51
|
Radziwon-Balicka A, Lesyk G, Back V, Fong T, Loredo-Calderon EL, Dong B, El-Sikhry H, El-Sherbeni AA, El-Kadi A, Ogg S, Siraki A, Seubert JM, Santos-Martinez MJ, Radomski MW, Velazquez-Martinez CA, Winship IR, Jurasz P. Differential eNOS-signalling by platelet subpopulations regulates adhesion and aggregation. Cardiovasc Res 2018; 113:1719-1731. [PMID: 29016749 DOI: 10.1093/cvr/cvx179] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Aims In addition to maintaining haemostasis, circulating blood platelets are the cellular culprits that form occlusive thrombi in arteries and veins. Compared to blood leucocytes, which exist as functionally distinct subtypes, platelets are considered to be relatively simple cell fragments that form vascular system plugs without a differentially regulated cellular response. Hence, investigation into platelet subpopulations with distinct functional roles in haemostasis/thrombosis has been limited. In our present study, we investigated whether functionally distinct platelet subpopulations exist based on their ability to generate and respond to nitric oxide (NO), an endogenous platelet inhibitor. Methods and results Utilizing highly sensitive and selective flow cytometry protocols, we demonstrate that human platelet subpopulations exist based on the presence and absence of endothelial nitric oxide synthase (eNOS). Platelets lacking eNOS (approximately 20% of total platelets) fail to produce NO and have a down-regulated soluble guanylate cyclase-protein kinase G (sGC-PKG)-signalling pathway. In flow chamber and aggregation experiments eNOS-negative platelets primarily initiate adhesion to collagen, more readily activate integrin αIIbβ3 and secrete matrix metalloproteinase-2, and form larger aggregates than their eNOS-positive counterparts. Conversely, platelets having an intact eNOS-sGC-PKG-signalling pathway (approximately 80% of total platelets) form the bulk of an aggregate via increased thromboxane synthesis and ultimately limit its size via NO generation. Conclusion These findings reveal previously unrecognized characteristics and complexity of platelets and their regulation of adhesion/aggregation. The identification of platelet subpopulations also has potentially important consequences to human health and disease as impaired platelet NO-signalling has been identified in patients with coronary artery disease.
Collapse
Affiliation(s)
- Aneta Radziwon-Balicka
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Gabriela Lesyk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Valentina Back
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Teresa Fong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Erica L Loredo-Calderon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Bin Dong
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G-2R3, Canada
| | - Haitham El-Sikhry
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Ayman El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Stephen Ogg
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton, AB T6G-2E1, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada.,Department of Pharmacology, University of Alberta Edmonton, AB T6G-2H7, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G-2S2, Canada.,Mazankowski Heart Institute, Edmonton, AB T6G-2R7
| | | | - Marek W Radomski
- College of Medicine, University of Saskatchewan, Saskatoon, SK S7N-5E5, Canada
| | | | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G-2R3, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada.,Department of Pharmacology, University of Alberta Edmonton, AB T6G-2H7, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G-2S2, Canada.,Mazankowski Heart Institute, Edmonton, AB T6G-2R7
| |
Collapse
|
52
|
Nuno DW, Coppey LJ, Yorek MA, Lamping KG. Dietary fats modify vascular fat composition, eNOS localization within lipid rafts and vascular function in obesity. Physiol Rep 2018; 6:e13820. [PMID: 30105819 PMCID: PMC6090220 DOI: 10.14814/phy2.13820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
We tested whether dietary fatty acids alter membrane composition shifting localization of signaling pathways within caveolae to determine their role in vascular function. Wild type (WT) and caveolin-1-deficient mice (cav-1 KO), required for vascular caveolae formation, were fed low fat (LF), high saturated fat (HF, 60% kcal from lard), or high-fat diet with 50:50 lard and n-3 polyunsaturated fatty acid-enriched menhaden oil (MO). HF and MO increased body weight and fat in WT but had less effect in cav-1 KO. MO increased unsaturated fatty acids and the unsaturation index of aorta from WT and cav-1 KO. In LF WT aorta, endothelial nitric oxide synthase (eNOS) was localized to cav-1-enriched low-density fractions which shifted to actin-enriched high-density fractions with acetylcholine (ACh). HF and MO shifted eNOS to high-density fractions in WT aorta which was not affected by ACh. In cav-1 KO aorta, eNOS was localized in low-density non-caveolar fractions but not shifted by ACh or diet. Inducible NOS and cyclooxygenase 1/2 were not localized in low-density fractions or affected by diet, ACh or genotype. ACh-induced dilation of gracilis arteries from HF WT was similar to dilation in LF but the NOS component was reduced. In WT and cav-1 KO, dilation to ACh was enhanced by MO through increased role for NOS and cyclooxygenase. We conclude that dietary fats affect vascular fatty acid composition and membrane localization of eNOS but the contribution of eNOS and cyclooxygenase in ACh-mediated vascular responses is independent of lipid rafts.
Collapse
Affiliation(s)
- Daniel W. Nuno
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowa
| | - Lawrence J. Coppey
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowa
| | - Mark A. Yorek
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowa
- Iowa City Veterans Affairs Healthcare SystemIowa CityIowa
| | - Kathryn G. Lamping
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowa
- Iowa City Veterans Affairs Healthcare SystemIowa CityIowa
- Department of PharmacologyRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowa
| |
Collapse
|
53
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
54
|
Li Q, Su J, Jin SJ, Wei W, Cong XD, Li XX, Xu M. Argirein alleviates vascular endothelial insulin resistance through suppressing the activation of Nox4-dependent O 2- production in diabetic rats. Free Radic Biol Med 2018; 121:169-179. [PMID: 29709706 DOI: 10.1016/j.freeradbiomed.2018.04.573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insulin resistance in endothelial cells contributes to the development of cardiovascular disease in type 2 diabetes mellitus (T2DM). Therefore, there are great potential clinical implications in developing pharmacological interventions targeting endothelial insulin resistance. Our previous studies indicated that argirein which was developed by combining rhein with L-arginine by a hydrogen bond, could substantially relieved stress related exacerbation of cardiac failure and alleviated cardiac dysfunction in T2DM, which was associated with suppressing NADPH oxidase activity. However, it is unclear whether argirein treatment attenuates the vascular lesion and dysfunction in T2DM and its underlying mechanisms. METHODS AND RESULTS The rat aortic endothelial cells (RAECs) were used to treat with palmitic acid (PA), a most common saturated free fatty acid, which could induce insulin resistance. It was showed that argirein increased glucose uptake and glucose transporter-4 (Glut4) expression and reversed the phosphorylation of IRS-1-ser307 and AKT-ser473, consequently resulting in the increase of the production of eNOS and NO in PA-induced RAECs. We further found that argirein blocked the Nox4-dependent superoxide (O2-.) generation, which regulated glucose metabolism in RAECs during PA stimulation. In vitro, argirein increased the release of endothelial NO to relieve the vasodilatory response to acetylcholine and insulin, and restored the expression of Nox4 and pIRS-1-ser307 in the aorta endothelium of high-fat diet (HFD)-fed rats following an injection of streptozocin (STZ). CONCLUSION These results suggested that argirein could improve endothelial insulin resistance which was attributed to inhibiting Nox4-dependent redox signaling in RAECs. These studies thus revealed the novel effect of argirein to prevent the vascular complication in T2DM.
Collapse
MESH Headings
- Animals
- Anthraquinones/pharmacology
- Arginine/pharmacology
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Drug Combinations
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Insulin Resistance
- Male
- NADPH Oxidase 4/genetics
- NADPH Oxidase 4/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Qing Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, P.O. Box 076, Nanjing, China, 210009
| | - Jie Su
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, P.O. Box 076, Nanjing, China, 210009
| | - Shi-Jie Jin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, P.O. Box 076, Nanjing, China, 210009
| | - Xiao-Dong Cong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Xiao-Xue Li
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, P.O. Box 076, Nanjing, China, 210009.
| |
Collapse
|
55
|
Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF. Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 2018; 15:56-69. [PMID: 29807870 PMCID: PMC6066739 DOI: 10.1016/j.molmet.2018.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.
Collapse
Affiliation(s)
- Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| | - Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service d'Hépatologie et Gastro-Entérologie, CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| |
Collapse
|
56
|
Jung W, Sierecki E, Bastiani M, O'Carroll A, Alexandrov K, Rae J, Johnston W, Hunter DJB, Ferguson C, Gambin Y, Ariotti N, Parton RG. Cell-free formation and interactome analysis of caveolae. J Cell Biol 2018; 217:2141-2165. [PMID: 29716956 PMCID: PMC5987714 DOI: 10.1083/jcb.201707004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/24/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Caveolae are linked to signaling protein regulation through interactions with caveolins. We describe a cell-free system for the biogenesis of caveolae and show phosphorylated-caveolins preferentially bind signaling proteins. Our validation in vivo shows that phosphorylated CAV1 recruits TRAF2 to the endosome to form a signaling platform. Caveolae have been linked to the regulation of signaling pathways in eukaryotic cells through direct interactions with caveolins. Here, we describe a cell-free system based on Leishmania tarentolae (Lt) extracts for the biogenesis of caveolae and show its use for single-molecule interaction studies. Insertion of expressed caveolin-1 (CAV1) into Lt membranes was analogous to that of caveolin in native membranes. Electron tomography showed that caveolins generate domains of precise size and curvature. Cell-free caveolae were used in quantitative assays to test the interaction of membrane-inserted caveolin with signaling proteins and to determine the stoichiometry of interactions. Binding of membrane-inserted CAV1 to several proposed binding partners, including endothelial nitric-oxide synthase, was negligible, but a small number of proteins, including TRAF2, interacted with CAV1 in a phosphorylation-(CAV1Y14)–stimulated manner. In cells subjected to oxidative stress, phosphorylated CAV1 recruited TRAF2 to the early endosome forming a novel signaling platform. These findings lead to a novel model for cellular stress signaling by CAV1.
Collapse
Affiliation(s)
- WooRam Jung
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Emma Sierecki
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Michele Bastiani
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Ailis O'Carroll
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Kirill Alexandrov
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - James Rae
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Wayne Johnston
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Dominic J B Hunter
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Charles Ferguson
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Yann Gambin
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Robert G Parton
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia .,The University of Queensland, The Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
57
|
Abstract
Membrane-initiated steroid signaling (MISS) is a recently discovered aspect of steroidal control over cell function that has proved highly challenging to study due to its rapidity and ultrasensitivity to the steroid trigger [Chow RWY, Handelsman DJ, Ng MKC (2010) Endocrinology 151:2411-2422]. Fundamental aspects underlying MISS, such as receptor binding, kinetics of ion-channel opening, and production of downstream effector molecules remain obscure because a pristine molecular technology that could trigger the release of signaling steroids was not available. We have recently described a prototype DNA nanocapsule which can be programmed to release small molecules upon photoirradiation [Veetil AT, et al. (2017) Nat Nanotechnol 12:1183-1189]. Here we show that this DNA-based molecular technology can now be programmed to chemically trigger MISS, significantly expanding its applicability to systems that are refractory to photoirradiation.
Collapse
|
58
|
Volonte D, Vyas AR, Chen C, Dacic S, Stabile LP, Kurland BF, Abberbock SR, Burns TF, Herman JG, Di YP, Galbiati F. Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. J Biol Chem 2017; 293:1794-1809. [PMID: 29247004 DOI: 10.1074/jbc.m117.815902] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
Oncogene-induced senescence (OIS) is considered a powerful tumor suppressor mechanism. Caveolin-1 acts as a scaffolding protein to functionally regulate signaling molecules. We demonstrate that a lack of caveolin-1 expression inhibits oncogenic K-Ras (K-RasG12V)-induced premature senescence in mouse embryonic fibroblasts and normal human bronchial epithelial cells. Oncogenic K-Ras induces senescence by limiting the detoxification function of MTH1. We found that K-RasG12V promotes the interaction of caveolin-1 with MTH1, which results in inhibition of MTH1 activity. Lung cancer cells expressing oncogenic K-Ras have bypassed the senescence barrier. Interestingly, overexpression of caveolin-1 restores cellular senescence in both A549 and H460 lung cancer cells and inhibits their transformed phenotype. In support of these findings, our in vivo data demonstrate that overexpression of oncogenic K-Ras (K-RasG12D) induces cellular senescence in the lung of wildtype but not caveolin-1-null mice. A lack of K-RasG12D-induced premature senescence in caveolin-1-null mice results in the formation of more abundant lung tumors. Consistent with these data, caveolin-1-null mice overexpressing K-RasG12D display accelerated mortality. Finally, our animal data were supported by human sample analysis in which we show that caveolin-1 expression is dramatically down-regulated in lung adenocarcinomas from lung cancer patients, both at the mRNA and protein levels, and that low caveolin-1 expression is associated with poor survival. Together, our data suggest that lung cancer cells escape oncogene-induced premature senescence through down-regulation of caveolin-1 expression to progress from premalignant lesions to cancer.
Collapse
Affiliation(s)
| | - Avani R Vyas
- From the Department of Pharmacology and Chemical Biology
| | - Chen Chen
- the Department of Environmental and Occupational Health, and
| | - Sanja Dacic
- the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Laura P Stabile
- From the Department of Pharmacology and Chemical Biology.,the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Brenda F Kurland
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232.,the Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, and
| | - Shira R Abberbock
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Timothy F Burns
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - James G Herman
- the Lung Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Yuanpu Peter Di
- the Department of Environmental and Occupational Health, and
| | | |
Collapse
|
59
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
60
|
AlTawallbeh G, Haque MM, Streletzky KA, Stuehr DJ, Bayachou M. Endothelial nitric oxide synthase oxygenase on lipid nanodiscs: A nano-assembly reflecting native-like function of eNOS. Biochem Biophys Res Commun 2017; 493:1438-1442. [PMID: 28958937 DOI: 10.1016/j.bbrc.2017.09.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is a membrane-anchored enzyme. To highlight the potential role and effect of membrane phospholipids on the structure and activity of eNOS, we have incorporated the recombinant oxygenase subunit of eNOS into lipid nanodiscs. Two different size distribution modes were detected by multi-angle dynamic light scattering both for empty nanodiscs, and nanodiscs-bound eNOSoxy. The calculated hydrodynamic diameter for mode 1 species was 9.0 nm for empty nanodiscs and 9.8 nm for nanodisc bound eNOSoxy. Spectroscopic Griess assay was used to measure the enzymatic activity. Remarkably, the specific activity of nanodisc-bound eNOSoxy is ∼65% lower than the activity of free enzyme. The data shows that the nano-membrane environment affects the catalytic properties of eNOS heme domain.
Collapse
Affiliation(s)
| | - Mohammad M Haque
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Mekki Bayachou
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA; Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
61
|
|
62
|
Boopathy GTK, Kulkarni M, Ho SY, Boey A, Chua EWM, Barathi VA, Carney TJ, Wang X, Hong W. Cavin-2 regulates the activity and stability of endothelial nitric-oxide synthase (eNOS) in angiogenesis. J Biol Chem 2017; 292:17760-17776. [PMID: 28912276 PMCID: PMC5663877 DOI: 10.1074/jbc.m117.794743] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/04/2017] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is a highly regulated process for formation of new blood vessels from pre-existing ones. Angiogenesis is dysregulated in various pathologies, including age-related macular degeneration, arthritis, and cancer. Inhibiting pathological angiogenesis therefore represents a promising therapeutic strategy for treating these disorders, highlighting the need to study angiogenesis in more detail. To this end, identifying the genes essential for blood vessel formation and elucidating their function are crucial for a complete understanding of angiogenesis. Here, focusing on potential candidate genes for angiogenesis, we performed a morpholino-based genetic screen in zebrafish and identified Cavin-2, a membrane-bound phosphatidylserine-binding protein and critical organizer of caveolae (small microdomains in the plasma membrane), as a regulator of angiogenesis. Using endothelial cells, we show that Cavin-2 is required for in vitro angiogenesis and also for endothelial cell proliferation, migration, and invasion. We noted a high level of Cavin-2 expression in the neovascular tufts in the mouse model of oxygen-induced retinopathy, suggesting a role for Cavin-2 in pathogenic angiogenesis. Interestingly, we also found that Cavin-2 regulates the production of nitric oxide (NO) in endothelial cells by controlling the stability and activity of the endothelial nitric-oxide synthase (eNOS) and that Cavin-2 knockdown cells produce much less NO than WT cells. Also, mass spectrometry, flow cytometry, and electron microscopy analyses indicated that Cavin-2 is secreted in endothelial microparticles (EMPs) and is required for EMP biogenesis. Taken together, our results indicate that in addition to its function in caveolae biogenesis, Cavin-2 plays a critical role in endothelial cell maintenance and function by regulating eNOS activity.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| | - Madhura Kulkarni
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sze Yuan Ho
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Adrian Boey
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Edmond Wei Min Chua
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Veluchamy A Barathi
- the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore.,the Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Rd., 169857 Singapore.,the Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, and
| | - Tom J Carney
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaomeng Wang
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore
| | - Wanjin Hong
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| |
Collapse
|
63
|
Costas-Insua C, Merino-Gracia J, Aicart-Ramos C, Rodríguez-Crespo I. Subcellular Targeting of Nitric Oxide Synthases Mediated by Their N-Terminal Motifs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:165-195. [PMID: 29459031 DOI: 10.1016/bs.apcsb.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From a catalytic point of view, the three mammalian nitric oxide synthases (NOSs) function in an almost identical way. The N-terminal oxygenase domain catalyzes the conversion of l-arginine to l-citrulline plus ·NO in two sequential oxidation steps. Once l-arginine binds to the active site positioned above the heme moiety, two consecutive monooxygenation reactions take place. In the first step, l-arginine is hydroxylated to make Nω-hydroxy-l-arginine in a process that requires 1 molecule of NADPH and 1 molecule of O2 per mol of l-arginine reacted. In the second step, Nω-hydroxy-l-arginine, never leaving the active site, is oxidized to ·NO plus l-citrulline and 1 molecule of O2 and 0.5 molecules of NADPH are consumed. Since nitric oxide is an important signaling molecule that participates in a number of biological processes, including neurotransmission, vasodilation, and immune response, synthesis and release of ·NO in vivo must be exquisitely regulated both in time and in space. Hence, NOSs have evolved introducing in their amino acid sequences subcellular targeting motifs, most of them located at their N-termini. Deletion studies performed on recombinant, purified NOSs have revealed that part of the N-terminus of all three NOS can be eliminated with the resulting mutant enzymes still being catalytically active. Likewise, NOS isoforms lacking part of their N-terminus when transfected in cells render mislocalized, active proteins. In this review we will comment on the current knowledge of these subcellular targeting signals present in nNOS, iNOS, and eNOS.
Collapse
|
64
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
65
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
66
|
Abstract
Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation,
S-nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology & Biomedical Sciences, College of Medicine, Seoul National University, 103 Dae Hak Ro, Chong No Gu, 110-799 Seoul, Korea, South.,Yanbian University Hospital, Yanji, Jilin Province, 133000, China.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
67
|
Kraehling JR, Sessa WC. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease. Circ Res 2017; 120:1174-1182. [PMID: 28360348 DOI: 10.1161/circresaha.117.303776] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications.
Collapse
Affiliation(s)
- Jan R Kraehling
- From the Vascular Biology and Therapeutics Program (J.R.K.) and Department of Pharmacology (W.C.S.), Yale University, School of Medicine, New Haven, CT
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (J.R.K.) and Department of Pharmacology (W.C.S.), Yale University, School of Medicine, New Haven, CT.
| |
Collapse
|
68
|
Zayed MA, Wei X, Park KM, Belaygorod L, Naim U, Harvey J, Yin L, Blumer K, Semenkovich CF. N-Acetylcysteine accelerates amputation stump healing in the setting of diabetes. FASEB J 2017; 31:2686-2695. [PMID: 28280002 DOI: 10.1096/fj.201601348r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 11/11/2022]
Abstract
Over 60% of lower extremity amputations are performed in patients with diabetes and peripheral arterial disease, and at least 25% require subsequent reamputation due to poor surgical site healing. The mechanisms underlying poor amputation stump healing in the setting of diabetes are not understood. N-acetylcysteine (NAC) is known to promote endothelial cell function and angiogenesis and may have therapeutic benefits in the setting of diabetes. We tested the hypothesis that NAC alters the vascular milieu to improve healing of amputation stumps in diabetes using a novel in vivo murine hindlimb ischemia-amputation model. Amputation stump tissue perfusion and healing were evaluated in C57BL/6J adult mice with streptozotocin-induced diabetes. Compared with controls, mice treated with daily NAC demonstrated improved postamputation stump healing, perfusion, adductor muscle neovascularization, and decreased muscle fiber damage. Additionally, NAC stimulated HUVEC migration and proliferation in a phospholipase C β-dependent fashion and decreased Gαq palmitoylation. Similarly, NAC treatment also decreased Gαq palmitoylation in ischemic and nonischemic hindlimbs in vivo In summary, we demonstrate that NAC accelerates healing of amputation stumps in the setting of diabetes and ischemia. The underlying mechanism appears to involve a previously unrecognized effect of NAC on Gαq palmitoylation and phospholipase C β-mediated signaling in endothelial cells.-Zayed, M. A., Wei, X., Park, K., Belaygorod, L., Naim, U., Harvey, J., Yin, L., Blumer, K., Semenkovich, C. F. N-acetylcysteine accelerates amputation stump healing in the setting of diabetes.
Collapse
Affiliation(s)
- Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Surgery, St. Louis Veterans Affairs Health Care System, St. Louis, Missouri, USA
| | - Xiachao Wei
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyoung-Mi Park
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Larisa Belaygorod
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Uzma Naim
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Harvey
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Li Yin
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kendall Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
69
|
Halls ML, Cooper DMF. Adenylyl cyclase signalling complexes - Pharmacological challenges and opportunities. Pharmacol Ther 2017; 172:171-180. [PMID: 28132906 DOI: 10.1016/j.pharmthera.2017.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signalling pathways involving the vital second messanger, cAMP, impact on most significant physiological processes. Unsurprisingly therefore, the activation and regulation of cAMP signalling is tightly controlled within the cell by processes including phosphorylation, the scaffolding of protein signalling complexes and sub-cellular compartmentalisation. This inherent complexity, along with the highly conserved structure of the catalytic sites among the nine membrane-bound adenylyl cyclases, presents significant challenges for efficient inhibition of cAMP signalling. Here, we will describe the biochemistry and cell biology of the family of membrane-bound adenylyl cyclases, their organisation within the cell, and the nature of the cAMP signals that they produce, as a prelude to considering how cAMP signalling might be perturbed. We describe the limitations associated with direct inhibition of adenylyl cyclase activity, and evaluate alternative strategies for more specific targeting of adenylyl cyclase signalling. The inherent complexity in the activation and organisation of adenylyl cyclase activity may actually provide unique opportunities for selectively targeting discrete adenylyl cyclase functions in disease.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
70
|
Wu XT, Sun LW, Yang X, Ding D, Han D, Fan YB. The potential role of spectrin network in the mechanotransduction of MLO-Y4 osteocytes. Sci Rep 2017; 7:40940. [PMID: 28112189 PMCID: PMC5256107 DOI: 10.1038/srep40940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
The spectrin is first identified as the main component of erythrocyte membrane skeleton. It is getting growing attention since being found in multiple nonerythroid cells, providing complex mechanical properties and signal interface under the cell membrane. Recent genomics studies have revealed that the spectrin is highly relevant to bone disorders. However, in osteocytes, the important mechanosensors in bone, the role of spectrin is poorly understood. In this research, the role of spectrin in the mechanotransduction of MLO-Y4 osteocytes was studied. Immunofluorescence staining showed that, the spectrins were elaborately organized as a porous network throughout the cytoplasm, and linked with F-actin into a dense layer underlying the cell membrane. AFM results indicate that, the spectrin is pivotal for maintaining the overall elasticity of osteocytes, especially for the cell cortex stiffiness. Disruption of the spectrin network caused obvious softening of osteocytes, and resulted in a significant increase of Ca2+ influx, NO secretion, cell-cell connections and also induced a translocation of eNOS from membrane to cytoplasm. These results indicate that the spectrin network is a global structural support for osteocytes involving in the mechanotransduction process, making it a potential therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China.,International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Ministry of Science and Technology of China, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Dong Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China.,National Research Center for Rehabilitation Technical Aids, 1th Ronghuazhong Road, Beijing Economic and Technological Development Zone, China
| |
Collapse
|
71
|
Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:401-426. [PMID: 29224105 DOI: 10.1007/978-3-319-70178-3_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.
Collapse
|
72
|
Ahn SJ, Fancher IS, Bian JT, Zhang CX, Schwab S, Gaffin R, Phillips SA, Levitan I. Inwardly rectifying K + channels are major contributors to flow-induced vasodilatation in resistance arteries. J Physiol 2016; 595:2339-2364. [PMID: 27859264 PMCID: PMC5374117 DOI: 10.1113/jp273255] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Endothelial inwardly rectifying K+ (Kir2.1) channels regulate flow-induced vasodilatation via nitric oxide (NO) in mouse mesenteric resistance arteries. Deficiency of Kir2.1 channels results in elevated blood pressure and increased vascular resistance. Flow-induced vasodilatation in human resistance arteries is also regulated by inwardly rectifying K+ channels. This study presents the first direct evidence that Kir channels play a critical role in physiological endothelial responses to flow. ABSTRACT Inwardly rectifying K+ (Kir) channels are known to be sensitive to flow, but their role in flow-induced endothelial responses is not known. The goal of this study is to establish the role of Kir channels in flow-induced vasodilatation and to provide first insights into the mechanisms responsible for Kir signalling in this process. First, we establish that primary endothelial cells isolated from murine mesenteric arteries express functional Kir2.1 channels sensitive to shear stress. Then, using the Kir2.1+/- heterozygous mouse model, we establish that downregulation of Kir2.1 results in significant decrease in shear-activated Kir currents and inhibition of endothelium-dependent flow-induced vasodilatation (FIV) assayed in pressurized mesenteric arteries pre-constricted with endothelin-1. Deficiency in Kir2.1 also results in the loss of flow-induced phosphorylation of eNOS and Akt, as well as inhibition of NO generation. All the effects are fully rescued by endothelial cell (EC)-specific overexpression of Kir2.1. A component of FIV that is Kir independent is abrogated by blocking Ca2+ -sensitive K+ channels. Kir2.1 has no effect on endothelium-independent and K+ -induced vasodilatation in denuded arteries. Kir2.1+/- mice also show increased mean blood pressure measured by carotid artery cannulation and increased microvascular resistance measured using a tail-cuff. Importantly, blocking Kir channels also inhibits flow-induced vasodilatation in human subcutaneous adipose microvessels. Endothelial Kir channels contribute to FIV of mouse mesenteric arteries via an NO-dependent mechanism, whereas Ca2+ -sensitive K+ channels mediate FIV via an NO-independent pathway. Kir2 channels also regulate vascular resistance and blood pressure. Finally, Kir channels also contribute to FIV in human subcutaneous microvessels.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ibra S Fancher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.,Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing-Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong Xu Zhang
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah Schwab
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Gaffin
- Department of Physiology, Physiology Core Lab, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
73
|
Ghimire K, Altmann HM, Straub AC, Isenberg JS. Nitric oxide: what's new to NO? Am J Physiol Cell Physiol 2016; 312:C254-C262. [PMID: 27974299 PMCID: PMC5401944 DOI: 10.1152/ajpcell.00315.2016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is one of the critical components of the vasculature, regulating key signaling pathways in health. In macrovessels, NO functions to suppress cell inflammation as well as adhesion. In this way, it inhibits thrombosis and promotes blood flow. It also functions to limit vessel constriction and vessel wall remodeling. In microvessels and particularly capillaries, NO, along with growth factors, is important in promoting new vessel formation, a process termed angiogenesis. With age and cardiovascular disease, animal and human studies confirm that NO is dysregulated at multiple levels including decreased production, decreased tissue half-life, and decreased potency. NO has also been implicated in diseases that are related to neurotransmission and cancer although it is likely that these processes involve NO at higher concentrations and from nonvascular cell sources. Conversely, NO and drugs that directly or indirectly increase NO signaling have found clinical applications in both age-related diseases and in younger individuals. This focused review considers recently reported advances being made in the field of NO signaling regulation at several levels including enzymatic production, receptor function, interacting partners, localization of signaling, matrix-cellular and cell-to-cell cross talk, as well as the possible impact these newly described mechanisms have on health and disease.
Collapse
Affiliation(s)
- Kedar Ghimire
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Helene M Altmann
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Jeffrey S Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
74
|
Bandara N, Gurusinghe S, Lim SY, Chen H, Chen S, Wang D, Hilbert B, Wang LX, Strappe P. Molecular control of nitric oxide synthesis through eNOS and caveolin-1 interaction regulates osteogenic differentiation of adipose-derived stem cells by modulation of Wnt/β-catenin signaling. Stem Cell Res Ther 2016; 7:182. [PMID: 27927230 PMCID: PMC5142348 DOI: 10.1186/s13287-016-0442-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Background Nitric oxide (NO) plays a role in a number of physiological processes including stem cell differentiation and osteogenesis. Endothelial nitric oxide synthase (eNOS), one of three NO-producing enzymes, is located in a close conformation with the caveolin-1 (CAV-1WT) membrane protein which is inhibitory to NO production. Modification of this interaction through mutation of the caveolin scaffold domain can increase NO release. In this study, we genetically modified equine adipose-derived stem cells (eASCs) with eNOS, CAV-1WT, and a CAV-1F92A (CAV-1WT mutant) and assessed NO-mediated osteogenic differentiation and the relationship with the Wnt signaling pathway. Methods NO production was enhanced by lentiviral vector co-delivery of eNOS and CAV-1F92A to eASCs, and osteogenesis and Wnt signaling was assessed by gene expression analysis and activity of a novel Runx2-GFP reporter. Cells were also exposed to a NO donor (NONOate) and the eNOS inhibitor, l-NAME. Results NO production as measured by nitrite was significantly increased in eNOS and CAV-1F92A transduced eASCs +(5.59 ± 0.22 μM) compared to eNOS alone (4.81 ± 0.59 μM) and un-transduced control cells (0.91 ± 0.23 μM) (p < 0.05). During osteogenic differentiation, higher NO correlated with increased calcium deposition, Runx2, and alkaline phosphatase (ALP) gene expression and the activity of a Runx2-eGFP reporter. Co-expression of eNOS and CAV-1WT transgenes resulted in lower NO production. Canonical Wnt signaling pathway-associated Wnt3a and Wnt8a gene expressions were increased in eNOS-CAV-1F92A cells undergoing osteogenesis whilst non-canonical Wnt5a was decreased and similar results were seen with NONOate treatment. Treatment of osteogenic cultures with 2 mM l-NAME resulted in reduced Runx2, ALP, and Wnt3a expressions, whilst Wnt5a expression was increased in eNOS-delivered cells. Co-transduction of eASCs with a Wnt pathway responsive lenti-TCF/LEF-dGFP reporter only showed activity in osteogenic cultures co-transduced with a doxycycline inducible eNOS. Lentiviral vector expression of canonical Wnt3a and non-canonical Wnt5a in eASCs was associated with induced and suppressed osteogenic differentiation, respectively, whilst treatment of eNOS-osteogenic cells with the Wnt inhibitor Dkk-1 significantly reduced expressions of Runx2 and ALP. Conclusions This study identifies NO as a regulator of canonical Wnt/β-catenin signaling to promote osteogenesis in eASCs which may contribute to novel bone regeneration strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0442-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadeeka Bandara
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Saliya Gurusinghe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Shiang Yong Lim
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Haying Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Shuangfeng Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Dawei Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Bryan Hilbert
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
75
|
Abstract
Endothelial nitric oxide (NO) synthase (eNOS) has an indispensable role in the erectile response. In the penis, eNOS activity and endothelial NO bioavailability are regulated by multiple post-translatlonal molecular mechanisms, such as eNOS phosphorylation, eNOS interaction with regulatory proteins and contractile pathways, and actions of reactive oxygen species (ROS). These mechanisms regulate eNOS-mediated responses under physiologic circumstances and provide various mechanisms whereby endothelial NO availability may be altered in states of vasculogenlc erectile dysfunction (ED), in view of the recent advances in the field of eNOS function in the penis and its role in penile erection, the emphasis in this review is placed on the mechanisms regulating eNOS activity and its interaction with the RhoA/Rho-kinase pathway in the physiology of penile erection and the pathophysiology of ED.
Collapse
Affiliation(s)
- Biljana Musicki
- Johns Hopkins Hospital, Department of Urology, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
76
|
Characterisation and vascular expression of nitric oxide synthase 3 in amphibians. Cell Tissue Res 2016; 366:679-692. [PMID: 27543051 DOI: 10.1007/s00441-016-2479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023]
Abstract
In mammals, nitric oxide (NO) produced by nitric oxide synthase 3 (NOS3) localised in vascular endothelial cells is an important vasodilator but the presence of NOS3 in the endothelium of amphibians has been concluded to be absent, based on physiological studies. In this study, a nos3 cDNA was sequenced from the toad, Rhinella marina. The open reading frame of R. marina nos3 encoded an 1170 amino acid protein that showed 81 % sequence identity to the recently cloned Xenopus tropicalis nos3. Rhinella marina nos3 mRNA was expressed in a range of tissues and in the dorsal aorta and pulmonary, mesenteric, iliac and gastrocnemius arteries. Furthermore, nos3 mRNA was expressed in the aorta of Xenopus laevis and X. tropicalis. Quantitative real-time PCR showed that removal of the endothelium of the lateral aorta of R. marina significantly reduced the expression of nos3 mRNA compared to control aorta with the endothelium intact. However, in situ hybridisation was not able to detect any nos3 mRNA in the dorsal aorta of R. marina. Immunohistochemistry using a homologous R. marina NOS3 antibody showed immunoreactivity (IR) within the basal region of many endothelial cells of the dorsal aorta and iliac artery. NOS3-IR was also observed in the proximal tubules and collecting ducts of the kidney but not within the capillaries of the glomeruli. This is the first study to demonstrate that vascular endothelial cells of an amphibian express NOS3.
Collapse
|
77
|
Transcriptional and Posttranslational Regulation of eNOS in the Endothelium. ADVANCES IN PHARMACOLOGY 2016; 77:29-64. [PMID: 27451094 DOI: 10.1016/bs.apha.2016.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a highly reactive free radical gas and these unique properties have been adapted for a surprising number of biological roles. In neurons, NO functions as a neurotransmitter; in immune cells, NO contributes to host defense; and in endothelial cells, NO is a major regulator of blood vessel homeostasis. In the vasculature, NO is synthesized on demand by a specific enzyme, endothelial nitric oxide synthase (eNOS) that is uniquely expressed in the endothelial cells that form the interface between the circulating blood and the various tissues of the body. NO regulates endothelial and blood vessel function via two distinct pathways, the activation of soluble guanylate cyclase and cGMP-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The chemical properties of NO also serve to reduce oxidation and regulate mitochondrial function. Reduced synthesis and/or compromised biological activity of NO precede the development of cardiovascular disease and this has generated a high level of interest in the mechanisms controlling the synthesis and fate of NO in the endothelium. The amount of NO produced results from the expression level of eNOS, which is regulated at the transcriptional and posttranscriptional levels as well as the acute posttranslational regulation of eNOS. The goal of this chapter is to highlight and integrate past and current knowledge of the mechanisms regulating eNOS expression in the endothelium and the posttranslational mechanisms regulating eNOS activity in both health and disease.
Collapse
|
78
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
79
|
Liu X, Hou L, Xu D, Chen A, Yang L, Zhuang Y, Xu Y, Fassett JT, Chen Y. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide 2016; 54:73-81. [PMID: 26923818 DOI: 10.1016/j.niox.2016.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/28/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability and can increase production of NOS derived reactive oxidative species. Increased plasma ADMA is a one of the strongest predictors of mortality in patients who have had a myocardial infarction or suffer from chronic left heart failure, and is also an independent risk factor for several other conditions that contribute to heart failure development, including hypertension, coronary artery disease/atherosclerosis, diabetes, and renal dysfunction. The enzyme responsible for ADMA degradation is dimethylarginine dimethylaminohydrolase-1 (DDAH1). DDAH1 plays an important role in maintaining nitric oxide bioavailability and preserving cardiovascular function in the failing heart. Here, we examine mechanisms of abnormal NO production in heart failure, with particular focus on the role of ADMA and DDAH1.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lei Hou
- Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Dachun Xu
- Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Angela Chen
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, MN55455, USA
| | - Liuqing Yang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, MN55455, USA
| | - Yan Zhuang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, MN55455, USA
| | - Yawei Xu
- Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - John T Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz, 8020, Austria.
| | - Yingjie Chen
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, MN55455, USA.
| |
Collapse
|
80
|
Cheng JPX, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS, Dunmore BJ, Crosby A, Morrell NW, Nichols BJ. Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol 2016; 211:53-61. [PMID: 26459598 PMCID: PMC4602045 DOI: 10.1083/jcb.201504042] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study provides direct in vivo evidence that endothelial cell caveolae disassemble and hence flatten out under increased mechanical stress and that the presence of caveolae protects endothelial cell plasma membranes from damage. Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo.
Collapse
Affiliation(s)
- Jade P X Cheng
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Carolina Mendoza-Topaz
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Gillian Howard
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Jessica Chadwick
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elena Shvets
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew S Cowburn
- Department of Physiology, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Alexi Crosby
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Benjamin J Nichols
- Medical Research Council, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
81
|
Cheng JPX, Nichols BJ. Caveolae: One Function or Many? Trends Cell Biol 2015; 26:177-189. [PMID: 26653791 DOI: 10.1016/j.tcb.2015.10.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Caveolae are small, bulb-shaped plasma membrane invaginations. Mutations that ablate caveolae lead to diverse phenotypes in mice and humans, making it challenging to uncover their molecular mechanisms. Caveolae have been described to function in endocytosis and transcytosis (a specialized form of endocytosis) and in maintaining membrane lipid composition, as well as acting as signaling platforms. New data also support a model in which the central function of caveolae could be related to the protection of cells from mechanical stress within the plasma membrane. We present evidence for these diverse roles and consider in vitro and in vivo experiments confirming a mechanoprotective role. We conclude by highlighting current gaps in our knowledge of how mechanical signals may be transduced by caveolae.
Collapse
Affiliation(s)
- Jade P X Cheng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Benjamin J Nichols
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
82
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
83
|
Kraehling JR, Hao Z, Lee MY, Vinyard DJ, Velazquez H, Liu X, Stan RV, Brudvig GW, Sessa WC. Uncoupling Caveolae From Intracellular Signaling In Vivo. Circ Res 2015; 118:48-55. [PMID: 26602865 DOI: 10.1161/circresaha.115.307767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Caveolin-1 (Cav-1) negatively regulates endothelial nitric oxide (NO) synthase-derived NO production, and this has been mapped to several residues on Cav-1, including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. OBJECTIVE This study was designed to separate caveolae formation from its downstream signaling effects. METHODS AND RESULTS An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of vasodilator-stimulated phosphoprotein were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of caveolin-2, sucrose gradient, and electron microscopy. Histological analysis of heart and lung, echocardiography, and signaling were performed. CONCLUSIONS This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo, thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms.
Collapse
Affiliation(s)
- Jan R Kraehling
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Zhengrong Hao
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Monica Y Lee
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - David J Vinyard
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Heino Velazquez
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Xinran Liu
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Radu V Stan
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - Gary W Brudvig
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (J.R.K., Z.H., M.Y.L., W.C.S.) and Department of Pharmacology (J.R.K., Z.H., M.Y.L., W.C.S.), Yale University School of Medicine, New Haven, CT; Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.); Department of Cell Biology, Yale University, School of Medicine, New Haven, CT (X.L.); and Department of Pathology, Dartmouth Medical School, Lebanon, NH (R.V.S.)
| |
Collapse
|
84
|
Gu Z, Zhang Y, Qiu G. Promoter polymorphism T-786C, 894G→T at exon 7 of endothelial nitric oxide synthase gene are associated with risk of osteoporosis in Sichuan region male residents. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15270-15274. [PMID: 26823879 PMCID: PMC4713665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the association between genetic polymorphism of T-786C in promoter region, 894G→T at exon 7 of endothelial nitric oxide synthase (eNOS) gene and osteoporosis (OP) disease. METHOD The genotypes of 350 patients with osteoporosis and 350 healthy controls were detected by polymerase chain reaction (PCR) and DNA sequencing. The allele ratios and genotype distributions in the patients and controls were assessed using the Pearson χ(2)-test. Odds ratios (OR) with two tailed P-values and 95% confidence intervals (CI) were calculated as a measure of the association of the eNOS genotypes with OP. RESULT the C allele distribution frequency of T-786C eNOS gene in OP group (8.5%) was significantly higher than that in control group (3.9%), relative risk (OR) of OP associated with the CC genotype was 2.68 (95% CI, 0.92 to 1.37). The T allele frequency of 894G→T at exon 7 in eNOS gene in OP group (11.5%) was also significantly higher than that in control group (5.2%), OR of OP associated with the TT genotype was 2.60 (all P<0.05). CONCLUSION The analysis results indicated that both T-786C in promoter region and 894G→T at exon 7 of eNOS gene might be genetic predisposal factors of OP, these polymorphisms may be independently or synergic with other loci to have an impact on the incidence of OP.
Collapse
Affiliation(s)
- Zuchao Gu
- Department of Orthopedics, The First People’s Hospital of ChengduSichuan Province, P. R. China
| | - Yu Zhang
- Department of Orthopedics, The First People’s Hospital of ChengduSichuan Province, P. R. China
- Department of Orthopedics, Peking Union Medical College HospitalBeijing, 10005, P. R. China
| | - Guixing Qiu
- Department of Orthopedics, Peking Union Medical College HospitalBeijing, 10005, P. R. China
| |
Collapse
|
85
|
Kovacevic I, Müller M, Kojonazarov B, Ehrke A, Randriamboavonjy V, Kohlstedt K, Hindemith T, Schermuly RT, Fleming I, Hoffmeister M, Oess S. The F-BAR Protein NOSTRIN Dictates the Localization of the Muscarinic M3 Receptor and Regulates Cardiovascular Function. Circ Res 2015; 117:460-9. [DOI: 10.1161/circresaha.115.306187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022]
Abstract
Rationale:
Endothelial dysfunction is an early event in cardiovascular disease and characterized by reduced production of nitric oxide (NO). The F-BAR protein NO synthase traffic inducer (NOSTRIN) is an interaction partner of endothelial NO synthase and modulates its subcellular localization, but the role of NOSTRIN in pathophysiology in vivo is unclear.
Objective:
We analyzed the consequences of deleting the
NOSTRIN
gene in endothelial cells on NO production and cardiovascular function in vivo using NOSTRIN knockout mice.
Methods and Results:
The levels of NO and cGMP were significantly reduced in mice with endothelial cell–specific deletion of the
NOSTRIN
gene resulting in diastolic heart dysfunction. In addition, systemic blood pressure was increased, and myograph measurements indicated an impaired acetylcholine-induced relaxation of isolated aortic rings and resistance arteries. We found that the muscarinic acetylcholine receptor subtype M3 (M3R) interacted directly with NOSTRIN, and the latter was necessary for correct localization of the M3R at the plasma membrane in murine aorta. In the absence of NOSTRIN, the acetylcholine-induced increase in intracellular Ca
2+
in primary endothelial cells was abolished. Moreover, the activating phosphorylation and Golgi translocation of endothelial NO synthase in response to the M3R agonist carbachol were diminished.
Conclusions:
NOSTRIN is crucial for the localization and function of the M3R and NO production. The loss of NOSTRIN in mice leads to endothelial dysfunction, increased blood pressure, and diastolic heart failure.
Collapse
Affiliation(s)
- Igor Kovacevic
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Miriam Müller
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Baktybek Kojonazarov
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Alexander Ehrke
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Voahanginirina Randriamboavonjy
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Karin Kohlstedt
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Tanja Hindemith
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ralph Theo Schermuly
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ingrid Fleming
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Meike Hoffmeister
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Stefanie Oess
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| |
Collapse
|
86
|
Abstract
Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.
Collapse
|
87
|
Kang S, Li H, Tang W, Martásek P, Roman LJ, Poulos TL, Silverman RB. 2-Aminopyridines with a Truncated Side Chain To Improve Human Neuronal Nitric Oxide Synthase Inhibitory Potency and Selectivity. J Med Chem 2015; 58:5548-60. [PMID: 26120733 PMCID: PMC4514563 DOI: 10.1021/acs.jmedchem.5b00573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have analyzed a recently obtained crystal structure of human neuronal nitric oxide synthase (nNOS) and then designed and synthesized several 2-aminopyridine derivatives containing a truncated side chain to avoid the hydrophobic pocket that differentiates human and rat nNOS in an attempt to explore alternative binding poses along the substrate access channel of human nNOS. Introduction of an N-methylethane-1,2-diamine side chain and conformational constraints such as benzonitrile and pyridine as the middle aromatic linker were sufficient to increase human and rat nNOS binding affinity and inducible and endothelial NOS selectivity. We found that 14b is a potent inhibitor; the binding modes with human and rat nNOS are unexpected, inducing side chain rotamer changes in Gln478 (rat) at the top of the active site. Compound 19c exhibits Ki values of 24 and 55 nM for rat and human nNOS, respectively, with 153-fold iNOS and 1040-fold eNOS selectivity. 19c has 18% oral bioavailability.
Collapse
Affiliation(s)
- Soosung Kang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- New Drug Development Center, DGMIF, 80 Cheombok-ro, Dae-gu, Korea
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Wei Tang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Pavel Martásek
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78384-7760, United States
| | - Linda J. Roman
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78384-7760, United States
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW The identification of the genetic basis for heritable predisposition to pulmonary arterial hypertension (PAH) has altered the clinical and research landscape for PAH patients and their care providers. This review aims to describe the genetic discoveries and their impact on clinical medicine. RECENT FINDINGS Since the landmark discovery that bone morphogenetic protein receptor type II (BMPR2) mutations cause the majority of cases of familial PAH, investigators have discovered mutations in genes that cause PAH in families without BMPR2 mutations, including the type I receptor ACVRL1 and the type III receptor ENG (both associated with hereditary hemorrhagic telangiectasia), caveolin-1 (CAV1), and a gene (KCNK3) encoding a two-pore potassium channel. Mutations in these genes cause an autosomal-dominant predisposition to PAH in which a fraction of mutation carriers develop PAH (incomplete penetrance). In 2014, scientists discovered mutations in eukaryotic initiation factor 2 alpha kinase 4 (EIF2AK4) that cause pulmonary capillary hemangiomatosis and pulmonary veno-occlusive disease, an autosomal recessively inherited disorder. SUMMARY The discovery that some forms of pulmonary hypertension are heritable and can be genetically defined adds important opportunities for physicians to educate their patients and their families to understand the potential risks and benefits of genetic testing.
Collapse
Affiliation(s)
- D Hunter Best
- aDepartment of Pathology, University of Utah School of Medicine bARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah cDepartment of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee dDepartments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York eDepartment of Medicine, Intermountain Medical Center, Murray fDepartment of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
89
|
Lin Y, Jiang W, Ng J, Jina A, Wang RA. Endothelial ephrin-B2 is essential for arterial vasodilation in mice. Microcirculation 2015; 21:578-86. [PMID: 24673722 DOI: 10.1111/micc.12135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The cell surface protein ephrin-B2 is expressed in arterial and not venous ECs throughout development and adulthood. Endothelial ephrin-B2 is required for vascular development and angiogenesis, but its role in established arteries is currently unknown. We investigated the physiological role of ephrin-B2 signaling in adult endothelium. METHODS We generated adult conditional knockout mice lacking the Efnb2 gene specifically in ECs and evaluated the vasodilation responses to blood flow increase and ACh in the cremaster muscle preparation by intravital microscope and in carotid artery by in vivo ultrasound. RESULTS We found that the Efnb2 conditional knockout mice were defective in acute arterial dilation. Vasodilation was impaired in cremaster arterioles in response to either increased flow or ACh, and in the carotid arteries in response to increased flow. Levels of cGMP, an effector of NO, were diminished in mutant arteries following ACh stimulation. GSNO, a donor for the vasodilator NO, alleviated the vasodilatory defects in the mutants. Immunostaining showed that a subset of ephrin-B2 proteins colocalized with caveolin-1, a negative regulator of eNOS. CONCLUSIONS Our data suggest that endothelial ephrin-B2 is required for endothelial-dependent arterial dilation and NO signaling in adult endothelium.
Collapse
Affiliation(s)
- Yuankai Lin
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
90
|
Abstract
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Shipston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
91
|
Chen Z, Qi Y, Gao C. Cardiac myocyte-protective effect of microRNA-22 during ischemia and reperfusion through disrupting the caveolin-3/eNOS signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4614-4626. [PMID: 26191152 PMCID: PMC4503024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
MicroRNA-22 (miR-22) was previously reported to elicit cardiac myocyte hypertrophy and had an anti-apoptotic effect on neurons. However, its effects on cardiac myocyte apoptosis and cardiac function during ischemia and reperfusion (I/R) are not clear. In the present study, we demonstrate that pre-administration of miR-22 mimic reduced I/R-induced cardiac dysfunction significantly in a rat model. We found that miR-22 overexpression inhibited cardiac myocyte apoptosis, and reduced cardiac remodeling during I/R. Significant cardiac myocyte apoptosis was also observed in a cardiac myocyte model after hypoxia/reoxygenation (H/R), a representative process of I/R. Further experiments showed that eNOS activity and the following NO production were significantly decreased during I/R and H/R, while such decrease was inhibited by overexpression of miR-22. Mechanistically, overexpression of miR-22 had little effect on the total protein level of eNOS, but restored the level of p-eNOS (Ser1177) which was down-regulated during H/R. Further RT-PCR results demonstrated that Caveolin 3 (Cav3), an upstream negative regulator of eNOS, was upregulated during H/R, resulting in a decrease of p-eNOS. However, such upregulation of Cav3 transcript level was inhibited directly by miR-22 during H/R, leading to a restored p-eNOS level and followed NO production in cardiac myocytes. Together, the present study revealed that miR-22 down-regulated Cav3, leading to restored eNOS activity and NO production, which further inhibited cardiac myocyte apoptosis and promoted cardiac function after I/R. Of clinical interest, the present study may highlight miR-22 as a potential therapeutic agent for reducing I/R induced cardiac injury.
Collapse
Affiliation(s)
- Zhenfei Chen
- Deparment of Vasculocardiology, The Second People’s Hospital of HefeiHefei 230011, Anhui, China
| | - Yinliang Qi
- General Department of Hyperbaric Oxygen, The Second People’s Hospital of HefeiHefei 230011, Anhui, China
| | - Chao Gao
- Deparment of Vasculocardiology, The Second People’s Hospital of HefeiHefei 230011, Anhui, China
| |
Collapse
|
92
|
Kurobe H, Maxfield MW, Tara S, Rocco KA, Bagi PS, Yi T, Udelsman B, Zhuang ZW, Cleary M, Iwakiri Y, Breuer CK, Shinoka T. Development of small diameter nanofiber tissue engineered arterial grafts. PLoS One 2015; 10:e0120328. [PMID: 25830942 PMCID: PMC4382213 DOI: 10.1371/journal.pone.0120328] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
The surgical repair of heart and vascular disease often requires implanting synthetic grafts. While synthetic grafts have been successfully used for medium-to-large sized arteries, applications for small diameter arteries (<6 mm) is limited due to high rates of occlusion by thrombosis. Our objective was to develop a tissue engineered vascular graft (TEVG) for small diameter arteries. TEVGs composed of polylactic acid nanofibers with inner luminal diameter between 0.5 and 0.6 mm were surgically implanted as infra-renal aortic interposition conduits in 25 female C17SCID/bg mice. Twelve mice were given sham operations. Survival of mice with TEVG grafts was 91.6% at 12 months post-implantation (sham group: 83.3%). No instances of graft stenosis or aneurysmal dilatation were observed over 12 months post-implantation, assessed by Doppler ultrasound and microCT. Histologic analysis of explanted TEVG grafts showed presence of CD31-positive endothelial monolayer and F4/80-positive macrophages after 4, 8, and 12 months in vivo. Cells positive for α-smooth muscle actin were observed within TEVG, demonstrating presence of smooth muscle cells (SMCs). Neo-extracellular matrix consisting mostly of collagen types I and III were observed at 12 months post-implantation. PCR analysis supports histological observations. TEVG group showed significant increases in expressions of SMC marker, collagen-I and III, matrix metalloproteinases-2 and 9, and itgam (a macrophage marker), when compared to sham group. Overall, patency rates were excellent at 12 months after implantation, as structural integrity of these TEVG. Tissue analysis also demonstrated vessel remodeling by autologous cell.
Collapse
Affiliation(s)
- Hirotsugu Kurobe
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Mark W. Maxfield
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Shuhei Tara
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Kevin A. Rocco
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Paul S. Bagi
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tai Yi
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Brooks Udelsman
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Zhen W. Zhuang
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Muriel Cleary
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yasuko Iwakiri
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Toshiharu Shinoka
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
93
|
Abstract
It has been over 20 years since the discovery that caveolar lipid rafts function as signalling organelles. Lipid rafts create plasma membrane heterogeneity, and caveolae are the most extensively studied subset of lipid rafts. A newly emerging paradigm is that changes in caveolae also generate tumour metabolic heterogeneity. Altered caveolae create a catabolic tumour microenvironment, which supports oxidative mitochondrial metabolism in cancer cells and which contributes to dismal survival rates for cancer patients. In this Review, we discuss the role of caveolae in tumour progression, with a special emphasis on their metabolic and cell signalling effects, and their capacity to transform the tumour microenvironment.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Federica Sotgia
- 1] Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK. [2] Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, Manchester M20 4BX, UK
| | - Michael P Lisanti
- 1] Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK. [2] Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
94
|
Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 2015; 20:3503-13. [PMID: 24180389 DOI: 10.2174/13816128113196660745] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.
Collapse
Affiliation(s)
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse14, 1090 Vienna, Austria.
| |
Collapse
|
95
|
Rizzo V. The Role of Caveolae and Caveolins in Atherogenesis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
96
|
Pechánová O, Varga ZV, Cebová M, Giricz Z, Pacher P, Ferdinandy P. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 2015; 172:1415-1433. [PMID: 25297560 PMCID: PMC4369254 DOI: 10.1111/bph.12960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 02/06/2023] Open
Abstract
It is well documented that metabolic syndrome (i.e. a group of risk factors, such as abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides and low cholesterol level in high-density lipoprotein), which raises the risk for heart disease and diabetes, is associated with increased reactive oxygen and nitrogen species (ROS/RNS) generation. ROS/RNS can modulate cardiac NO signalling and trigger various adaptive changes in NOS and antioxidant enzyme expressions/activities. While initially these changes may represent protective mechanisms in metabolic syndrome, later with more prolonged oxidative, nitrosative and nitrative stress, these are often exhausted, eventually favouring myocardial RNS generation and decreased NO bioavailability. The increased oxidative and nitrative stress also impairs the NO-soluble guanylate cyclase (sGC) signalling pathway, limiting the ability of NO to exert its fundamental signalling roles in the heart. Enhanced ROS/RNS generation in the presence of risk factors also facilitates activation of redox-dependent transcriptional factors such as NF-κB, promoting myocardial expression of various pro-inflammatory mediators, and eventually the development of cardiac dysfunction and remodelling. While the dysregulation of NO signalling may interfere with the therapeutic efficacy of conventional drugs used in the management of metabolic syndrome, the modulation of NO signalling may also be responsible for the therapeutic benefits of already proven or recently developed treatment approaches, such as ACE inhibitors, certain β-blockers, and sGC activators. Better understanding of the above-mentioned pathological processes may ultimately lead to more successful therapeutic approaches to overcome metabolic syndrome and its pathological consequences in cardiac NO signalling.
Collapse
Affiliation(s)
- O Pechánová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
- Faculty of Natural Sciences, Comenius UniversityBratislava, Slovak Republic
| | - Z V Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - M Cebová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
| | - Z Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - P Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAABethesda, MD, USA
| | - P Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
- Pharmahungary GroupSzeged, Hungary
| |
Collapse
|
97
|
Xu L, Guo R, Xie Y, Ma M, Ye R, Liu X. Caveolae: molecular insights and therapeutic targets for stroke. Expert Opin Ther Targets 2015; 19:633-50. [PMID: 25639269 DOI: 10.1517/14728222.2015.1009446] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Caveolae are specialized plasma membrane micro-invaginations of most mammalian cell types. The organization and function of caveolae are carried out by their coat proteins, caveolins and adaptor proteins, cavins. Caveolae/caveolins physically interact with membrane-associated signaling molecules and function in cholesterol incorporation, signaling transduction and macromolecular transport/permeability. AREAS COVERED Recent investigations have implicated a check-and-balance role of caveolae in the pathophysiology of cerebral ischemia. Caveolin knockout mice displayed exacerbated ischemic injury, whereas caveolin peptide exerted remarkable protection against ischemia/reperfusion injury. This review attempts to provide a comprehensive synopsis of how caveolae/caveolins modulate blood-brain barrier permeability, pro-survival signaling, angiogenesis and neuroinflammation, and how this may contribute to a better understanding of the participation of caveolae in ischemic cascade. The role of caveolin in the preconditioning-induced tolerance against ischemia is also discussed. EXPERT OPINION Caveolae represent a novel target for cerebral ischemia. It remains open how to manipulate caveolin expression in a practical way to recapitulate the beneficial therapeutic outcomes. Caveolin peptides and associated antagomirs may be efficacious and deserve further investigations for their potential benefits for stroke.
Collapse
Affiliation(s)
- Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University , Nanjing 210002 , China
| | | | | | | | | | | |
Collapse
|
98
|
Mueller KE, Wolf K. C. pneumoniae disrupts eNOS trafficking and impairs NO production in human aortic endothelial cells. Cell Microbiol 2014; 17:119-30. [PMID: 25131610 DOI: 10.1111/cmi.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) generated NO plays a crucial physiological role in the regulation of vascular tone. eNOS is a constitutively expressed synthase whose enzymatic function is regulated by dual acylation, phosphorylation, protein-protein interaction and subcellular localization. In endothelial cells, the enzyme is primarily localized to the Golgi apparatus (GA) and the plasma membrane where it binds to caveolin-1. Upon stimulation, the enzyme is translocated from the plasma membrane to the cytoplasm where it generates NO. When activation of eNOS ceases, the majority of the enzyme is recycled back to the membrane fraction. An inability of eNOS to cycle between the cytosol and the membrane leads to impaired NO production and vascular dysfunction. Chlamydia pneumoniae is a Gram-negative obligate intracellular bacterium that primarily infects epithelial cells of the human respiratory tract, but unlike any other chlamydial species, C. pneumoniae displays tropism toward atherosclerotic tissues. In this study, we demonstrate that C. pneumoniae inclusions colocalize with eNOS, and the microorganism interferes with trafficking of the enzyme from the GA to the plasma membrane in primary human aortic endothelial cells. This mislocation of eNOS results in significant inhibition of NO release by C. pneumoniae-infected cells. Furthermore, we show that the distribution of eNOS in C. pneumoniae-infected cells is altered due to an intimate association of the Golgi complex with chlamydial inclusions rather than by direct interaction of the enzyme with the chlamydial inclusion membrane.
Collapse
Affiliation(s)
- Konrad E Mueller
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | | |
Collapse
|
99
|
Zhao YL, Song JN, Zhang M. Role of caveolin-1 in the biology of the blood-brain barrier. Rev Neurosci 2014; 25:247-54. [PMID: 24501156 DOI: 10.1515/revneuro-2013-0039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/26/2013] [Indexed: 11/15/2022]
Abstract
Caveolin-1 is the principal marker of caveolae in endothelial cells. It plays an important role in physiological and pathological conditions of the blood-brain barrier and serves as a mediator in drug delivery through the blood-brain barrier. Caveolin-1 is related to the diminished expression of tight junction-associated proteins and metabolic pinocytosis vesicles when the blood-brain barrier is destroyed by outside invaders or malignant stimulus. The permeability of the blood-brain barrier, regulated by types of drugs or physical irradiation, is connected with drug transportation with the participation of caveolin-1. Caveolin-1, which serves as a platform or medium for signal transduction, cooperates with several signal molecules by forming a complex. Silencing of caveolin-1 and disruption of caveolae can attenuate or remove pathological damage and even engender the opposite effects in the blood-brain barrier. This review considers the role of caveolin-1 in the blood-brain barrier that may have profound implications for central nervous system disease and drug delivery through the blood-brain barrier.
Collapse
|
100
|
The N-terminal portion of autoinhibitory element modulates human endothelial nitric-oxide synthase activity through coordinated controls of phosphorylation at Thr495 and Ser1177. Biosci Rep 2014; 34:BSR20140079. [PMID: 24993645 PMCID: PMC4122979 DOI: 10.1042/bsr20140079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NO production catalysed by eNOS (endothelial nitric-oxide synthase) plays an important role in the cardiovascular system. A variety of agonists activate eNOS through the Ser1177 phosphorylation concomitant with Thr495 dephosphorylation, resulting in increased ·NO production with a basal level of calcium. To date, the underlying mechanism remains unclear. We have previously demonstrated that perturbation of the AIE (autoinhibitory element) in the FMN-binding subdomain can also lead to eNOS activation with a basal level of calcium, implying that the AIE might regulate eNOS activation through modulating phosphorylation at Thr495 and Ser1177. Here we generated stable clones in HEK-293 (human embryonic kidney 293) cells with a series of deletion mutants in both the AIE (Δ594-604, Δ605-612 and Δ626-634) and the C-terminal tail (Δ14; deletion of 1164-1177). The expression of Δ594-604 and Δ605-612 mutants in non-stimulated HEK-293 cells substantially increased nitrate/nitrite release into the culture medium; the other two mutants, Δ626-634 and Δ1164-1177, displayed no significant difference when compared with WTeNOS (wild-type eNOS). Intriguingly, mutant Δ594-604 showed close correlation between Ser1177 phosphorylation and Thr495 dephosphorylation, and NO production. Our results have indicated that N-terminal portion of AIE (residues 594-604) regulates eNOS activity through coordinated phosphorylation on Ser1177 and Thr495.
Collapse
|