51
|
Grzywa R, Psurski M, Gajda A, Gajda T, Janczewski Ł. Isothiocyanates as Tubulin Polymerization Inhibitors-Synthesis and Structure-Activity Relationship Studies. Int J Mol Sci 2023; 24:13674. [PMID: 37761977 PMCID: PMC10531289 DOI: 10.3390/ijms241813674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure-activity relationship of tubulin-isothiocyanate interactions, we designed and synthesized a series of sixteen known and novel, structurally diverse ITCs, including amino acid ester-derived isothiocyanates, bis-isothiocyanates, analogs of benzyl isothiocyanate, and phosphorus analogs of sulforaphane. All synthesized compounds and selected natural isothiocyanates (BITC, PEITC, AITC, and SFN) were tested in vitro to evaluate their antiproliferative activity, tubulin polymerization inhibition potential, and influence on cell cycle progression. The antiproliferative activity of most of the newly tested compounds exceeded the action of natural isothiocyanates, with four structures being more potent as tubulin polymerization inhibitors than BITC. As a confirmation of anti-tubulin activity, the correlation between polymerization inhibition and cell cycle arrest in the G2/M phase was observed for the most active compounds. In light of the biological results indicating significant differences in the impact of structurally diverse isothiocyanate on tubulin polymerization, in silico analysis was conducted to analyze the possible mode of isothiocyanate-tubulin binding and to show how it can influence the polymerization reaction.
Collapse
Affiliation(s)
- Renata Grzywa
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wrocław, Poland;
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland; (A.G.); (T.G.)
| | - Tadeusz Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland; (A.G.); (T.G.)
| | - Łukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland; (A.G.); (T.G.)
| |
Collapse
|
52
|
Kwa FAA, Bui BV, Thompson BR, Ayton LN. Preclinical investigations on broccoli-derived sulforaphane for the treatment of ophthalmic disease. Drug Discov Today 2023; 28:103718. [PMID: 37467881 DOI: 10.1016/j.drudis.2023.103718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Vision loss causes a significant burden on individuals and communities on a financial, emotional and social level. Common causes include age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma and retinitis pigmentosa (RP; also known as 'rod-cone dystrophy'). As the population continues to grow and age globally, an increasing number of people will experience vision loss. Hence, there is an urgent need to develop therapies that can curb early pathological events. The broccoli-derived compound, sulforaphane (SFN), is reported to have multiple health benefits and modes of action. In this review, we outline the preclinical findings on SFN in ocular diseases and discuss the future clinical testing of this compound.
Collapse
Affiliation(s)
- Faith A A Kwa
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Bang V Bui
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Bruce R Thompson
- School of Health Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Lauren N Ayton
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Department of Surgery (Ophthalmology), Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| |
Collapse
|
53
|
Houghton CA. The Rationale for Sulforaphane Favourably Influencing Gut Homeostasis and Gut-Organ Dysfunction: A Clinician's Hypothesis. Int J Mol Sci 2023; 24:13448. [PMID: 37686253 PMCID: PMC10487861 DOI: 10.3390/ijms241713448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Given the increasing scientific, clinical and consumer interest in highly prevalent functional gastrointestinal disorders, appropriate therapeutic strategies are needed to address the many aspects of digestive dysfunction. Accumulating evidence for the crucifer-derived bioactive molecule sulforaphane in upstream cellular defence mechanisms highlights its potential as a therapeutic candidate in targeting functional gastrointestinal conditions, as well as systemic disorders. This article catalogues the evolution of and rationale for a hypothesis that multifunctional sulforaphane can be utilised as the initial step in restoring the ecology of the gut ecosystem; it can do this primarily by targeting the functions of intestinal epithelial cells. A growing body of work has identified the colonocyte as the driver of dysbiosis, such that targeting gut epithelial function could provide an alternative to targeting the microbes themselves for the remediation of microbial dysbiosis. The hypothesis discussed herein has evolved over several years and is supported by case studies showing the application of sulforaphane in gastrointestinal disorders, related food intolerance, and several systemic conditions. To the best of our knowledge, this is the first time the effects of sulforaphane have been reported in a clinical environment, with several of its key properties within the gut ecosystem appearing to be related to its nutrigenomic effects on gene expression.
Collapse
Affiliation(s)
- Christine A. Houghton
- Institute for Nutrigenomic Medicine, Cleveland, QLD 4163, Australia; ; Tel.: +617-3488-0385
- Cell-Logic, 132-140 Ross Court, Cleveland, QLD 4163, Australia
| |
Collapse
|
54
|
Grady R, Traustadóttir T, Lagalante AF, Eggler AL. Bioavailable Sulforaphane Quantitation in Plasma by LC-MS/MS Is Enhanced by Blocking Thiols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12875-12882. [PMID: 37584212 PMCID: PMC10472501 DOI: 10.1021/acs.jafc.3c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Quantifying sulforaphane (SFN) and its thiol metabolites in biological samples using liquid chromatography-tandem mass spectrometry is complicated by SFN's electrophilic nature and the facile dissociation of SFN-thiol conjugates. SFN can be lost during sample preparation due to conjugation with protein thiols, which are precipitated and discarded. We observe that only 32 ± 3% of SFN is recovered 2 h after spiking into fetal bovine serum. The SFN-glutathione conjugate prepared at 10 mM in 0.1% formic acid in water (pH 3) dissociated by approximately 95% to free SFN, highlighting the difficulty in preparing thiol metabolite standards. We used the alkylating agent iodoacetamide (IAA) to both release SFN from protein thiols and force the dissociation of SFN metabolites. This thiol-blocking method increased SFN percent recovery from serum from 32 to 94 ± 5%, with a 4.7 nM method limit of quantitation. Applying the method to clinical samples, SFN concentrations were on average 6 times greater than when IAA was omitted. The IAA thiol-blocking method streamlines the analysis of bioavailable SFN in plasma samples.
Collapse
Affiliation(s)
- Rachel
S. Grady
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Tinna Traustadóttir
- Department
of Biological Sciences, Northern Arizona
University, Flagstaff, Arizona 86001-5766, United States
| | - Anthony F. Lagalante
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aimee L. Eggler
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
55
|
Zhang B, Liu P, Sheng H, Guo Y, Han Y, Suo L, Yuan Q. New Insight into the Potential Protective Function of Sulforaphene against ROS-Mediated Oxidative Stress Damage In Vitro and In Vivo. Int J Mol Sci 2023; 24:13129. [PMID: 37685936 PMCID: PMC10487408 DOI: 10.3390/ijms241713129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Sulforaphene (SFE) is a kind of isothiocyanate isolated from radish seeds that can prevent free-radical-induced diseases. In this study, we investigated the protective effect of SFE on oxidative-stress-induced damage and its molecular mechanism in vitro and in vivo. The results of cell experiments show that SFE can alleviate D-gal-induced cytotoxicity, promote cell cycle transformation by inhibiting the production of reactive oxygen species (ROS) and cell apoptosis, and show a protective effect on cells with H2O2-induced oxidative damage. Furthermore, the results of mice experiments show that SFE can alleviate D-galactose-induced kidney damage by inhibiting ROS, malondialdehyde (MDA), and 4-hydroxyalkenals (4-HNE) production; protect the kidney against oxidative stress-induced damage by increasing antioxidant enzyme activity and upregulating the Nrf2 signaling pathway; and inhibit the activity of pro-inflammatory factors by downregulating the expression of Toll-like receptor 4 (TLR4)-mediated inflammatory response. In conclusion, this research shows that SFE has antioxidant effects, providing a new perspective for studying the anti-aging properties of natural compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (B.Z.); (P.L.); (H.S.); (Y.G.); (Y.H.); (L.S.)
| |
Collapse
|
56
|
Jo J, Kim J, Ibrahim L, Kumar M, Iaconelli J, Tran CS, Moon HR, Jung Y, Wiseman RL, Lairson LL, Chatterjee AK, Bollong MJ, Yun H. Optimization of 3-aminotetrahydrothiophene 1,1-dioxides with improved potency and efficacy as non-electrophilic antioxidant response element (ARE) activators. Bioorg Med Chem Lett 2023; 89:129306. [PMID: 37116763 PMCID: PMC10241094 DOI: 10.1016/j.bmcl.2023.129306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Activating NRF2-driven transcription with non-electrophilic small molecules represents an attractive strategy to therapeutically target disease states associated with oxidative stress and inflammation. In this study, we describe a campaign to optimize the potency and efficacy of a previously identified bis-sulfone based non-electrophilic ARE activator 2. This work identifies the efficacious analog 17, a compound with a non-cytotoxic profile in IMR32 cells, as well as ARE activators 18 and 22, analogs with improved cellular potency. In silico drug-likeness prediction suggested the optimized bis-sulfones 17, 18, and 22 will likely be of pharmacological utility.
Collapse
Affiliation(s)
- Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Lara Ibrahim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Manoj Kumar
- California Institute for Biomedical Research, La Jolla, CA 92037, United States
| | - Jonathan Iaconelli
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Cong So Tran
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Arnab K Chatterjee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
57
|
Akarsu SA, Güngör İH, Cihangiroğlu AÇ, Acısu TC, Koca RH, Türk G, Sönmez M, Gür S. Effect of sulforaphane on long-term storage of rabbit semen. Anim Reprod 2023; 20:e20230001. [PMID: 37293253 PMCID: PMC10247182 DOI: 10.1590/1984-3143-ar2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
In this study, it was aimed to determine the effect of sulforaphane (SFN) on rabbit semen cryopreservation. Semen collected from animals was divided into 5 equal volumes as Control, SFN 5 µM, SFN 10 µM, SFN 25 µM and SFN 50 µM groups. Afterwards, semen analyzes were performed. According to our results, there was no statistical difference between the groups at 4°C. However after freezing thawing, the highest total motility, progressive motility and rapid spermatozoa rate was seen in the 10 µM SFN group, while the lowest was observed in the 50 µM SFN group (P<0.05). Static sperm ratio was highest in the 50 µM group, while the lowest was observed in the 10 µM SFN group. When flow cytometry results examined the rate of acrosomal damaged and dead sperm was the lowest in the 10 µM SFN group, a statistical difference was observed between the control group (P<0.05). The highest rate of sperm with high mitochondrial membrane potential was seen in the 5 µM SFN and 10 µM SFN groups. Apoptosis and ROS rates were found to be lower in the experimental groups compared to the control groups (P<0.05). As a result, SFN supplementation at a dose of 10 µM increased the quality of sperm in the freezing and thawing processes of rabbit semen. In conclusion, 10 µM SFN improved the quality of cryopreservation of rabbit semen.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - İbrahim Halil Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Aslıhan Çakır Cihangiroğlu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Tutku Can Acısu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Recep Hakkı Koca
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Turkey
| | - Gaffari Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Mustafa Sönmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Seyfettin Gür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
58
|
Koeberle SC, Kipp AP, Stuppner H, Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med Res Rev 2023; 43:614-682. [PMID: 36658724 PMCID: PMC10947485 DOI: 10.1002/med.21933] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent cell death program that is characterized by excessive lipid peroxidation. Triggering ferroptosis has been proposed as a promising strategy to fight cancer and overcome drug resistance in antitumor therapy. Understanding the molecular interactions and structural features of ferroptosis-inducing compounds might therefore open the door to efficient pharmacological strategies against aggressive, metastatic, and therapy-resistant cancer. We here summarize the molecular mechanisms and structural requirements of ferroptosis-inducing small molecules that target central players in ferroptosis. Focus is placed on (i) glutathione peroxidase (GPX) 4, the only GPX isoenzyme that detoxifies complex membrane-bound lipid hydroperoxides, (ii) the cystine/glutamate antiporter system Xc - that is central for glutathione regeneration, (iii) the redox-protective transcription factor nuclear factor erythroid 2-related factor (NRF2), and (iv) GPX4 repression in combination with induced heme degradation via heme oxygenase-1. We deduce common features for efficient ferroptotic activity and highlight challenges in drug development. Moreover, we critically discuss the potential of natural products as ferroptosis-inducing lead structures and provide a comprehensive overview of structurally diverse biogenic and bioinspired small molecules that trigger ferroptosis via iron oxidation, inhibition of the thioredoxin/thioredoxin reductase system or less defined modes of action.
Collapse
Affiliation(s)
- Solveigh C. Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Hermann Stuppner
- Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| | - Andreas Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| |
Collapse
|
59
|
Mordecai J, Ullah S, Ahmad I. Sulforaphane and Its Protective Role in Prostate Cancer: A Mechanistic Approach. Int J Mol Sci 2023; 24:ijms24086979. [PMID: 37108142 PMCID: PMC10138336 DOI: 10.3390/ijms24086979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The increasing incidence of prostate cancer worldwide has spurred research into novel therapeutics for its treatment and prevention. Sulforaphane, derived from broccoli and other members of the Brassica genus, is a phytochemical shown to have anticancer properties. Numerous studies have shown that sulforaphane prevents the development and progression of prostatic tumors. This review evaluates the most recent published reports on prevention of the progression of prostate cancer by sulforaphane in vitro, in vivo and in clinical settings. A detailed description of the proposed mechanisms of action of sulforaphane on prostatic cells is provided. Furthermore, we discuss the challenges, limitations and future prospects of using sulforaphane as a therapeutic agent in treatment of prostate cancer.
Collapse
Affiliation(s)
- James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Saleem Ullah
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
60
|
Yan L, Zhou G, Shahzad K, Zhang H, Yu X, Wang Y, Yang N, Wang M, Zhang X. Research progress on the utilization technology of broccoli stalk, leaf resources, and the mechanism of action of its bioactive substances. FRONTIERS IN PLANT SCIENCE 2023; 14:1138700. [PMID: 37063225 PMCID: PMC10090291 DOI: 10.3389/fpls.2023.1138700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Broccoli is a nutritious vegetable. It is high in protein, minerals, and vitamins. Also, it possesses antioxidant activities and is beneficial to the human body. Due to its active effect, broccoli is widely accepted by people in daily life. However, in terms of current utilization, only its florets are consumed as vegetables, while more than half of its stalks and leaves are not utilized. The stalks and leaves contain not only nutrients but also bioactive substances with physiologically regulating properties. Therefore research into the action and mechanism of its bioactive substances as well as its development and utilization technology will make contributions to the further promotion of its resource development and utilization. As a theoretical foundation for the resource utilization of broccoli stalks and leaves, this report will review the distribution and consumption of broccoli germplasm resources, the mechanism of action of bioactive substances, and innovative methods for their exploitation.
Collapse
Affiliation(s)
- Lu Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Gang Zhou
- Huaiyin Institute of Agricultural Sciences in Xuhuai Region, Huaian, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Haoran Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Yang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| |
Collapse
|
61
|
Brinks R, Wruck CJ, Schmitz J, Schupp N. Nrf2 Activation Does Not Protect from Aldosterone-Induced Kidney Damage in Mice. Antioxidants (Basel) 2023; 12:antiox12030777. [PMID: 36979025 PMCID: PMC10044832 DOI: 10.3390/antiox12030777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is downregulated in chronic kidney disease (CKD). Activation of Nrf2 might be a therapeutic option in CKD. Here we investigate the effect of Nrf2 activation on aldosterone (Aldo)-induced renal injury. Wild-type (WT) mice, transgenic Keap1 hypomorphic (Nrf2ꜛ, genotype results in upregulation of Nrf2 expression) mice and WT mice treated with the Nrf2 activator sulforaphane (Sulf) received Aldo for 4 weeks. In Aldo-treated mice, kidneys were significantly heavier and pathologically altered, reflected by increased urinary albumin levels and tissue damage. In Nrf2ꜛ-Aldo mice the tubule damage marker NGAL was significantly decreased. Increased oxidative damage markers (8-OHdG, 15-isoprostane F2t) were measured in all Aldo-treated groups. Aldo-increased Nrf2 amounts were mainly found in the late tubule system. The amount of phosphorylated and thus putatively active Nrf2 was significantly increased by Aldo only in WT mice. However, expression of Nrf2 target genes NQO1 and HO1 was decreased in all Aldo-infused mice. GSK3β, which promotes Nrf2 degradation, was significantly increased in the kidneys of Aldo-treated WT mice. Neither genetic nor pharmacological Nrf2 activation was able to prevent oxidative injury induced by Aldo, probably due to induction of negative regulators of Nrf2.
Collapse
Affiliation(s)
- Ronja Brinks
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| | - Jutta Schmitz
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
62
|
Dinkova-Kostova AT, Copple IM. Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol Sci 2023; 44:137-149. [PMID: 36628798 DOI: 10.1016/j.tips.2022.12.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Activation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is emerging as an attractive therapeutic approach to counteract oxidative stress, inflammation, and metabolic imbalances. These processes underpin many chronic pathologies with unmet therapeutic needs, including neurodegenerative disorders and metabolic diseases. As the NRF2 field transitions into the clinical phase of its evolution, the need for an understanding of the factors influencing NRF2 pharmacology has never been greater. In this opinion article we describe the rationale for targeting NRF2, summarise the recent advances in drug development of NRF2 modulators, and reflect on the remaining challenges in realising the full clinical potential of NRF2 as a therapeutic target.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
63
|
Li W, Trieu J, Blazev R, Parker BL, Murphy KT, Swiderski K, Lynch GS. Sulforaphane attenuates cancer cell-induced atrophy of C2C12 myotubes. Am J Physiol Cell Physiol 2023; 324:C205-C221. [PMID: 36534500 DOI: 10.1152/ajpcell.00025.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer cachexia is common in many cancers and the loss of skeletal muscle mass compromises the response to therapies and quality of life. A contributing mechanism is oxidative stress and compounds able to attenuate it may be protective. Sulforaphane (SFN), a natural antioxidant in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) signaling to decrease oxidative stress. Although SFN has potential as a cancer therapeutic, whether it can attenuate muscle wasting in the absence or presence of chemotherapy is unknown. In healthy C2C12 myotubes, SFN administration for 48 h induced hypertrophy through increased myoblast fusion via Nrf2 and ERK signaling. To determine whether SFN could attenuate wasting induced by cancer cells, myotubes were cocultured with or without Colon-26 (C-26) cancer cells for 48 h and treated with 5-fluorouracil (5-FU, 5 µM) or vehicle (DMSO). SFN (10 µM) or DMSO was added for the final 24 h. Coculture with cancer cells in the absence and presence of 5-FU reduced myotube width by ∼30% (P < 0.001) and ∼20% (P < 0.01), respectively, which was attenuated by SFN (P < 0.05). Exposure to C-26 conditioned media reduced myotube width by 15% (P < 0.001), which was attenuated by SFN. Western immunoblotting and qRT-PCR confirmed activation of Nrf2 signaling and antioxidant genes. Coadministration of Nrf2 inhibitors (ML-385) or MEK inhibitors (PD184352) revealed that SFN's attenuation of atrophy was blocked by ERK inhibition. These data support the chemoprotective and antioxidative function of SFN in myotubes, highlighting its therapeutic potential for cancer-related muscle wasting.
Collapse
Affiliation(s)
- Wenlan Li
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin L Parker
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate T Murphy
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
64
|
Singh S, Singh G, Attri S, Kaur P, Rashid F, Bedi N, Haque S, Janahi EM, Arora S. Development and optimization of nanoparticles loaded with erucin, a dietary isothiocyanate isolated from Eruca sativa: Antioxidant and antiproliferative activities in ehrlich-ascites carcinoma cell line. Front Pharmacol 2023; 13:1080977. [PMID: 36761468 PMCID: PMC9905727 DOI: 10.3389/fphar.2022.1080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
The study on Erucin (ER) has gained interest of nutraceutical and pharmaceutical industries because of its anti-cancer properties. Erucin is an isothiocyanate obtained from the seeds of Eruca sativa which possess certain drawbacks such as poor aqueous solubility and bioavailability. Therefore, the present study aimed at developing ER-cubosomes (CUB) by solvent evaporation technique followed by applying Central Composite Design to optimize ER loaded cubosomes. For this purpose, independent variables selected were Monoolein (MO) as lipid and Pluronic-84 (P-84) as a stabilizer whereas dependent variables were particle size, percentage of ER loading and percentage of its entrapment efficiency. The cubosomal nanocarriers exhibited particle size in the range of 26 nm, entrapment efficiency of 99.12 ± 0.04% and drug loading of 3.96 ± 0.0001%. Furthermore, to investigate the antioxidant potential, we checked the effect of ER and ER-CUB by DNA nicking assay, DDPH assay and Phosphomolybdate assay, and results showed significant improvement in antioxidant potential for ER-CUB than ER. Similarly, ER-CUB showed enhanced anticancer activity with a marked reduction in IC50 value than ER in MTT assay. These results suggested that ER-CUB produced notable escalation in antioxidant potential and enhanced anticancer activity than ER.
Collapse
Affiliation(s)
- Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Janzan, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | | | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
65
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
66
|
Lei P, Hu Y, Gao P, Ding Q, Yan J, Zhao J, Li B, Shan Y. Sulforaphane Ameliorates Hepatic Lipid Metabolism via Modulating Lipophagy In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15126-15133. [PMID: 36420856 DOI: 10.1021/acs.jafc.2c06311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although sulforaphane (SFN) is reported to ameliorate the excessive accumulation of lipid droplets (LDs) in hepatocytes, its underlying mechanism remains unclear. This paper aims to investigate how SFN induces hepatic LD degradation via activating macroautophagy. High-fat diet and free fatty acids (FFAs) were used to induce excessive LD formation in hepatocytes in vivo and in vitro, respectively. SFN-induced macroautophagy was shown by the increased LC3 protein expression both (1.32 ± 0.18) in vivo and (2.43 ± 0.22) in vitro. The mRNA levels of Lc3 (1.99 ± 0.16), Atg4 (2.12 ± 0.23), Ulk1 (1.19 ± 0.12), Atg7 (1.25 ± 0.11), and Atg5 (0.81 ± 0.1) genes were elevated by SFN. SFN individually enhanced the localization of LC3 (0.41 ± 0.15), LAMP1 (0.66 ± 0.14), ATG7 (0.26 ± 0.08), and ATG5 (0.38 ± 0.09) with LDs, indicating the occurrence of lipophagy. In the components of LDs isolated from SFN treatment, the expressions of LC3, ATG7, and ATG5 protein were largely increased both in vivo and in vitro. LDs were visualized in autophagosomes which confirmed that the lipophagy was triggered by SFN. Moreover, SFN treatment improved the profile of FFAs which was characterized by increasing the FFAs in liver (total FFA: 261.51 ± 39.58 μM/g) and serum (total FFA: 967.59 ± 239.18 nM/mL). After silencing the nrf2 gene, ATG7 and ATG5 protein expressions were decreased and attenuated this induction by SFN. Nrf2 gene silencing inversely increased TG contents. In summary, SFN enhanced the LD degradation via stimulating lipophagy in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Peng Lei
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yunqi Hu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Peng Gao
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Qi Ding
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jielin Yan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiahe Zhao
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Baolong Li
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
67
|
Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants (Basel) 2022; 11:antiox11122345. [PMID: 36552553 PMCID: PMC9774434 DOI: 10.3390/antiox11122345] [Citation(s) in RCA: 317] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress and has been extensively studied in the disease contexts. This review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.
Collapse
|
68
|
Royce SG, Licciardi PV, Beh RC, Bourke JE, Donovan C, Hung A, Khurana I, Liang JJ, Maxwell S, Mazarakis N, Pitsillou E, Siow YY, Snibson KJ, Tobin MJ, Ververis K, Vongsvivut J, Ziemann M, Samuel CS, Tang MLK, El-Osta A, Karagiannis TC. Sulforaphane prevents and reverses allergic airways disease in mice via anti-inflammatory, antioxidant, and epigenetic mechanisms. Cell Mol Life Sci 2022; 79:579. [PMID: 36319916 PMCID: PMC11803010 DOI: 10.1007/s00018-022-04609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.
Collapse
Affiliation(s)
- Simon G Royce
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, 2305, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, NSW, 2050, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Scott Maxwell
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Nadia Mazarakis
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Ya Yun Siow
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Kenneth J Snibson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mark J Tobin
- ANSTO-Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Katherine Ververis
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Warrnambool, VIC, 3216, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Mimi L K Tang
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Population Allergy Group, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
69
|
Singla RK, Sharma P, Kumar D, Gautam RK, Goyal R, Tsagkaris C, Dubey AK, Bansal H, Sharma R, Shen B. The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front Pharmacol 2022; 13:987088. [PMID: 36386196 PMCID: PMC9643842 DOI: 10.3389/fphar.2022.987088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 10/21/2023] Open
Abstract
Ovarian cancer, and particularly its most frequent type, epithelial ovarian carcinoma, constitutes one of the most dangerous malignant tumors among females. Substantial evidence has described the potential of phytochemicals against ovarian cancer. The effect of natural compounds on endoplasmic reticulum (ER) stress is of great relevance in this regard. In ovarian cancer, the accumulation of misfolded proteins in the ER lumen results in decompensated ER stress. This leads to deregulation in the physiological processes for the posttranslational modification of proteins, jeopardizes cellular homeostasis, and increases apoptotic signaling. Several metabolites and metabolite extracts of phytochemical origin have been studied in the context of ER stress in ovarian cancer. Resveratrol, quercetin, curcumin, fucosterol, cleistopholine, fucoidan, and epicatechin gallate, among others, have shown inhibitory potential against ER stress. The chemical structure of each compound plays an important role concerning its pharmacodynamics, pharmacokinetics, and overall effectiveness. Studying and cross-comparing the chemical features that render different phytochemicals effective in eliciting particular anti-ER stress actions can help improve drug design or develop multipotent combination regimens. Many studies have also investigated the properties of formulations such as nanoparticles, niosomes, liposomes, and intravenous hydrogel based on curcumin and quercetin along with some other phytomolecules in ovarian cancer. Overall, the potential of phytochemicals in targeting genetic mechanisms of ovarian cancer warrants further translational and clinical investigation.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | - Dinesh Kumar
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Indore, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | | | | | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Qi X, Walton DA, Plafker KS, Boulton ME, Plafker SM. Sulforaphane recovers cone function in an Nrf2-dependent manner in middle-aged mice undergoing RPE oxidative stress. Mol Vis 2022; 28:378-393. [PMID: 36338670 PMCID: PMC9603948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. METHODS Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. RESULTS SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. CONCLUSIONS These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
71
|
Xie H, Rutz J, Maxeiner S, Grein T, Thomas A, Juengel E, Chun FKH, Cinatl J, Haferkamp A, Tsaur I, Blaheta RA. Plant-Derived Sulforaphane Suppresses Growth and Proliferation of Drug-Sensitive and Drug-Resistant Bladder Cancer Cell Lines In Vitro. Cancers (Basel) 2022; 14:cancers14194682. [PMID: 36230603 PMCID: PMC9564120 DOI: 10.3390/cancers14194682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The natural compound sulforaphane is highly popular among tumor patients, since it is suggested to prevent oncogenesis and cancer progression. However, knowledge about its precise mode of action, particularly when drug resistance has been established, remains poor. The present study demonstrates the proliferation-blocking effects of SFN on a panel of drug-resistant bladder cancer cell lines. Abstract Combined cisplatin–gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present study was designed to investigate its influence on growth and proliferation in a panel of drug-sensitive bladder cancer cell lines, as well as their gemcitabine- and cisplatin-resistant counterparts. Chemo-sensitive and -resistant RT4, RT112, T24, and TCCSUP cell lines were exposed to SFN in different concentrations, and tumor growth, proliferation, and clone formation were evaluated, in addition to apoptosis and cell cycle progression. Means of action were investigated by assaying cell-cycle-regulating proteins and the mechanistic target of rapamycin (mTOR)/AKT signaling cascade. SFN significantly inhibited growth, proliferation, and clone formation in all four tumor cell lines. Cells were arrested in the G2/M and/or S phase, and alteration of the CDK–cyclin axis was closely associated with cell growth inhibition. The AKT/mTOR signaling pathway was deactivated in three of the cell lines. Acetylation of histone H3 was up-regulated. SFN, therefore, does exert tumor-suppressive properties in cisplatin- and gemcitabine-resistant bladder cancer cells and could be beneficial in optimizing bladder cancer therapy.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sebastian Maxeiner
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Timothy Grein
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
72
|
Vargas-Mendoza N, Madrigal-Santillán E, Álvarez-González I, Madrigal-Bujaidar E, Anguiano-Robledo L, Aguilar-Faisal JL, Morales-Martínez M, Delgado-Olivares L, Rodríguez-Negrete EV, Morales-González Á, Morales-González JA. Phytochemicals in Skeletal Muscle Health: Effects of Curcumin (from Curcuma longa Linn) and Sulforaphane (from Brassicaceae) on Muscle Function, Recovery and Therapy of Muscle Atrophy. PLANTS (BASEL, SWITZERLAND) 2022; 11:2517. [PMID: 36235384 PMCID: PMC9573421 DOI: 10.3390/plants11192517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The mobility of the human body depends on, among other things, muscle health, which can be affected by several situations, such as aging, increased oxidative stress, malnutrition, cancer, and the lack or excess of physical exercise, among others. Genetic, metabolic, hormonal, and nutritional factors are intricately involved in maintaining the balance that allows proper muscle function and fiber recovery; therefore, the breakdown of the balance among these elements can trigger muscle atrophy. The study from the nutrigenomic perspective of nutritional factors has drawn wide attention recently; one of these is the use of certain compounds derived from foods and plants known as phytochemicals, to which various biological activities have been described and attributed in terms of benefiting health in many respects. This work addresses the effect that the phytochemicals curcumin from Curcuma longa Linn and sulforaphane from Brassicaceae species have shown to exert on muscle function, recovery, and the prevention of muscle atrophy, and describes the impact on muscle health in general. In the same manner, there are future perspectives in research on novel compounds as potential agents in the prevention or treatment of medical conditions that affect muscle health.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico
| | - Liliana Anguiano-Robledo
- Laboratorio de Farmacología Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Mexico City 14420, Mexico
| | - Luis Delgado-Olivares
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan-Tilcuauttla, s/n, Ex Hacienda la Concepción, San Agustín Tlaxiaca, Hidalgo 2160, Mexico
| | | | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
73
|
Ramírez-Pavez T, García-Peñaranda A, Garcia-Ibañez P, Yepes-Molina L, Carvajal M, Ruiz-Alcaraz AJ, Moreno DA, García-Peñarrubia P, Martínez-Esparza M. Potential of Sulforaphane and Broccoli Membrane Vesicles as Regulators of M1/M2 Human Macrophage Activity. Int J Mol Sci 2022; 23:ijms231911141. [PMID: 36232440 PMCID: PMC9570499 DOI: 10.3390/ijms231911141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages have emerged as important therapeutic targets in many human diseases. The aim of this study was to analyze the effect of broccoli membrane vesicles and sulphoraphane (SFN), either free or encapsulated, on the activity of human monocyte-derived M1 and M2 macrophage primary culture. Our results show that exposure for 24 h to SFN 25 µM, free and encapsulated, induced a potent reduction on the activity of human M1 and M2 macrophages, downregulating proinflammatory and anti-inflammatory cytokines and phagocytic capability on C. albicans. The broccoli membrane vesicles do not represent inert nanocarriers, as they have low amounts of bioactive compounds, being able to modulate the cytokine production, depending on the inflammatory state of the cells. They could induce opposite effects to that of higher doses of SFN, reflecting its hormetic effect. These data reinforce the potential use of broccoli compounds as therapeutic agents not only for inflammatory diseases, but they also open new clinical possibilities for applications in other diseases related to immunodeficiency, autoimmunity, or in cancer therapy. Considering the variability of their biological effects in different scenarios, a proper therapeutic strategy with Brassica bioactive compounds should be designed for each pathology.
Collapse
Affiliation(s)
- Tamara Ramírez-Pavez
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Andrea García-Peñaranda
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Antonio J. Ruiz-Alcaraz
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Pilar García-Peñarrubia
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-868883989
| |
Collapse
|
74
|
Habib TN, Altonsy MO, Ghanem SA, Salama MS, Hosny MAEH. Sulforaphane Enhances the Anticancer Properties of Paclitaxel in Two Human Derived Prostate Cancer Cell Lines.. [DOI: 10.21203/rs.3.rs-1552332/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Background: In cancer therapy, combined treatment results in additive and synergistic outcomes and reduces the development of drug resistance in response to anticancer agents compared with monotherapy. We propose that when Paclitaxel (Taxol, PTX) is combined with Sulforaphane (SFN), may result in better treatment outcomes in prostate cancer. Understanding the mechanism of drug synergy, as opposed to simply knowing which drugs to combine, enables further optimization of advantageous drug interactions and can provide efficient therapeutic strategies in preclinical research. Methods: We measured apoptosis, cell cycle, and expression of Bax and Bcl2 in response to the PTX and SFN individual and combined treatments. Cell lines (PC-3) and (LNCaP), were individually treated with different concentrations of PTX, SFN, and its combination. Annexin V/PI positivity and data analysis were conducted using a flow cytometer and guava data acquisition and analysis software. Graph-Pad Prism 6, and Microsoft Excel software were used for statistical analyses and graphs generation. Student’s t-tests or one-way analysis of variance with Tukey’s correction were used to determine the significant difference between mono- and combination treatments.Results: The effect of the PTX or SFN treatments on reducing cell viability increased in a dose-dependent manner. Combined treatment enhanced PTX’s effects and reduced the EC50 values of both drugs compared to individual treatments. Flow cytometry analysis revealed that PTX or SFN treatments redistributed cell-cycle phases by inducing S-phase arrest and increasing apoptotic cell population in PC-3 cells. Such effects were enhanced in the PTX+SFN combination group. Interestingly, the necrotic cells were not affected by the combination treatments. Caspase-3 cleavage and morphological deformations of the cell nuclei are signs of apoptotic cell death; such parameters were examined by western blot and fluorescent microscopy in response to mono- and combination treatments.Conclusion: The PTX or SFN differentially modulated the expression of Bax and Bcl2 in PC-3 and LNCaP cell lines, and the combined treatment enhanced these effects in favor of cell apoptosis versus survival. Our data indicated that combination therapy of PTX and SFN significantly increased Bax protein expression and Bax: Bcl2 ratio compared to PTX or SFN individual treatments. Such findings will help develop new biomarkers and guide therapy choices.
Collapse
Affiliation(s)
| | - Mohamed Omar Altonsy
- University of Calgary Faculty of Medicine: University of Calgary Cumming School of Medicine
| | - Salah Abdelmoneim Ghanem
- Ohio University College of Osteopathic Medicine: Ohio University Heritage College of Osteopathic Medicine
| | | | | |
Collapse
|
75
|
Vasavda C, Xu R, Liew J, Kothari R, Dhindsa RS, Semenza ER, Paul BD, Green DP, Sabbagh MF, Shin JY, Yang W, Snowman AM, Albacarys LK, Moghekar A, Pardo-Villamizar CA, Luciano M, Huang J, Bettegowda C, Kwatra SG, Dong X, Lim M, Snyder SH. Identification of the NRF2 transcriptional network as a therapeutic target for trigeminal neuropathic pain. SCIENCE ADVANCES 2022; 8:eabo5633. [PMID: 35921423 PMCID: PMC9348805 DOI: 10.1126/sciadv.abo5633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/16/2022] [Indexed: 05/28/2023]
Abstract
Trigeminal neuralgia, historically dubbed the "suicide disease," is an exceedingly painful neurologic condition characterized by sudden episodes of intense facial pain. Unfortunately, the only U.S. Food and Drug Administration (FDA)-approved medication for trigeminal neuralgia carries substantial side effects, with many patients requiring surgery. Here, we identify the NRF2 transcriptional network as a potential therapeutic target. We report that cerebrospinal fluid from patients with trigeminal neuralgia accumulates reactive oxygen species, several of which directly activate the pain-transducing channel TRPA1. Similar to our patient cohort, a mouse model of trigeminal neuropathic pain also exhibits notable oxidative stress. We discover that stimulating the NRF2 antioxidant transcriptional network is as analgesic as inhibiting TRPA1, in part by reversing the underlying oxidative stress. Using a transcriptome-guided drug discovery strategy, we identify two NRF2 network modulators as potential treatments. One of these candidates, exemestane, is already FDA-approved and may thus be a promising alternative treatment for trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason Liew
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark F. Sabbagh
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Y. Shin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren K. Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark Luciano
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
76
|
Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals (Basel) 2022; 15:ph15080966. [PMID: 36015113 PMCID: PMC9414446 DOI: 10.3390/ph15080966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the natural enantiomer (R)-Sulforaphane (SFN) and the possible signaling pathways involved in an ex vivo model of LPS-stimulated murine peritoneal macrophages. Furthermore, we studied the epigenetic changes induced by (R)-SFN as well as the post-translational modifications of histone H3 (H3K9me3 and H3K18ac) in relation to the production of cytokines in murine splenocytes after LPS stimulation. (R)-SFN was able to modulate the inflammatory response and oxidative stress induced by LPS stimulation in murine peritoneal macrophages through the inhibition of reactive oxygen species (ROS), nitric oxide (NO) and cytokine (IL-1β, IL-6, IL-17, IL-18 and TNF-α) production by down-regulating the expression of pro-inflammatory enzymes (iNOS, COX-2 and mPGES-1). We also found that activation of the Nrf-2/HO-1 axis and inhibition of the JAK2/STAT-3, MAPK, canonical and non-canonical inflammasome signaling pathways could have been responsible for the immunomodulatory effects of (R)-SFN. Furthermore, (R)-SFN modulated epigenetic modifications through histone methylation (H3K9me3) and deacetylation (H3K18ac) in LPS-activated spleen cells. Collectively, our results suggest that (R)-SFN could be a promising epinutraceutical compound for the management of immunoinflammatory diseases.
Collapse
|
77
|
Panieri E, Pinho SA, Afonso GJM, Oliveira PJ, Cunha-Oliveira T, Saso L. NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells 2022; 11:cells11152401. [PMID: 35954245 PMCID: PMC9367715 DOI: 10.3390/cells11152401] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/21/2022] Open
Abstract
The NRF2–KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells’ resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors. Excitingly, the influence of NRF2 on cancer cells’ biology extends far beyond its mere antioxidant function and rather encompasses a functional crosstalk with the mitochondrial network that can influence crucial aspects of mitochondrial homeostasis, including biogenesis, oxidative phosphorylation, metabolic reprogramming, and mitophagy. In the present review, we summarize the current knowledge of the reciprocal interrelation between NRF2 and mitochondria, with a focus on malignant tumors and cancer stem cells.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Sónia A. Pinho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
78
|
Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes. J Nutr Biochem 2022; 106:109017. [PMID: 35461903 PMCID: PMC9447841 DOI: 10.1016/j.jnutbio.2022.109017] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/30/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
Lipophagy, a form of selective autophagy, degrades lipid droplet (LD) in adipose tissue and the liver. The chemotherapeutic isothiocyanate sulforaphane (SFN) contributes to lipolysis through the activation of hormone-sensitive lipase and the browning of white adipocytes. However, the details concerning the regulation of lipolysis in adipocytes by SFN-mediated autophagy remain unclear. In this study, we investigated the effects of SFN on autophagy in the epididymal fat of mice fed a high-fat diet (HFD) or control-fat diet and on the molecular mechanisms of autophagy in differentiated 3T3-L1 cells. Western blotting revealed that the protein expression of lipidated LC3 (LC3-II), an autophagic substrate, was induced after 3T3-L1 adipocytes treatment with SFN. In addition, SFN increased the LC3-II protein expression in the epididymal fat of mice fed an HFD. Immunofluorescence showed that the SFN-induced LC3 expression was co-localized with LDs in 3T3-L1 adipocytes and with perilipin, the most abundant adipocyte-specific protein, in adipocytes of mice fed an HFD. Next, we confirmed that SFN activates autophagy flux in differentiated 3T3-L1 cells using the mCherry-EGFP-LC3 and GFP-LC3-RFP-LC3ΔG probe. Furthermore, we examined the induction mechanisms of autophagy by SFN in 3T3-L1 adipocytes using western blotting. ATG5 knockdown partially blocked the SFN-induced release of fatty acids from LDs in mature 3T3-L1 adipocytes. SFN time-dependently elicited the phosphorylation of AMPK, the dephosphorylation of mTOR, and the phosphorylation of ULK1 in differentiated 3T3-L1 cells. Taken together, these results suggest that SFN may provoke lipophagy through AMPK-mTOR-ULK1 pathway signaling, resulting in partial lipolysis of adipocytes.
Collapse
|
79
|
Kahremany S, Hofmann L, Gruzman A, Dinkova-Kostova AT, Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free Radic Biol Med 2022; 188:262-276. [PMID: 35753587 PMCID: PMC9350913 DOI: 10.1016/j.freeradbiomed.2022.06.238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
The skin barrier and its endogenous protective mechanisms cope daily with exogenous stressors, of which ultraviolet radiation (UVR) poses an imminent danger. Although the skin is able to reduce the potential damage, there is a need for comprehensive strategies for protection. This is particularly important when developing pharmacological approaches to protect against photocarcinogenesis. Activation of NRF2 has the potential to provide comprehensive and long-lasting protection due to the upregulation of numerous cytoprotective downstream effector proteins that can counteract the damaging effects of UVR. This is also applicable to photodermatosis conditions that exacerbate the damage caused by UVR. This review describes the alterations caused by UVR in normal skin and photosensitive disorders, and provides evidence to support the development of NRF2 activators as pharmacological treatments. Key natural and synthetic activators with photoprotective properties are summarized. Lastly, the gap in knowledge in research associated with photodermatosis conditions is highlighted.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben-Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel.
| |
Collapse
|
80
|
Skolia E, Gkizis PL, Kokotos CG. A sustainable photochemical aerobic sulfide oxidation: access to sulforaphane and modafinil. Org Biomol Chem 2022; 20:5836-5844. [PMID: 35838682 DOI: 10.1039/d2ob01066f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sulfoxide-containing molecules are an important class of compounds in the pharmaceutical industry and many efforts have been made to develop new and green protocols, targeting the chemoselective transformation of sulfides into sulfoxides. Photochemistry is a rapidly expanding research field employing light as the energy source. Photochemical aerobic processes possess additional advantages to photochemistry and may find applications in the chemical industries. Herein, a 370 nm catalyst-free aerobic protocol was developed, using 2-Me-THF as the green solvent. At the same time, two low-catalyst-loading anthraquinone-based processes (under a CFL lamp or 427 nm irradiation) in 2-Me-THF were developed. Furthermore, a broad range of substrates was tested. We also implemented our protocols towards the synthesis of the pharmaceutical active ingredients (APIs) sulforaphane and modafinil.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| |
Collapse
|
81
|
Taheri M, Roudbari NH, Amidi F, Parivar K. Investigating the effect of Sulforaphane on AMPK/AKT/NRF2 pathway in human granulosa-lutein cells under H 2O 2-induced oxidative stress. Eur J Obstet Gynecol Reprod Biol 2022; 276:125-133. [PMID: 35882072 DOI: 10.1016/j.ejogrb.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/19/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
Excessive production of reactive oxygen species (ROS) in granulosa cells (GCs) plays a role in pathogenesis of polycystic ovarian syndrome (PCOS) by developing oxidative stress (OS). It was shown that Sulforaphane (SFN), with known antioxidant properties, can have protective effects in different diseases through affecting the nuclear factor (erythroid-derived 2)-like 2 (NRF2) signaling pathway. Thus, the purpose of the current work was to examine the protective impact of SFN through the activation of the AMPK/AKT/NRF2 pathway against OS produced by H2O2 in granulosa-lutein cells (GLCs). Individuals' GLCs were obtained during ovum retrieval in intracytoplasmic sperm injection (ICSI) cycles. First, the induced OS model was created in GLCs using H2O2 exposure. To examine the protective effect of SFN against OS, the cells were cultured for 24 h in presence or absence of SFN. Eventually, the levels of intracellular ROS and apoptosis were measured by flow cytometry, and genes and proteins expression levels of AMPK, AKT, and NRF2 were evaluated using qRT-PCR and western blotting. Compared to the control group, the levels of intracellular ROS and apoptosis rose dramatically in GLCs with enhanced OS. SFN therapy decreased ROS and apoptosis levels and increased the overexpression of AMPK, AKT, and NRF2 genes and proteins. This study's results revealed that SFN exposure results in the alleviation of ROS and apoptosis levels possibly through activating the overexpression of genes and proteins of AMPK, AKT, and NRF2, and exerts its protective effects against OS in GLCs.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roudbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
82
|
Eisenstein A, Hilliard BK, Pope SD, Zhang C, Taskar P, Waizman DA, Israni-Winger K, Tian H, Luan HH, Wang A. Activation of the transcription factor NRF2 mediates the anti-inflammatory properties of a subset of over-the-counter and prescription NSAIDs. Immunity 2022; 55:1082-1095.e5. [PMID: 35588739 PMCID: PMC9205175 DOI: 10.1016/j.immuni.2022.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) enzymes and are ubiquitously used for their anti-inflammatory properties. However, COX inhibition alone fails to explain numerous clinical outcomes of NSAID usage. Screening commonly used NSAIDs in primary human and murine myeloid cells demonstrated that NSAIDs could be differentiated by their ability to induce growth/differentiation factor 15 (GDF15), independent of COX specificity. Using genetic and pharmacologic approaches, NSAID-mediated GDF15 induction was dependent on the activation of nuclear factor erythroid 2-related factor 2 (NRF2) in myeloid cells. Sensing by Cysteine 151 of the NRF2 chaperone, Kelch-like ECH-associated protein 1 (KEAP1) was required for NSAID activation of NRF2 and subsequent anti-inflammatory effects both in vitro and in vivo. Myeloid-specific deletion of NRF2 abolished NSAID-mediated tissue protection in murine models of gout and endotoxemia. This highlights a noncanonical NRF2-dependent mechanism of action for the anti-inflammatory activity of a subset of commonly used NSAIDs.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brandon K Hilliard
- Department of Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Scott D Pope
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, New Haven, CT, USA
| | - Cuiling Zhang
- Department of Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pranali Taskar
- NGM Biopharmaceuticals, South San Francisco, CA 94080, USA
| | - Daniel A Waizman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hui Tian
- NGM Biopharmaceuticals, South San Francisco, CA 94080, USA
| | - Harding H Luan
- NGM Biopharmaceuticals, South San Francisco, CA 94080, USA.
| | - Andrew Wang
- Department of Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
83
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
84
|
Fanta CC, Tlusty KJ, Pauley SE, Johnson AL, Benjamin GA, Yseth TK, Bunde MM, Pierce PT, Wang S, Vitiello PF, Mays JR. Synthesis and Evaluation of Functionalized Aryl and Biaryl Isothiocyanates Against Human MCF-7 Cells. ChemMedChem 2022; 17:e202200250. [PMID: 35588002 DOI: 10.1002/cmdc.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Organic isothiocyanates (ITCs) are a class of anticancer agents which naturally result from the enzymatic degradation of glucosinolates produced by Brassica vegetables. Previous studies have demonstrated that the structure of an ITC impacts its potency and mode(s) of anticancer properties, opening the way to preparation and evaluation of synthetic, non-natural ITC analogues. This study describes the preparation of a library of 79 non-natural ITC analogues intended to probe further structure-activity relationships for aryl ITCs and second-generation, functionalized biaryl ITC variants. ITC candidates were subjected to bifurcated evaluation of antiproliferative and antioxidant response element (ARE)-induction capacity against human MCF-7 cells. The results of this study led to the identification of (1) several key structure-activity relationships and (2) lead ITCs demonstrating potent antiproliferative properties.
Collapse
Affiliation(s)
- Claire C Fanta
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Sarah E Pauley
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | | | - Taylor K Yseth
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Paul T Pierce
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Shirley Wang
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Peter F Vitiello
- The University of Oklahoma Health Sciences Center, Pediatrics; Physiology; Biochemistry & Molecular Biology, UNITED STATES
| | - Jared R Mays
- Augustana University, Chemistry & Biochemistry, 2001 S. Summit Ave., 57197, Sioux Falls, UNITED STATES
| |
Collapse
|
85
|
Al Mamun A, Sufian MA, Uddin MS, Sumsuzzman DM, Jeandet P, Islam MS, Zhang HJ, Kong AN, Sarwar MS. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol 2022; 928:174991. [PMID: 35513016 DOI: 10.1016/j.ejphar.2022.174991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023]
Abstract
During the last few decades, cancer has remained one of the deadliest diseases that endanger human health, emphasizing urgent drug discovery. Cellular senescence has gained a great deal of attention in recent years because of its link to the development of cancer therapy. Senescent cells are incapable of proliferating due to irreversibly inhibited the initiation of the cell cycle pathways. However, senescent cells aggregate in tissues and produce a pro-inflammatory secretome called senescence-associated secretory phenotype (SASP) that can cause serious harmful effects if not managed properly. There is mounting evidence that senescent cells lead to various phases of tumorigenesis in various anatomical sites, owing mostly to the paracrine activities of the SASP. Therefore, a new treatment field called senotherapeutics has been established. Senotherapeutics are newly developed anticancer agents that have been demonstrated to inhibit cancer effectively. In light of recent findings, several promising natural products have been identified as senescence inducers and senotherapeutics, including, miliusanes, epigallocatechin gallate, phloretin, silybin, resveratrol, genistein, sulforaphane, quercetin, allicin, fisetin, piperlongumine, berberine, triptolide, tocotrienols and curcumin analogs. Several of them have already been validated through preclinical trials and exert an enormous potential for clinical trials. This review article focuses on and summarises the latest advances on cellular senescence and its potential as a target for cancer treatment and highlights the well-known natural products as senotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims, Cedex 2, France
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
86
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
87
|
Tang R, Cao QQ, Hu SW, He LJ, Du PF, Chen G, Fu R, Xiao F, Sun YR, Zhang JC, Qi Q. Sulforaphane activates anti-inflammatory microglia, modulating stress resilience associated with BDNF transcription. Acta Pharmacol Sin 2022; 43:829-839. [PMID: 34272506 PMCID: PMC8976037 DOI: 10.1038/s41401-021-00727-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Sulforaphane (SFN) is an organic isothiocyanate and an NF-E2-related factor-2 (Nrf2) inducer that exerts prophylactic effects on depression-like behavior in mice. However, the underlying mechanisms remain poorly understood. Brain-derived neurotrophic factor (BDNF), a neurotrophin, is widely accepted for its antidepressant effects and role in stress resilience. Here, we show that SFN confers stress resilience via BDNF upregulation and changes in abnormal dendritic spine morphology in stressed mice, which is accompanied by rectifying the irregular levels of inflammatory cytokines. Mechanistic studies demonstrated that SFN activated Nrf2 to promote BDNF transcription by binding to the exon I promoter, which is associated with increased Nrf2, and decreased methyl-CpG binding protein-2 (MeCP2), a transcriptional suppressor of BDNF, in BV2 microglial cells. Furthermore, SFN inhibited the pro-inflammatory phenotype and activated the anti-inflammatory phenotype of microglia, which was associated with increased Nrf2 and decreased MeCP2 expression in microglia of stressed mice. Hence, our findings support that Nrf2 induces BDNF transcription via upregulation of Nrf2 and downregulation of MeCP2 in microglia, which is associated with changes in the morphology of damaged dendritic spines in stressed mice. Meanwhile, the data presented here provide evidence for the application of SFN as a candidate for the prevention and intervention of depression.
Collapse
Affiliation(s)
- Rui Tang
- grid.258164.c0000 0004 1790 3548Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632 China ,grid.13402.340000 0004 1759 700XSchool of Medicine, Xi-an Medicine College, Xi-an, 710000 China
| | - Qian-qian Cao
- grid.258164.c0000 0004 1790 3548Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Sheng-wei Hu
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Lu-juan He
- grid.258164.c0000 0004 1790 3548Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Peng-fei Du
- Second Affiliated Hospital of Jiaxing, Jiaxing, 4564496 China
| | - Gang Chen
- grid.258164.c0000 0004 1790 3548School of traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Rao Fu
- grid.12981.330000 0001 2360 039XDepartment of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, 510080 China
| | - Fei Xiao
- grid.258164.c0000 0004 1790 3548Department of Pharmacology, School of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Yi-rong Sun
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Ji-chun Zhang
- grid.258164.c0000 0004 1790 3548Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Qi Qi
- grid.258164.c0000 0004 1790 3548MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
88
|
Janczewski Ł. Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules 2022; 27:1750. [PMID: 35268851 PMCID: PMC8911885 DOI: 10.3390/molecules27051750] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/27/2022] Open
Abstract
For decades, various plants have been studied as sources of biologically active compounds. Compounds with anticancer and antimicrobial properties are the most frequently desired. Cruciferous plants, including Brussels sprouts, broccoli, and wasabi, have a special role in the research studies. Studies have shown that consumption of these plants reduce the risk of lung, breast, and prostate cancers. The high chemopreventive and anticancer potential of cruciferous plants results from the presence of a large amount of glucosinolates, which, under the influence of myrosinase, undergo an enzymatic transformation to biologically active isothiocyanates (ITCs). Natural isothiocyanates, such as benzyl isothiocyanate, phenethyl isothiocyanate, or the best-tested sulforaphane, possess anticancer activity at all stages of the carcinogenesis process, show antibacterial activity, and are used in organic synthesis. Methods of synthesis of sulforaphane, as well as its natural or synthetic bifunctional analogues with sulfinyl, sulfanyl, sulfonyl, phosphonate, phosphinate, phosphine oxide, carbonyl, ester, carboxamide, ether, or additional isothiocyanate functional groups, and with the unbranched alkyl chain containing 2-6 carbon atoms, are discussed in this review. The biological activity of these compounds are also reported. In the first section, glucosinolates, isothiocyanates, and mercapturic acids (their metabolites) are briefly characterized. Additionally, the most studied anticancer and antibacterial mechanisms of ITC actions are discussed.
Collapse
Affiliation(s)
- Łukasz Janczewski
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
89
|
Membrane Vesicles for Nanoencapsulated Sulforaphane Increased Their Anti-Inflammatory Role on an In Vitro Human Macrophage Model. Int J Mol Sci 2022; 23:ijms23041940. [PMID: 35216054 PMCID: PMC8878270 DOI: 10.3390/ijms23041940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
At present, there is a growing interest in finding new non-toxic anti-inflammatory drugs to treat inflammation, which is a key pathology in the development of several diseases with considerable mortality. Sulforaphane (SFN), a bioactive compound derived from Brassica plants, was shown to be promising due to its anti-inflammatory properties and great potential, though its actual clinical use is limited due to its poor stability and bioavailability. In this sense, the use of nanocarriers could solve stability-related problems. In the current study, sulforaphane loaded into membrane vesicles derived from broccoli plants was studied to determine the anti-inflammatory potential in a human-macrophage-like in vitro cell model under both normal and inflammatory conditions. On the one hand, the release of SFN from membrane vesicles was modeled in vitro, and two release phases were stabilized, one faster and the other slower due to the interaction between SFN and membrane proteins, such as aquaporins. Furthermore, the anti-inflammatory action of sulforaphane-loaded membrane vesicles was demonstrated, as a decrease in interleukins crucial for the development of inflammation, such as TNF-α, IL-1β and IL-6, was observed. Furthermore, these results also showed that membrane vesicles by themselves had anti-inflammatory properties, opening the possibility of new lines of research to study these vesicles, not only as carriers but also as active compounds.
Collapse
|
90
|
Liao Z, Fang Z, Gou S, Luo Y, Liu Y, He Z, Li X, Peng Y, Fu Z, Li D, Chen H, Luo Z. The role of diet in renal cell carcinoma incidence: an umbrella review of meta-analyses of observational studies. BMC Med 2022; 20:39. [PMID: 35109847 PMCID: PMC8812002 DOI: 10.1186/s12916-021-02229-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evidence associating diet with the incidence of renal cell carcinoma (RCC) is inconclusive. We aimed to summarize evidence associating dietary factors with RCC incidence and assess the strength and validity of this evidence. METHODS We conducted an umbrella review of systematic reviews or meta-analyses (SRoMAs) that assessed the association between diet and RCC incidence. Through April 2021, PubMed, Web of Science, Embase, The Cochrane Library, Scopus, and WCRF were searched. Two independent reviewers selected studies, extracted data, and appraised the quality of SRoMAs. According to credibility assessment criteria, evidence can be divided into five categories: convincing (class I), highly suggestive (class II), suggestive (class III), weak (class IV), and nonsignificant (class V). RESULTS Twenty-nine meta-analyses were obtained after screening. After excluding 7 overlapping meta-analyses, 22 meta-analyses including 502 individual studies and 64 summary hazard ratios for RCC incidence were included: dietary patterns or dietary quality indices (n = 6), foods (n = 13), beverages (n = 4), alcohol (n = 7), macronutrients (n =15), and micronutrients (n =19). No meta-analyses had high methodological quality. Five meta-analyses exhibited small study effects; one meta-analysis showed evidence of excess significance bias. No dietary factors showed convincing or highly suggestive evidence of association with RCC in the overall analysis. Two protective factors had suggestive evidence (vegetables (0.74, 95% confidence interval 0.63 to 0.86) and vitamin C (0.77, 0.66 to 0.90)) in overall analysis. One protective factor had convincing evidence (moderate drinking (0.77, 0.70 to 0.84)) in Europe and North America and one protective factor had highly suggestive evidence (cruciferous vegetables (0.78, 0.70 to 0.86)) in North America. CONCLUSIONS Although many meta-analyses have assessed associations between dietary factors and RCC, no high-quality evidence exists (classes I and II) in the overall analysis. Increased intake of vegetables and vitamin C is negatively associated with RCC risk. Moderate drinking might be beneficial for Europeans and North Americans, and cruciferous vegetables might be beneficial to North Americans, but the results should be interpreted with caution. More researches are needed in the future. TRIAL REGISTRATION PROSPERO CRD42021246619.
Collapse
Affiliation(s)
- Zhanchen Liao
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zhitao Fang
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Siqi Gou
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Yong Luo
- The Second Affiliated Hospital, Trauma Center & Critical Care Medicine, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Yiqi Liu
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zhun He
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Xin Li
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Yansong Peng
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zheng Fu
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Dongjin Li
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Haiyun Chen
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Zhigang Luo
- The Second Affiliated Hospital, Institute of Urology and Organ Transplantation, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
91
|
Glucoraphanin Increases Intracellular Hydrogen Sulfide (H2S) Levels and Stimulates Osteogenic Differentiation in Human Mesenchymal Stromal Cell. Nutrients 2022; 14:nu14030435. [PMID: 35276794 PMCID: PMC8837953 DOI: 10.3390/nu14030435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Osteopenia and osteoporosis are among the most prevalent consequences of ageing, urging the promotion of healthy nutritional habits as a tool in preventing bone fractures. Glucosinolates (GLSs) are organosulfur compounds considered relatively inert precursors of reactive derivatives isothiocyanates (ITCs). Recent evidence suggests that GLSs may exert biological properties based on their capacity to release hydrogen sulfide (H2S). H2S-donors are known to exert anabolic function on bone cells. Here, we investigated whether a GLS, glucoraphanin (GRA) obtained from Tuscan black kale, promotes osteogenesis in human mesenchymal stromal cells (hMSCs). H2S release in buffer and intracellular H2S levels were detected by amperometric measurements and fluorimetric/cytofluorimetric analyses, respectively. Alizarin red staining assay and real-time PCR were performed to evaluate mineral apposition and mRNA expression of osteogenic genes. Using an in vitro cell culture model, our data demonstrate a sulforaphane (SFN)-independent osteogenic stimulation of GRA in hMSCs, at least partially attributable to H2S release. In particular, GRA upregulated the expression of osteogenic genes and enhanced mineral apposition while increasing intracellular concentrations of H2S. Overall, this study suggests the feasibility of using cruciferous derivatives as natural alternatives to chemical H2S-donors as adjuvant therapies in the treatment of bone-wasting diseases.
Collapse
|
92
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
93
|
Enzyme systems involved in glucosinolate metabolism in Companilactobacillus farciminis KB1089. Sci Rep 2021; 11:23715. [PMID: 34887468 PMCID: PMC8660893 DOI: 10.1038/s41598-021-03064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Cruciferous vegetables are rich sources of glucosinolates (GSLs). GSLs are degraded into isothiocyanates, which are potent anticarcinogens, by human gut bacteria. However, the mechanisms and enzymes involved in gut bacteria-mediated GSL metabolism are currently unclear. This study aimed to elucidate the enzymes involved in GSL metabolism in lactic acid bacteria, a type of gut bacteria. Companilactobacillus farciminis KB1089 was selected as a lactic acid bacteria strain model that metabolizes sinigrin, which is a GSL, into allylisothiocyanate. The sinigrin-metabolizing activity of this strain is induced under glucose-absent and sinigrin-present conditions. A quantitative comparative proteomic analysis was conducted and a total of 20 proteins that were specifically expressed in the induced cells were identified. Three candidate proteins, β-glucoside-specific IIB, IIC, IIA phosphotransferase system (PTS) components (CfPttS), 6-phospho-β-glucosidase (CfPbgS) and a hypothetical protein (CfNukS), were suspected to be involved in sinigrin-metabolism and were thus investigated further. We hypothesize a pathway for sinigrin degradation, wherein sinigrin is taken up and phosphorylated by CfPttS, and subsequently, the phosphorylated entity is degraded by CfPbgS. As expression of both pttS and pbgS genes clearly gave Escherichia coli host strain sinigrin converting activity, these genes were suggested to be responsible for sinigrin degradation. Furthermore, heterologous expression analysis using Lactococcus lactis suggested that CfPttS was important for sinigrin degradation and CfPbgS degraded phosphorylated sinigrin.
Collapse
|
94
|
Shen C, Zhang Z, Tian Y, Li F, Zhou L, Jiang W, Yang L, Zhang B, Wang L, Zhang Y. Sulforaphane enhances the antitumor response of chimeric antigen receptor T cells by regulating PD-1/PD-L1 pathway. BMC Med 2021; 19:283. [PMID: 34819055 PMCID: PMC8614004 DOI: 10.1186/s12916-021-02161-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) cell therapy has limited effects in the treatment of solid tumors. Sulforaphane (SFN) is known to play an important role in inhibiting tumor growth, but its effect on CAR-T cells remains unclear. The goal of the current study was to determine whether combined CAR-T cells and SFN could provide antitumor efficacy against solid tumors. METHODS The effect of combined SFN and CAR-T cells was determined in vitro using a co-culture system and in vivo using a xenograft mouse model. We further validated the effects of combination therapy in patients with cancer. RESULTS In vitro, the combination of SFN and CAR-T cells resulted in enhanced cytotoxicity and increased lysis of tumor cells. We found that SFN suppressed programmed cell death 1 (PD-1) expression in CAR-T cells and potentiated antitumor functions in vitro and in vivo. As a ligand of PD-1, programmed cell death ligand 1 (PD-L1) expression was also decreased in tumor cells after SFN treatment. In addition, β-TrCP was increased by SFN, resulting in higher activation of ubiquitination-mediated proteolysis of PD-L1, which induced PD-L1 degradation. The combination of SFN and CAR-T cell therapy acted synergistically to promote better immune responses in vivo compared with monotherapy. In clinical treatments, PD-1 expression was lower, and proinflammatory cytokine levels were higher in patients with various cancers who received CAR-T cells and took SFN orally than that in the control group. CONCLUSION SFN improves the cytotoxicity of CAR-T cells by modulating the PD-1/PD-L1 pathway, which may provide a promising strategy for the combination of SFN with CAR-T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Chunyi Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Yonggui Tian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Lingxiao Zhou
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Wenyi Jiang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China.
| |
Collapse
|
95
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
96
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
97
|
Bai Y, Feldman C, Li Y, Keys K, Overgaard K. A Functional Vegetable Option: An Exploratory Study Testing Kimchi Variation for Acceptance among Consumers. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2020.1790075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yeon Bai
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Charles Feldman
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Yanyan Li
- College of Science and Humanities, Husson University, Bangor, Maine, USA
| | - Ki Keys
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Kaitlin Overgaard
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| |
Collapse
|
98
|
Sulforaphane Causes Cell Cycle Arrest and Apoptosis in Human Glioblastoma U87MG and U373MG Cell Lines under Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms222011201. [PMID: 34681862 PMCID: PMC8541491 DOI: 10.3390/ijms222011201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor. The median survival rate from diagnosis ranges from 15 to 17 months because the tumor is resistant to most therapeutic strategies. GBM exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has already demonstrated the ability to inhibit cell proliferation, by provoking cell cycle arrest, and leading to apoptosis in many cell lines. In this study, we investigated the antineoplastic effects of SFN [20-80 μM for 48 h] in GBM cells under normoxic and hypoxic conditions. Cell viability assays, flow cytometry, and Western blot results revealed that SFN could induce apoptosis of GBM cells in a dose-dependent manner, under both conditions. In particular, SFN significantly induced caspase 3/7 activation and DNA fragmentation. Moreover, our results demonstrated that SFN suppressed GBM cells proliferation by arresting the cell cycle at the S-phase, also under hypoxic condition, and that these effects may be due in part to its ability to induce oxidative stress by reducing glutathione levels and to increase the phosphorylation of extracellular signal-regulated kinases (ERKs). Overall, we hypothesized that SFN treatment might serve as a potential therapeutic strategy, alone or in combination, against GBM.
Collapse
|
99
|
Bono S, Feligioni M, Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Mol Neurodegener 2021; 16:71. [PMID: 34663413 PMCID: PMC8521937 DOI: 10.1186/s13024-021-00479-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) is an imbalance between oxidant and antioxidant species and, together with other numerous pathological mechanisms, leads to the degeneration and death of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). MAIN BODY Two of the main players in the molecular and cellular response to OS are NRF2, the transcription nuclear factor erythroid 2-related factor 2, and its principal negative regulator, KEAP1, Kelch-like ECH (erythroid cell-derived protein with CNC homology)-associated protein 1. Here we first provide an overview of the structural organization, regulation, and critical role of the KEAP1-NRF2 system in counteracting OS, with a focus on its alteration in ALS. We then examine several compounds capable of promoting NRF2 activity thereby inducing cytoprotective effects, and which are currently in different stages of clinical development for many pathologies, including neurodegenerative diseases. CONCLUSIONS Although challenges associated with some of these compounds remain, important advances have been made in the development of safer and more effective drugs that could actually represent a breakthrough for fatal degenerative diseases such as ALS.
Collapse
Affiliation(s)
- Silvia Bono
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| | - Marco Feligioni
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| |
Collapse
|
100
|
Bouranis JA, Beaver LM, Ho E. Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Front Nutr 2021; 8:748433. [PMID: 34631775 PMCID: PMC8492924 DOI: 10.3389/fnut.2021.748433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Robust evidence shows that phytochemicals from cruciferous vegetables, like broccoli, are associated with numerous health benefits. The anti-cancer properties of these foods are attributed to bioactive isothiocyanates (ITCs) and indoles, phytochemicals generated from biological precursor compounds called glucosinolates. ITCs, and particularly sulforaphane (SFN), are of intense interest as they block the initiation, and suppress the progression of cancer, through genetic and epigenetic mechanisms. The efficacy of these compounds is well-demonstrated in cell culture and animal models, however, high levels of inter-individual variation in absorption and excretion of ITCs is a significant barrier to the use of dietary glucosinolates to prevent and treat disease. The source of inter-individual ITC variation has yet to be fully elucidated and the gut microbiome may play a key role. This review highlights evidence that the gut microbiome influences the metabolic fate and activity of ITCs. Human feeding trials have shown inter-individual variations in gut microbiome composition coincides with variations in ITC absorption and excretion, and some bacteria produce ITCs from glucosinolates. Additionally, consumption of cruciferous vegetables can alter the composition of the gut microbiome and shift the physiochemical environment of the gut lumen, influencing the production of phytochemicals. Microbiome and diet induced changes to ITC metabolism may lead to the decrease of cancer fighting phytochemicals such as SFN and increase the production of biologically inert ones like SFN-nitrile. We conclude by offering perspective on the use of novel “omics” technologies to elucidate the interplay of the gut microbiome and ITC formation.
Collapse
Affiliation(s)
- John A Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|