA), a 237-amino acid glycoprotein, encoded by the hKLK3 gene, is widely used as a serum marker for the diagnosis and management of prostate cancer. We report here the localization of a conformational epitope recognized by the anti-total PSA monoclonal antibody (mAb) 11E5C6, by proteolytic degradation of mAb-bound antigen followed by mass spectrometric analyses of the peptides generated. These two technologies, combined with molecular display, allowed the identification of amino acid residues contained within three different peptides distant on the PSA sequence, but close in the PSA three-dimensional structure, that may be part of the mAb 11E5C6 epitope. The last four C-terminal amino acid residues are included in this epitope, as well as certain other C-terminal residues between Y225 and T232. The involvement of the PSA C-terminal end in the mAb 11E5C6 epitope was confirmed by western blotting experiments with the recombinant protein proPSA-RP1, resulting from the cloning of an alternative transcript of the hKLK3 gene, in which the PSA C-terminal end was deleted and replaced by another sequence. Although the anti-total PSA mAb 5D5A5 used as a control bound proPSA-RP1, mAb 11E5C6 did not. The requirement of the C-terminal end for the recognition by mAb 11E5C6 may be useful for the discrimination of PSA-related forms.
Collapse
Affiliation(s)
- S Michel
- bioMérieux, Département R&D unité Immunoessais, Marcy l'Etoile, France
| | | | | | | | | | | | | | | | | |
Collapse
|