51
|
Nayak S, Siddiqui JK, Varner JD. Modelling and analysis of an ensemble of eukaryotic translation initiation models. IET Syst Biol 2016; 5:2. [PMID: 21261397 DOI: 10.1049/iet-syb.2009.0065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Programmed protein synthesis plays an important role in the cell cycle. Deregulated translation has been observed in several cancers. In this study, the authors constructed an ensemble of mathematical models describing the integration of growth factor signals with translation initiation. Using these models, the authors estimated critical structural features of the translation architecture. Sensitivity and robustness analysis with and without growth factors suggested that a balance between competing regulatory programmes governed translation initiation. Proteins such as Akt and mTor promoted initiation by integrating growth factor signals with the assembly of the 80S initiation complex. However, negative regulators such as PTEN and 4EBP1 restrained initiation in the absence of stimulation. Other proteins such as eIF4E were also found to be structurally critical as deletion of amplification of these components resulted in a network incapable of nominal operation. These findings could help understand the molecular basis of translation deregulation observed in cancer and perhaps lead to new anti-cancer therapeutic strategies. [Includes supplementary material].
Collapse
Affiliation(s)
- S Nayak
- Cornell University, School of Chemical and Biomolecular Engineering, Ithaca, USA
| | | | | |
Collapse
|
52
|
Li X, Li Y, Liu C, Jin M, Lu B. Oocyte-Specific Expression of Mouse MEX3C652AA in the Ovary and Its Potential Role in Regulating Maternal Fos mRNA. Biol Reprod 2016; 94:115. [PMID: 27053362 DOI: 10.1095/biolreprod.115.136630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Currently, the human MEX3C gene is known to encode an RNA-binding protein of 659 amino acid residues. Here we show that the MEX3C gene has alternative splicing forms giving rise to multiple MEX3C variants, and some cells express MEX3C transcripts coding for short MEX3C isoforms but not transcripts for MEX3C(659AA) MEX3C(659AA) functions as an adaptor protein for Exportin 1 (XPO1)-mediated nuclear export since it increases the cytoplasmic distribution of poly(A)(+) RNA and since addition of the nuclear export signal (NES) sequence to a short MEX3C isoform MEX3C(464AA) confers similar cytoplasmic poly(A)(+) RNA accumulation activity as MEX3C(659AA) FOS mRNA is a potential MEX3C target mRNA. One mechanism by which MEX3C(659AA) could regulate FOS mRNA is by promoting its nuclear export. Overexpressing MEX3C(659AA) significantly increased FOS mRNA expression, whereas mutating the NES of MEX3C(659AA) and treating cells with leptomycin B to inhibit XPO1-mediated nuclear export attenuated FOS upregulation. FOS mRNA is unstable in somatic cells but less so in oocytes; how it is stabilized in the oocytes is unknown. Transcripts for the mouse counterpart of human MEX3C(659AA) (MEX3C(652AA)) are specifically expressed in developing oocytes in the ovary, although total Mex3c transcripts are expressed in both granulosa cells and oocytes. The specific expression of this long MEX3C isoform in oocytes and its ability to enhance FOS mRNA nuclear export and stability all suggest that MEX3C(659AA) is an RNA-binding protein that preserves maternal FOS mRNA in oocytes.
Collapse
Affiliation(s)
- Xue Li
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Yan Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina General Hospital, Ningxia Medical University, Ningxia, People's Republic of China
| | - Chunlian Liu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina General Hospital, Ningxia Medical University, Ningxia, People's Republic of China
| | - Mulan Jin
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| |
Collapse
|
53
|
Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 2016; 35:4675-88. [DOI: 10.1038/onc.2015.515] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/17/2023]
|
54
|
Tuberous sclerosis--A model for tumour growth. Semin Cell Dev Biol 2016; 52:3-11. [PMID: 26816112 DOI: 10.1016/j.semcdb.2016.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 01/19/2016] [Indexed: 01/06/2023]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder where patients develop benign tumours in several organ systems. Central to TSC pathology is hyper-activation of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, which is a key controller of cell growth. As a result, TSC model systems are a valuable tool for examining mTORC1-driven cellular processes. The immunosuppressant, rapamycin, is a specific inhibitor of mTORC1 and has shown promise as a therapeutic agent in TSC as well as in malignancy. This review will focus on the cellular processes controlled by mTORC1 and how TSC-deficient cell lines and mouse models have broadened our understanding of the mTORC1 signalling network. It will also discuss how our knowledge of TSC signalling can help us understand sporadic conditions where mTORC1 activity is implicated in disease onset or progression, and the possibility of using rapamycin to treat sporadic disease.
Collapse
|
55
|
Abstract
The translation initiation factor eIF4E mediates a rate-limiting process that drives selective translation of many oncongenic proteins such as cyclin D1, survivin and VEGF, thereby contributing to tumour growth, metastasis and therapy resistance. As an essential regulatory hub in cancer signalling network, many oncogenic signalling pathways appear to converge on eIF4E. Therefore, targeting eIF4E-mediated cap-dependent translation is considered a promising anticancer strategy. This paper reviews the strategies that can be used to target eIF4E, highlighting agents that target eIF4E activity at each distinct level.
Collapse
|
56
|
Korneeva NL, Song A, Gram H, Edens MA, Rhoads RE. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin. J Biol Chem 2015; 291:3455-67. [PMID: 26668315 DOI: 10.1074/jbc.m115.694190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1 and MNK2) are activated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) or p38 in response to cellular stress and extracellular stimuli that include growth factors, cytokines, and hormones. Modulation of MNK activity affects translation of mRNAs involved in the cell cycle, cancer progression, and cell survival. However, the mechanism by which MNK selectively affects translation of these mRNAs is not understood. MNK binds eukaryotic translation initiation factor 4G (eIF4G) and phosphorylates the cap-binding protein eIF4E. Using a cell-free translation system from rabbit reticulocytes programmed with mRNAs containing different 5'-ends, we show that an MNK inhibitor, CGP57380, affects translation of only those mRNAs that contain both a cap and a hairpin in the 5'-UTR. Similarly, a C-terminal fragment of human eIF4G-1, eIF4G(1357-1600), which prevents binding of MNK to intact eIF4G, reduces eIF4E phosphorylation and inhibits translation of only capped and hairpin-containing mRNAs. Analysis of proteins bound to m(7)GTP-Sepharose reveals that both CGP and eIF4G(1357-1600) decrease binding of eIF4E to eIF4G. These data suggest that MNK stimulates translation only of mRNAs containing both a cap and 5'-terminal RNA duplex via eIF4E phosphorylation, thereby enhancing the coupled cap-binding and RNA-unwinding activities of eIF4F.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- From the Departments of Emergency Medicine and Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, and
| | - Anren Song
- Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, and
| | - Hermann Gram
- the Novartis Institute for Biomedical Research, Forum 1, CH-4002 Basel, Switzerland
| | | | - Robert E Rhoads
- Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, and
| |
Collapse
|
57
|
Chen B, Zhang B, Xia L, Zhang J, Chen Y, Hu Q, Zhu C. Knockdown of eukaryotic translation initiation factor 4E suppresses cell growth and invasion, and induces apoptosis and cell cycle arrest in a human lung adenocarcinoma cell line. Mol Med Rep 2015; 12:7971-8. [PMID: 26498338 PMCID: PMC4758288 DOI: 10.3892/mmr.2015.4468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) was shown to be upregulated in malignant human tumors. To assess the effect of downregulation of eIF4E on the proliferation and invasiveness of a human lung adenocarcinoma cell line, a short hairpin (sh)RNA targeting eIF4E was constructed and transfected into A549 human lung adenocarcinoma cells. The expression of eIF4E was determined by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell viability was assessed using a Cell Counting kit-8, and apoptosis levels and cell cycle distribution were assessed by flow cytometry. Invasiveness was assessed using Transwell chambers. Transfection of the A549 cells with eIF4E targeting shRNA reduced the mRNA and protein expression levels of eIF4E by >70% 48 and 72 h following transfection, and eIF4E targeting shRNA-transfected cells were significantly less viable compared with the cells transfected with scrambled shRNA. The rate of apoptosis was also significantly increased, significantly more cells were in the G0/G1 phase and fewer were in the S phase, indicating cell cycle arrest. The fraction of transfected cells migrating across Transwell inserts were also reduced. In conclusion, inhibition of eIF4E suppressed cell growth and invasion, induced apoptosis and cell cycle arrest, suggesting that eIF4E may be a potential therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Baofu Chen
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Bo Zhang
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jian Zhang
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Yu Chen
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Quanteng Hu
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
58
|
Abstract
Translational control plays a critical role in the regulation of gene expression in eukaryotes and affects many essential cellular processes, including proliferation, apoptosis and differentiation. Under most circumstances, translational control occurs at the initiation step at which the ribosome is recruited to the mRNA. The eukaryotic translation initiation factor 4E (eIF4E), as part of the eIF4F complex, interacts first with the mRNA and facilitates the recruitment of the 40S ribosomal subunit. The activity of eIF4E is regulated at many levels, most profoundly by two major signalling pathways: PI3K (phosphoinositide 3-kinase)/Akt (also known and Protein Kinase B, PKB)/mTOR (mechanistic/mammalian target of rapamycin) and Ras (rat sarcoma)/MAPK (mitogen-activated protein kinase)/Mnk (MAPK-interacting kinases). mTOR directly phosphorylates the 4E-BPs (eIF4E-binding proteins), which are inhibitors of eIF4E, to relieve translational suppression, whereas Mnk phosphorylates eIF4E to stimulate translation. Hyperactivation of these pathways occurs in the majority of cancers, which results in increased eIF4E activity. Thus, translational control via eIF4E acts as a convergence point for hyperactive signalling pathways to promote tumorigenesis. Consequently, recent works have aimed to target these pathways and ultimately the translational machinery for cancer therapy.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
59
|
Osborne MJ, Borden KLB. The eukaryotic translation initiation factor eIF4E in the nucleus: taking the road less traveled. Immunol Rev 2015; 263:210-23. [PMID: 25510279 DOI: 10.1111/imr.12240] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is a potent oncogene. Although eIF4E has traditional roles in translation initiation in the cytoplasm, it is also found in the nucleus, suggesting that it has activities beyond its role in protein synthesis. The road less traveled has been taken to study these nuclear activities and to understand their contribution to the oncogenic potential of eIF4E. The molecular features and biological pathways underpinning eIF4E's nuclear mRNA export are described. New classes of eIF4E regulators have been identified and their relevance to cancer shown. The studies presented here reveal the molecular, biophysical, and structural bases for eIF4E regulation. Finally, recent clinical work targeting eIF4E in acute myeloid leukemia patients with ribavirin is discussed. In summary, these findings provide a novel paradigm for eIF4E function and the molecular basis for targeting it in leukemia patients.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer & Dept. of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
60
|
Karthik GM, Ma R, Lövrot J, Kis LL, Lindh C, Blomquist L, Fredriksson I, Bergh J, Hartman J. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells. Cancer Lett 2015. [PMID: 26208432 DOI: 10.1016/j.canlet.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer cells with stem cell characteristics (CSC) are a distinct cell population with phenotypic similarities to mammary stem cells. CSCs are important drivers of tumorigenesis and the metastatic process. Tamoxifen is the most widely used hormonal therapy for estrogen receptor (ER) positive cancers. In our study, tamoxifen was effective in reducing proliferation of ER + adherent cancer cells, but not their CSC population. We isolated, expanded and incubated CSC from seven breast cancers with or without tamoxifen. By genome-wide transcriptional analysis we identified tamoxifen-induced transcriptional pathways associated with ribosomal biogenesis and mRNA translation, both regulated by the mTOR-pathway. We observed induction of the key mTOR downstream targets S6K1, S6RP and 4E-BP1 in-patient derived CSCs by tamoxifen on protein level. Using the mTOR inhibitors rapamycin, everolimus and PF-04691502 (a dual PI3K/mTOR inhibitor) and in combination with tamoxifen, significant reduction in mammosphere formation was observed. Hence, we suggest that the CSC population play a significant role during endocrine resistance through activity of the mTOR pathway. In addition, tamoxifen further stimulates the mTOR-pathway but can be antagonized using mTOR-inhibitors.
Collapse
Affiliation(s)
| | - Ran Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John Lövrot
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lorand Levente Kis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Claes Lindh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | | | - Irma Fredriksson
- Department of Breast and Endocrine Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Radiumhemmet - Karolinska Oncology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology/Cytology, Karolinska University Hospital, 17177 Stockholm, Sweden.
| |
Collapse
|
61
|
Martínez A, Sesé M, Losa JH, Robichaud N, Sonenberg N, Aasen T, Ramón y Cajal S. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches. PLoS One 2015; 10:e0123352. [PMID: 25923732 PMCID: PMC4414544 DOI: 10.1371/journal.pone.0123352] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D) form of eIF4E, but not phospho-dead (S209A) eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin), starvation (glucose+glutamine withdrawal), and oxidative stress (arsenite). De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1). We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.
Collapse
Affiliation(s)
- Alba Martínez
- Molecular Pathology, Hospital Universitari Vall d’Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Sesé
- Molecular Pathology, Hospital Universitari Vall d’Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Nathaniel Robichaud
- McGill University, Department of Biochemistry, Goodman Cancer Research Centre, Montréal, Québec, Canada
| | - Nahum Sonenberg
- McGill University, Department of Biochemistry, Goodman Cancer Research Centre, Montréal, Québec, Canada
| | - Trond Aasen
- Molecular Pathology, Hospital Universitari Vall d’Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (SRC); (TA)
| | - Santiago Ramón y Cajal
- Molecular Pathology, Hospital Universitari Vall d’Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Pathology, Vall d’Hebron University Hospital, Barcelona, Spain
- * E-mail: (SRC); (TA)
| |
Collapse
|
62
|
Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 2015; 75:250-63. [PMID: 25593033 DOI: 10.1158/0008-5472.can-14-2789] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada. Department of Oncology, McGill University, Montreal, Québec, Canada.
| | - Jeremy Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| |
Collapse
|
63
|
Avdulov S, Herrera J, Smith K, Peterson M, Gomez-Garcia JR, Beadnell TC, Schwertfeger KL, Benyumov AO, Manivel JC, Li S, Bielinsky AK, Yee D, Bitterman PB, Polunovsky VA. eIF4E threshold levels differ in governing normal and neoplastic expansion of mammary stem and luminal progenitor cells. Cancer Res 2014; 75:687-97. [PMID: 25524901 DOI: 10.1158/0008-5472.can-14-2571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when overexpressed. The mechanisms by which eIF4E directs such distinct biologic outputs remain unknown. We found that mouse mammary morphogenesis during pregnancy and lactation is accompanied by increased cap-binding capability of eIF4E and activation of the eIF4E-dependent translational apparatus, but only subtle oscillations in eIF4E abundance. Using a transgenic mouse model engineered so that lactogenic hormones stimulate a sustained increase in eIF4E abundance in stem/progenitor cells of lactogenic mammary epithelium during successive pregnancy/lactation cycles, eIF4E overexpression increased self-renewal, triggered DNA replication stress, and induced formation of premalignant and malignant lesions. Using complementary in vivo and ex vivo approaches, we found that increasing eIF4E levels rescued cells harboring oncogenic c-Myc or H-RasV12 from DNA replication stress and oncogene-induced replication catastrophe. Our findings indicate that distinct threshold levels of eIF4E govern its biologic output in lactating mammary glands and that eIF4E overexpression in the context of stem/progenitor cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints activated by oncogenic stimuli. Maintaining eIF4E levels below its proneoplastic threshold is an important anticancer defense in normal cells, with important implications for understanding pregnancy-associated breast cancer.
Collapse
Affiliation(s)
- Svetlana Avdulov
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Herrera
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Mark Peterson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | | | - Thomas C Beadnell
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Alexey O Benyumov
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - J Carlos Manivel
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Shunan Li
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Anja-Katrin Bielinsky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Departament of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| | - Vitaly A Polunovsky
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
64
|
Yu C, Luo C, Qu B, Khudhair N, Gu X, Zang Y, Wang C, Zhang N, Li Q, Gao X. Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells. Arch Biochem Biophys 2014; 564:142-55. [DOI: 10.1016/j.abb.2014.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
|
65
|
An eIF4E-interacting peptide induces cell death in cancer cell lines. Cell Death Dis 2014; 5:e1500. [PMID: 25356869 PMCID: PMC4237268 DOI: 10.1038/cddis.2014.457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022]
Abstract
The eukaryotic initiation factor eIF4E is essential for cap-dependent initiation of translation in eukaryotes. Abnormal regulation of eIF4E has been implicated in oncogenic transformation. We developed an eIF4E-binding peptide derived from Angel1, a partner of eIF4E that we recently identified. We show here that this peptide fused to a penetratin motif causes drastic and rapid cell death in several epithelial cancer cell lines. This necrotic cell death was characterized by a drop in ATP levels with F-actin network injury being a key step in extensive plasma membrane blebbing and membrane permeabilization. This synthetic eIF4E-binding peptide provides a candidate pharmacophore for a promising new cancer therapy strategy.
Collapse
|
66
|
A unique phosphorylation-dependent eIF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation. Biochem J 2014; 462:291-302. [PMID: 24894874 DOI: 10.1042/bj20131530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously reported that the HCV (hepatitis C virus) protein NS5A up-regulated mRNA cap binding eIF4F (eukaryotic initiation factor 4F) complex assembly through mTOR (mechanistic target of rapamycin)-4EBP1 (eIF4E-binding protein 1) pathway and that NS5A (non-structural protein 5A) physically interacted with translation apparatus. In the present study, we demonstrate that NS5A co-ordinates a unique assembly of the cap binding protein eIF4E and 40S ribosome to form a complex that we call ENR (eIF4E-NS5A-ribosome). Recruitment of NS5A and eIF4E to 40S ribosome was confirmed by polysome fractionation, subcellular fractionation and high-salt-wash immunoprecipitation. These observations were also confirmed in HCV-infected cells, validating its biological significance. eIF4E phosphorylation was critical for ENR assembly. 80S ribosome dissociation and RNase integrity assays revealed that, once associated, the ENR complex is stable and RNA interaction is dispensable. Both the N- and C-terminal regions of NS5A domain 1 were indispensable for this assembly and for the NS5A-induced HCV IRES (internal ribosome entry site) activation. The present study demonstrates that NS5A initially associates with phosphorylated eIF4E of eIF4F complex and subsequently recruits it to 40S ribosomes. This is the first time the interaction of viral protein with both eIF4E and ribosomes has been reported. We propose that this assembly would determine the outcome of HCV infection and pathogenesis through regulation of viral and host translation.
Collapse
|
67
|
Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Semin Cell Dev Biol 2014; 36:102-12. [PMID: 25263010 DOI: 10.1016/j.semcdb.2014.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins.
Collapse
Affiliation(s)
- Bruno D Fonseca
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
| | - Ewan M Smith
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicolas Yelle
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Martin Bushell
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Arnim Pause
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
68
|
Yu HJ, Shin JA, Jung JY, Nam JS, Hong IS, Cho NP, Cho SD. Inhibition of myeloid cell leukemia-1: Association with sorafenib-induced apoptosis in human mucoepidermoid carcinoma cells and tumor xenograft. Head Neck 2014; 37:1326-35. [PMID: 25043125 DOI: 10.1002/hed.23749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/24/2014] [Accepted: 05/07/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The purpose of our study was to investigate the anticancer effect of sorafenib on mucoepidermoid carcinoma (MEC) and find its new molecular mechanism. METHODS The apoptotic effects of sorafenib were performed using MTS assay, diamidino-phenylindole (DAPI) staining, Western blotting, reverse transcription-polymerase chain reaction (RT-PCR), siRNA, and xenograft. RESULTS Sorafenib had apoptotic effects on MC-3 and YD15 cells and decreased myeloid cell leukemia-1 (Mcl-1) through proteasome-dependent protein degradation and the inhibition of protein synthesis. Sorafenib significantly affected truncated bid (t-Bid) and siMcl-1 resulting in the upregulation of t-Bid to induce apoptosis. Signal transducer and activator of transcription 3 (STAT3) phosphorylation was also blocked by sorafenib and a potent STAT3 inhibitor, cryptotanshinone clearly induced poly ADP-ribose polymerase (PARP) cleavage by inhibiting Mcl-1 and increasing t-Bid. Finally, administration of sorafenib significantly suppressed tumor growth and induced apoptosis in tumor xenograft model in association with downregulation of Mcl-1 without any side effects. CONCLUSION Taken together, these findings suggest that sorafenib can be a good anticancer drug candidate for the treatment of MEC.
Collapse
Affiliation(s)
- Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| | - Jeong-Seok Nam
- Lee Gil Ya Cancer and Diabetes Institute, Inchon, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
69
|
Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 2014; 20:748-53. [PMID: 24952648 PMCID: PMC4087046 DOI: 10.1038/nm.3557] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/10/2014] [Indexed: 12/13/2022]
Abstract
Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA),1,2 congenital asplenia,3 and T-cell leukemia.4 Yet how mutations in such ubiquitously expressed proteins result in cell-type and tissue specific defects remains a mystery.5 Here, we show that GATA1 mutations that reduce full-length protein levels of this critical hematopoietic transcription factor can cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can similarly reduce translation of GATA1 mRNA - a phenomenon that appears to result from this mRNA having a higher threshold for initiation of translation. In primary hematopoietic cells from patients with RPS19 mutations, a transcriptional signature of GATA1 target genes is globally and specifically reduced, confirming that the activity, but not the mRNA level, of GATA1 is reduced in DBA patients with ribosomal protein mutations. The defective hematopoiesis observed in DBA patients with ribosomal protein haploinsufficiency can be at least partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations in ubiquitous ribosomal proteins can result in human disease.
Collapse
|
70
|
Pysz MA, Hao F, Hizli AA, Lum MA, Swetzig WM, Black AR, Black JD. Differential regulation of cyclin D1 expression by protein kinase C α and ϵ signaling in intestinal epithelial cells. J Biol Chem 2014; 289:22268-83. [PMID: 24914206 DOI: 10.1074/jbc.m114.571554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cellular accumulation of cyclin D1, a key regulator of cell proliferation and tumorigenesis, is subject to tight control. Our previous studies have identified PKCα as a negative regulator of cyclin D1 in the intestinal epithelium. However, treatment of non-transformed IEC-18 ileal crypt cells with PKC agonists has a biphasic effect on cyclin D1 expression. Initial PKCα-mediated down-regulation is followed by recovery and subsequent accumulation of the cyclin to levels markedly higher than those seen in untreated cells. Using protein overexpression strategies, siRNA, and pharmacological inhibitors, we now demonstrate that the recovery and hyperinduction of cyclin D1 reflect the combined effects of (a) loss of negative signals from PKCα due to agonist-induced PKCα down-regulation and (b) positive effects of PKCϵ. PKCϵ-mediated up-regulation of cyclin D1 requires sustained ERK stimulation and transcriptional activation of the proximal cyclin D1 (CCDN1) promoter, without apparent involvement of changes in protein stability or translation. PKCϵ also up-regulates cyclin D1 expression in colon cancer cells, through mechanisms that parallel those in IEC-18 cells. Although induction of cyclin D1 by PKCϵ is dependent on non-canonical NF-κB activation, the NF-κB site in the proximal promoter is not required. Instead, cyclin D1 promoter activity is regulated by a novel interaction between NF-κB and factors that associate with the cyclic AMP-response element adjacent to the NF-κB site. The differential effects of PKCα and PKCϵ on cyclin D1 accumulation are likely to contribute to the opposing tumor-suppressive and tumor-promoting activities of these PKC family members in the intestinal epithelium.
Collapse
Affiliation(s)
- Marybeth A Pysz
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Fang Hao
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - A Asli Hizli
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michelle A Lum
- From the Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Wendy M Swetzig
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Adrian R Black
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263From the Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Jennifer D Black
- the Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263From the Eppley Institute for Research in Cancer and Allied Diseases and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
71
|
Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014; 15:503-11. [DOI: 10.1038/ni.2891] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
|
72
|
Zhu HL, Xie SM, Fang M, Zhang JJ, Weng ZP, Zhong XY. 4E-BP1 regulates the sensitivity of human glioma cells to chemotherapy through PI3K/Akt/mTOR-independent pathway. Neuropathology 2013; 34:227-35. [PMID: 24354477 DOI: 10.1111/neup.12085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Drug resistance is one of the most formidable obstacles for treatment of glioma. Eukaryotic initiation factor 4E-binding protein (4E-BP1), a key component in the rate-limiting step of protein translation initiation, is closely associated with poor prognosis in multiple tumor types. However, it is unclear whether 4E-BP1 is involved in the drug resistance of human glioma. Herein we show that the expression of 4E-BP1 in human SWOZ2-BCNU drug-resistant glioma cells is significantly lower than that of the parent SWOZ2 cell line. Moreover, down-regulation of 4E-BP1 by short interfering RNA significantly impaired the sensitivity of SWOZ2 and U251 cells to carmustine (BCNU). Furthermore, overexpression of 4E-BP1 with plasmid transfection regained this sensitivity. Clinical studies showed that the expression levels of 4E-BP1 in primary glioma tissues were markedly higher than those of recrudescent glioma tissues. Taken together, our results suggest that 4E-BP1 is a novel protein that contributes to acquired drug resistance and it may be a potential target for reversing drug resistance in human glioma.
Collapse
Affiliation(s)
- Hui-Li Zhu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Pathology, Medical College of Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
73
|
Nasr Z, Dow LE, Paquet M, Chu J, Ravindar K, Somaiah R, Deslongchamps P, Porco Jr JA, Lowe SW, Pelletier J. Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia. BMC Pharmacol Toxicol 2013; 14:58. [PMID: 24219888 PMCID: PMC4225821 DOI: 10.1186/2050-6511-14-58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemotherapy-induced hair loss (alopecia) (CIA) is one of the most feared side effects of chemotherapy among cancer patients. There is currently no pharmacological approach to minimize CIA, although one strategy that has been proposed involves protecting normal cells from chemotherapy by transiently inducing cell cycle arrest. Proof-of-concept for this approach, known as cyclotherapy, has been demonstrated in cell culture settings. METHODS The eukaryotic initiation factor (eIF) 4E is a cap binding protein that stimulates ribosome recruitment to mRNA templates during the initiation phase of translation. Suppression of eIF4E is known to induce cell cycle arrest. Using a novel inducible and reversible transgenic mouse model that enables RNAi-mediated suppression of eIF4E in vivo, we assessed the consequences of temporal eIF4E suppression on CIA. RESULTS Our results demonstrate that transient inhibition of eIF4E protects against cyclophosphamide-induced alopecia at the organismal level. At the cellular level, this protection is associated with an accumulation of cells in G1, reduced apoptotic indices, and was phenocopied using small molecule inhibitors targeting the process of translation initiation. CONCLUSIONS Our data provide a rationale for exploring suppression of translation initiation as an approach to prevent or minimize cyclophosphamide-induced alopecia.
Collapse
Affiliation(s)
- Zeina Nasr
- Departments of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Lukas E Dow
- Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Marilene Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2 M2, Canada
| | - Jennifer Chu
- Departments of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Kontham Ravindar
- Départment de Chimie, Université Laval, Ste-Foy, Quebec G1V 0A6, Canada
| | - Ragam Somaiah
- Départment de Chimie, Université Laval, Ste-Foy, Quebec G1V 0A6, Canada
| | | | - John A Porco Jr
- Center for Methodology and Library Development, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Scott W Lowe
- Memorial Sloan-Kettering Cancer Center, New York, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Jerry Pelletier
- Departments of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
74
|
Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc Natl Acad Sci U S A 2013; 110:13339-44. [PMID: 23901100 DOI: 10.1073/pnas.1303781110] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elevated eukaryotic initiation factor 4E (eIF4E) levels frequently occur in a variety of human cancers. Overexpression of eIF4E promotes cellular transformation by selectively increasing the translation of proliferative and prosurvival mRNAs. These mRNAs possess highly structured 5'-UTRs that impede ribosome recruitment and scanning, yet the mechanism for how eIF4E abundance elevates their translation is not easily explained by its cap-binding activity. Here, we show that eIF4E possesses an unexpected second function in translation initiation by strongly stimulating eukaryotic initiation factor 4A (eIF4A) helicase activity. Importantly, we demonstrate that this activity promotes mRNA restructuring in a manner that is independent of its cap-binding function. To explain these findings, we show that the eIF4E-binding site in eukaryotic initiation factor 4G (eIF4G) functions as an autoinhibitory domain to modulate its ability to stimulate eIF4A helicase activity. Binding of eIF4E counteracts this autoinhibition, enabling eIF4G to stimulate eIF4A helicase activity. Finally, we have successfully separated the two functions of eIF4E to show that its helicase promoting activity increases the rate of translation by a mechanism that is distinct from its cap-binding function. Based on our results, we propose that maintaining a connection between eIF4E and eIF4G throughout scanning provides a plausible mechanism to explain how eIF4E abundance selectively stimulates the translation of highly structured proliferation and tumor-promoting mRNAs.
Collapse
|
75
|
Gosselin P, Martineau Y, Morales J, Czjzek M, Glippa V, Gauffeny I, Morin E, Le Corguillé G, Pyronnet S, Cormier P, Cosson B. Tracking a refined eIF4E-binding motif reveals Angel1 as a new partner of eIF4E. Nucleic Acids Res 2013; 41:7783-92. [PMID: 23814182 PMCID: PMC3763552 DOI: 10.1093/nar/gkt569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The initiation factor 4E (eIF4E) is implicated in most of the crucial steps of the mRNA life cycle and is recognized as a pivotal protein in gene regulation. Many of these roles are mediated by its interaction with specific proteins generally known as eIF4E-interacting partners (4E-IPs), such as eIF4G and 4E-BP. To screen for new 4E-IPs, we developed a novel approach based on structural, in silico and biochemical analyses. We identified the protein Angel1, a member of the CCR4 deadenylase family. Immunoprecipitation experiments provided evidence that Angel1 is able to interact in vitro and in vivo with eIF4E. Point mutation variants of Angel1 demonstrated that the interaction of Angel1 with eIF4E is mediated through a consensus eIF4E-binding motif. Immunofluorescence and cell fractionation experiments showed that Angel1 is confined to the endoplasmic reticulum and Golgi apparatus, where it partially co-localizes with eIF4E and eIF4G, but not with 4E-BP. Furthermore, manipulating Angel1 levels in living cells had no effect on global translation rates, suggesting that the protein has a more specific function. Taken together, our results illustrate that we developed a powerful method for identifying new eIF4E partners and open new perspectives for understanding eIF4E-specific regulation.
Collapse
Affiliation(s)
- Pauline Gosselin
- UPMC Univ Paris 06, UMR 7150, Mer et Santé, Station Biologique, F-29680 Roscoff, France, CNRS, UMR 7150, Mer et Santé, Station Biologique, F-29680 Roscoff, France. Université Européenne de Bretagne, Bretagne, Roscoff, France, INSERM, UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse 31432, France, UPMC Univ Paris 06, UMR 7139, Végétaux Marins et Biomolécules, Station Biologique, F-29680 Roscoff, France, CNRS, UMR 7139, Végétaux Marins et Biomolécules, Station Biologique, F-29680 Roscoff, France, UPMC Univ Paris 06, FR2424, ABiMS, Station Biologique, F-29680 Roscoff, France and CNRS, FR2424, ABiMS, Station Biologique, F-29680 Roscoff, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Iannilli F, Zalfa F, Gartner A, Bagni C, Dotti CG. Cytoplasmic TERT Associates to RNA Granules in Fully Mature Neurons: Role in the Translational Control of the Cell Cycle Inhibitor p15INK4B. PLoS One 2013; 8:e66602. [PMID: 23825548 PMCID: PMC3688952 DOI: 10.1371/journal.pone.0066602] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/07/2013] [Indexed: 01/28/2023] Open
Abstract
The main role of Telomerase Reverse Transcriptase (TERT) is to protect telomere length from shortening during cell division. However, recent works have revealed the existence of a pool of TERT associated to mitochondria, where it plays a role in survival. We here show that in fully differentiated neurons the largest pool of cytoplasmic TERT associates to TIA1 positive RNA granules, where it binds the messenger RNA of the cyclin kinase inhibitor p15INK4B. Upon stress, p15INK4B and TERT dissociate and p15INK4B undergoes efficient translation, allowing its pro-survival function. These results unveil another mechanism implicated in the survival of fully differentiated neurons.
Collapse
Affiliation(s)
- Francesca Iannilli
- Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Francesca Zalfa
- University of Rome, “Campus Bio-medico” CIR Department, Rome, Italy
| | - Annette Gartner
- Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
| | - Claudia Bagni
- Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
- University of Rome, “Campus Bio-medico” CIR Department, Rome, Italy
| | - Carlos G. Dotti
- Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- * E-mail:
| |
Collapse
|
77
|
Willimott S, Beck D, Ahearne MJ, Adams VC, Wagner SD. Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia. Clin Cancer Res 2013; 19:3212-23. [PMID: 23633452 DOI: 10.1158/1078-0432.ccr-12-2185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The lymph node microenvironment promotes resistance to chemotherapy in chronic lymphocytic leukemia (CLL), partly through induction of BCL2 family prosurvival proteins. Currently available inhibitors do not target all BCL2 family prosurvival proteins and their effectiveness is also modified by proapoptotic BCL2 homology domain 3 (BH3) only protein expression. The goal of this study was to evaluate synergy between the eIF4E/eIF4G interaction inhibitor, 4EGI-1, and the BH3 mimetic, ABT-737. EXPERIMENTAL DESIGN CLL cells were cultured in conditions to mimic the lymph node microenvironment. Protein synthesis and cap-complex formation were determined. Polysome association of mRNAs from BCL2 family survival genes was analyzed by translational profiling. The effects of 4EGI-1 and the BCL2/BCL2L1 antagonist, ABT-737, on CLL cell apoptosis were determined. RESULTS Protein synthesis was increased approximately 6-fold by stromal cell/CD154 culture in a phosphoinositide 3-kinase α (PI3Kα)-specific manner and was reduced by 4EGI-1. PI3K inhibitors and 4EGI-1 also reduced cap-complex formation but only 4EGI-1 consistently reduced BCL2L1 and BCL2A1 protein levels. 4EGI-1, but not PI3K inhibitors or rapamycin, induced an endoplasmic reticulum stress response including proapoptotic NOXA and the translation inhibitor phosphorylated eIF2α. 4EGI-1 and ABT-737 synergized to cause apoptosis, independent of levels of prosurvival protein expression in individual patients. CONCLUSIONS Overall protein synthesis and cap-complex formation are induced by microenvironment stimuli in CLL. Inhibition of the cap-complex was not sufficient to repress BCL2 family prosurvival expression, but 4EGI-1 inhibited BCL2A1 and BCL2L1 while inducing NOXA through cap-dependent and -independent mechanisms. 4EGI-1 and ABT-737 synergized to produce apoptosis, and these agents may be the basis for a therapeutically useful combination.
Collapse
Affiliation(s)
- Shaun Willimott
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
78
|
Lin CJ, Nasr Z, Premsrirut PK, Porco JA, Hippo Y, Lowe SW, Pelletier J. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep 2013; 1:325-33. [PMID: 22573234 DOI: 10.1016/j.celrep.2012.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The energetically demanding process of translation is linked to multiple signaling events through mTOR-mediated regulation of eukaryotic initiation factor (eIF)4F complex assembly. Disrupting mTOR constraints on eIF4F activity can be oncogenic and alter chemotherapy response, making eIF4F an attractive antineoplastic target. Here, we combine a newly developed inducible RNAi platform and pharmacological targeting of eIF4F activity to define a critical role for endogenous eIF4F in Myc-dependent tumor initiation. We find elevated Myc levels are associated with deregulated eIF4F activity in the prelymphomatous stage of the Eμ-Myc lymphoma model. Inhibition of eIF4F is synthetic lethal with elevated Myc in premalignant pre-B/B cells resulting in reduced numbers of cycling pre-B/B cells and delayed tumor onset. At the organismal level, eIF4F suppression affected a subset of normal regenerating cells, but this was well tolerated and rapidly and completely reversible. Therefore, eIF4F is a key Myc client that represents a tumor-specific vulnerability.
Collapse
Affiliation(s)
- Chen-Ju Lin
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
79
|
Carroll M, Borden KLB. The oncogene eIF4E: using biochemical insights to target cancer. J Interferon Cytokine Res 2013; 33:227-38. [PMID: 23472659 DOI: 10.1089/jir.2012.0142] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E is overexpressed in many human malignancies where it is typically a harbinger of poor prognosis. eIF4E is positioned as a nexus in post-transcriptional gene expression. To carry out these functions, eIF4E needs to bind the m(7)G cap moiety on mRNAs. It plays critical roles in mRNA translation, mRNA export, and most likely in mRNA stability as well. Through these activities, eIF4E coordinately modulates the expression of many transcripts involved in proliferation and survival. eIF4E function is controlled by interactions with protein cofactors in concert with many signaling pathways, including Ras, Mnk, Erk, MAPK, PI3K, mTOR, and Akt. This review describes the eIF4E activity and provides several examples of cellular control mechanisms. Further, we describe some therapeutic strategies in preclinical and clinical development.
Collapse
Affiliation(s)
- Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
80
|
Song A, Lou W, Jiang J, Chen S, Sun Z, Guan Z, Fang W, Teng N, Chen F. An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with Chrysanthemum virus B coat protein. PLoS One 2013; 8:e57229. [PMID: 23505421 PMCID: PMC3591383 DOI: 10.1371/journal.pone.0057229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/18/2013] [Indexed: 12/24/2022] Open
Abstract
Background Eukaryotic translation initiation factor 4E (eIF4E) plays an important role in plant virus infection as well as the regulation of gene translation. Methodology/Principal Findings Here, we describe the isolation of a cDNA encoding CmeIF(iso)4E (GenBank accession no. JQ904592), an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso)4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso)4E and the Chrysanthemum virus B coat protein (CVBCP). Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso)4E with other reported plant eIF(iso)4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso)4E belongs to the eIF(iso)4E subfamily of the eIF4E family. CmeIF(iso)4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso)4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso)4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso)4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. Conclusions/Significance These results inferred that CmeIF(iso)4E as the cap-binding subunit eIF(iso)4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanghuai Lou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zuxia Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
81
|
Kasza A. IL-1 and EGF regulate expression of genes important in inflammation and cancer. Cytokine 2013; 62:22-33. [PMID: 23481102 DOI: 10.1016/j.cyto.2013.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
This review focuses on the mechanisms by which the expression of specific genes is regulated by two proteins that are important in inflammation and cancer, namely the pro-inflammatory cytokine interleukin (IL)-1β and epidermal growth factor (EGF). In the review the receptors that recognize factors that cause inflammation are described with main focus on the receptors associated with activation of IL-1β. The function of IL-1β and pathways leading to activation of transcription factors, particularly NFκB and Elk-1 are analyzed. Then the mechanisms of EGF action, with particular emphasis of the activation of Elk-1 are illustrated. The link between aberrant signaling of EGF receptor family members and cancer development is explained. The relationship between inflammation and tumorigenesis is discussed.
Collapse
Affiliation(s)
- Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
82
|
eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Proc Natl Acad Sci U S A 2013; 110:3877-82. [PMID: 23431134 DOI: 10.1073/pnas.1216862110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition of the methyl-7-guanosine (m(7)G) cap structure on mRNA is an essential feature of mRNA metabolism and thus gene expression. Eukaryotic translation initiation factor 4E (eIF4E) promotes translation, mRNA export, proliferation, and oncogenic transformation dependent on this cap-binding activity. eIF4E-cap recognition is mediated via complementary charge interactions of the positively charged m(7)G cap between the negative π-electron clouds from two aromatic residues. Here, we demonstrate that a variant subfamily, eIF4E3, specifically binds the m(7)G cap in the absence of an aromatic sandwich, using instead a different spatial arrangement of residues to provide the necessary electrostatic and van der Waals contacts. Contacts are much more extensive between eIF4E3-cap than other family members. Structural analyses of other cap-binding proteins indicate this recognition mode is atypical. We demonstrate that eIF4E3 relies on this cap-binding activity to act as a tumor suppressor, competing with the growth-promoting functions of eIF4E. In fact, reduced eIF4E3 in high eIF4E cancers suggests that eIF4E3 underlies a clinically relevant inhibitory mechanism that is lost in some malignancies. Taken together, there is more structural plasticity in cap recognition than previously thought, and this is physiologically relevant.
Collapse
|
83
|
Larsson O, Tian B, Sonenberg N. Toward a genome-wide landscape of translational control. Cold Spring Harb Perspect Biol 2013; 5:a012302. [PMID: 23209130 PMCID: PMC3579401 DOI: 10.1101/cshperspect.a012302] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genome-wide analysis of translational control has taken strides in recent years owing to the advent of high-throughput technologies, including DNA microarrays and deep sequencing. Global studies have unraveled a principal role, among posttranscriptional mechanisms, for mRNA translation in determining protein levels in the cell. The impact of translational control in dynamic regulation of the proteome under different conditions is increasingly appreciated. Here we review genome-wide studies that use high-throughput techniques and bioinformatics to assess the role of mRNA translation in the regulation of protein levels; we also discuss how genome-wide data on mRNA translation can be obtained, analyzed, and used to identify mechanisms of translational control.
Collapse
Affiliation(s)
- Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm SE-171 76, Sweden.
| | | | | |
Collapse
|
84
|
Zhang Q, Xiao Z, He F, Zou J, Wu S, Liu Z. MicroRNAs regulate the pathogenesis of CVB3-induced viral myocarditis. Intervirology 2012. [PMID: 23183417 DOI: 10.1159/000343750] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS To evaluate the role of microRNAs (miRNAs) in the pathogenesis of Coxsackievirus B3 (CVB3)-induced viral myocarditis. METHODS We detected miRNA expression profiling by microarray utilizing a mouse model on day 4 after CVB3 infection. Then we validated differentially expressed miRNAs using real-time polymerase chain reaction (PCR). We predicted target genes using miRNA target prediction databases and assessed them using mRNA microarray and qualitative reverse transcription PCR measurements. By analyzing the target function of differentially expressed miRNAs, we initially explored the regulating role of miRNAs in viral myocarditis. RESULTS We found five differentially expressed miRNAs that are involved in regulating several important innate immune and antiviral pathways such as the Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine- cytokine receptor interaction, MAPK signaling pathway, JAK-STAT signaling pathway, and natural killer cell-mediated cytotoxicity. CONCLUSION miRNAs regulate the pathogenesis of viral myocarditis. This study may provide a new perspective and a deeper understanding of the pathogenesis of viral myocarditis that may help with the development of novel therapies against CVB3 infection.
Collapse
Affiliation(s)
- Qinghua Zhang
- Graduate School of Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
85
|
Prasad A, Shrivastava A, Papadopoulos E, Kuzontkoski PM, Reddy MVR, Gillum AM, Kumar R, Reddy EP, Groopman JE. Combined administration of rituximab and on 013105 induces apoptosis in mantle cell lymphoma cells and reduces tumor burden in a mouse model of mantle cell lymphoma. Clin Cancer Res 2012; 19:85-95. [PMID: 23124440 DOI: 10.1158/1078-0432.ccr-12-1425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mantle cell lymphoma (MCL) is an incurable B-cell lymphoma, and new therapeutic strategies are urgently needed. EXPERIMENTAL DESIGN The effects of ON 013105, a novel benzylstyryl sulfone kinase inhibitor, alone or with doxorubicin or rituximab, were examined in Granta 519 and Z138C cells. For in vivo studies, CB17/SCID mice were implanted subcutaneously with Z138C cells and treated with various combinations of ON 013105, doxorubicin, and rituximab. Tumor burden and body weight were monitored for 28 days. RESULTS ON 013105 induced mitochondria-mediated apoptosis in MCL cells. Death was preceded by translocation of tBid to the mitochondria and cytochrome c release. In addition, ON 013105-treated cells exhibited reduced levels of cyclin D1, c-Myc, Mcl-1, and Bcl-xL. Using nuclear magnetic resonance (NMR) spectroscopy, we showed specific binding of ON 013105 to eIF4E, a critical factor for the initiation of protein translation. We proffer that this drug-protein interaction preferentially prevents the translation of the aforementioned proteins and may be the mechanism by which ON 013105 induces apoptosis in MCL cells. Efficacy studies in a mouse xenograft model showed that ON 013105 inhibited MCL tumor growth and that combining ON 013105 with rituximab reduced tumor burden further with negligible unwanted effects. CONCLUSIONS Our findings suggest that ON 013105, alone or in combination with rituximab, may be a potent therapeutic agent to treat MCLs.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KLB. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep 2012; 2:207-15. [PMID: 22902403 DOI: 10.1016/j.celrep.2012.07.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/04/2012] [Accepted: 07/17/2012] [Indexed: 01/12/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E is a potent oncogene that promotes the nuclear export and translation of specific transcripts. Here, we have discovered that eIF4E alters the cytoplasmic face of the nuclear pore complex (NPC), which leads to enhanced mRNA export of eIF4E target mRNAs. Specifically, eIF4E substantially reduces the major component of the cytoplasmic fibrils of the NPC, RanBP2, relocalizes an associated nucleoporin, Nup214, and elevates RanBP1 and the RNA export factors, Gle1 and DDX19. Genetic or pharmacological inhibition of eIF4E impedes these effects. RanBP2 overexpression specifically inhibits the eIF4E mRNA export pathway and impairs oncogenic transformation by eIF4E. The RanBP2 cytoplasmic fibrils most likely slow the release and/or recycling of critical export factors to the nucleus. eIF4E overcomes this inhibitory mechanism by indirectly reducing levels of RanBP2. More generally, these results suggest that reprogramming the NPC is a means by which oncogenes can harness the proliferative capacity of the cell.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
87
|
Yang H, Li LW, Shi M, Wang JH, Xiao F, Zhou B, Diao LQ, Long XL, Liu XL, Xu L. In vivo study of breast carcinoma radiosensitization by targeting eIF4E. Biochem Biophys Res Commun 2012; 423:878-83. [DOI: 10.1016/j.bbrc.2012.06.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/15/2012] [Indexed: 01/25/2023]
|
88
|
Kolesnichenko M, Hong L, Liao R, Vogt PK, Sun P. Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence. Cell Cycle 2012; 11:2391-401. [PMID: 22627671 DOI: 10.4161/cc.20683] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Numerous stimuli, including oncogenic signaling, DNA damage or eroded telomeres trigger proliferative arrest, termed cellular senescence. Accumulating evidence suggests that cellular senescence is a potent barrier to tumorigenesis in vivo, however oncogene induced senescence can also promote cellular transformation. Several oncogenes, whose overexpression results in cellular senescence, converge on the TOR (target of rapamycin) pathway. We therefore examined whether attenuation of TOR results in delay or reversal of cellular senescence. By using primary human fibroblasts undergoing either replicative or oncogenic RAS-induced senescence, we demonstrated that senescence can be delayed, and some aspects of senescence can be reversed by inhibition of TOR, using either the TOR inhibitor rapamycin or by depletion of TORC1 (TOR Complex 1). Depletion of TORC2 fails to affect the course of replicative or RAS-induced senescence. Overexpression of REDD1 (Regulated in DNA Damage Response and Development), a negative regulator of TORC1, delays the onset of replicative senescence. These results indicate that TORC1 is an integral component of the signaling pathway that mediates cellular senescence.
Collapse
Affiliation(s)
- Marina Kolesnichenko
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | | | | | | | | |
Collapse
|
89
|
Ge Y, Cheng R, Zhou Y, Shen J, Peng L, Xu X, Dai Q, Liu P, Wang H, Ma X, Jia J, Chen Z. Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E. Mol Cell Biochem 2012; 368:17-25. [PMID: 22614784 DOI: 10.1007/s11010-012-1338-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 05/03/2012] [Indexed: 12/19/2022]
Abstract
Cryptotanshinone (CPT), a diterpene quinone isolated from Salvia miltiorrhiza, is recently reported to have obvious anticancer activities against diverse cancer cells. However, the effect and regulatory mechanism of CPT remain unclear in human chronic myeloid leukemia (CML) cells. In this study, we investigated the antiproliferative activity of CPT on the multidrug resistant CML cells K562/ADM. Our results demonstrated that CPT decreased the cell viability of K562/ADM cells by inducing cell cycle arrest and apoptosis through suppressing the expression of cyclin D1 and Bcl-2. Further studies indicated that CPT mainly functions at post-transcriptional levels, suggesting the involvement of eukaryotic initiation factor 4E (eIF4E). CPT significantly reduced the expression and activity of eIF4E in K562/ADM cells. Overexpression of eIF4E obvious conferred resistance to the CPT antiproliferation and proapoptotic activity as well as the cyclin D1 and Bcl-2 expressions. Knockdown of eIF4E significantly reduced the inhibitory effect of CPT in K562/ADM, confirming the participation of eIF4E during CPT function process. More importantly, the relative inhibitory efficiency of CPT positively correlated with the reductions on eIF4E in primary CML specimens. These results demonstrated that CPT played antitumor roles in K562/ADM cells by inhibiting the eIF4E regulatory system. Our results provide a novel anticancer mechanism of CPT in human CML cells.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Eukaryotic Initiation Factor-4E/genetics
- Eukaryotic Initiation Factor-4E/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Gene Knockdown Techniques
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Peptide Chain Initiation, Translational/drug effects
- Peptide Chain Initiation, Translational/genetics
- Phenanthrenes/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
Collapse
Affiliation(s)
- Yuqing Ge
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ventoso I, Kochetov A, Montaner D, Dopazo J, Santoyo J. Extensive translatome remodeling during ER stress response in mammalian cells. PLoS One 2012; 7:e35915. [PMID: 22574127 PMCID: PMC3344847 DOI: 10.1371/journal.pone.0035915] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/26/2012] [Indexed: 12/03/2022] Open
Abstract
In this work we have described the translatome of two mammalian cell lines, NIH3T3 and Jurkat, by scoring the relative polysome association of ∼10,000 mRNA under normal and ER stress conditions. We have found that translation efficiencies of mRNA correlated poorly with transcript abundance, although a general tendency was observed so that the highest translation efficiencies were found in abundant mRNA. Despite the differences found between mouse (NIH3T3) and human (Jurkat) cells, both cell types share a common translatome composed by ∼800–900 mRNA that encode proteins involved in basic cellular functions. Upon stress, an extensive remodeling in translatomes was observed so that translation of ∼50% of mRNA was inhibited in both cell types, this effect being more dramatic for those mRNA that accounted for most of the cell translation. Interestingly, we found two subsets comprising 1000–1500 mRNA whose translation resisted or was induced by stress. Translation arrest resistant class includes many mRNA encoding aminoacyl tRNA synthetases, ATPases and enzymes involved in DNA replication and stress response such as BiP. This class of mRNA is characterized by high translation rates in both control and stress conditions. Translation inducible class includes mRNA whose translation was relieved after stress, showing a high enrichment in early response transcription factors of bZIP and zinc finger C2H2 classes. Unlike yeast, a general coordination between changes in translation and transcription upon stress (potentiation) was not observed in mammalian cells. Among the different features of mRNA analyzed, we found a relevant association of translation efficiency with the presence of upstream ATG in the 5′UTR and with the length of coding sequence of mRNA, and a looser association with other parameters such as the length and the G+C content of 5′UTR. A model for translatome remodeling during the acute phase of stress response in mammalian cells is proposed.
Collapse
Affiliation(s)
- Iván Ventoso
- Departamento de Biología Molecular, Universidad Autónoma de Madrid and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
91
|
Chen X, Kopecky DJ, Mihalic J, Jeffries S, Min X, Heath J, Deignan J, Lai S, Fu Z, Guimaraes C, Shen S, Li S, Johnstone S, Thibault S, Xu H, Cardozo M, Shen W, Walker N, Kayser F, Wang Z. Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the eIF4E mRNA-cap interaction. J Med Chem 2012; 55:3837-51. [PMID: 22458568 DOI: 10.1021/jm300037x] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The eukaryotic initiation factor 4E (eIF4E) plays a central role in the initiation of gene translation and subsequent protein synthesis by binding the 5' terminal mRNA cap structure. We designed and synthesized a series of novel compounds that display potent binding affinity against eIF4E despite their lack of a ribose moiety, phosphate, and positive charge as present in m7-GMP. The biochemical activity of compound 33 is 95 nM for eIF4E in an SPA binding assay. More importantly, the compound has an IC(50) of 2.5 μM for inhibiting cap-dependent mRNA translation in a rabbit reticular cell extract assay (RRL-IVT). This series of potent, truncated analogues could serve as a promising new starting point toward the design of neutral eIF4E inhibitors with physicochemical properties suitable for cellular activity assessment.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Chemistry Research & Discovery, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ornithine decarboxylase mRNA is stabilized in an mTORC1-dependent manner in Ras-transformed cells. Biochem J 2012; 442:199-207. [PMID: 22070140 DOI: 10.1042/bj20111464] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Upon Ras activation, ODC (ornithine decarboxylase) is markedly induced, and numerous studies suggest that ODC expression is controlled by Ras effector pathways. ODC is therefore a potential target in the treatment and prevention of Ras-driven tumours. In the present study we compared ODC mRNA translation profiles and stability in normal and Ras12V-transformed RIE-1 (rat intestinal epithelial) cells. While translation initiation of ODC increased modestly in Ras12V cells, ODC mRNA was stabilized 8-fold. Treatment with the specific mTORC1 [mTOR (mammalian target of rapamycin) complex 1] inhibitor rapamycin or siRNA (small interfering RNA) knockdown of mTOR destabilized the ODC mRNA, but rapamycin had only a minor effect on ODC translation initiation. Inhibition of mTORC1 also reduced the association of the mRNA-binding protein HuR with the ODC transcript. We have shown previously that HuR binding to the ODC 3'UTR (untranslated region) results in significant stabilization of the ODC mRNA, which contains several AU-rich regions within its 3'UTR that may act as regulatory sequences. Analysis of ODC 3'UTR deletion constructs suggests that cis-acting elements between base 1969 and base 2141 of the ODC mRNA act to stabilize the ODC transcript. These experiments thus define a novel mechanism of ODC synthesis control. Regulation of ODC mRNA decay could be an important means of limiting polyamine accumulation and subsequent tumour development.
Collapse
|
93
|
Osborne TS, Khanna C. A review of the association between osteosarcoma metastasis and protein translation. J Comp Pathol 2012; 146:132-42. [PMID: 22297074 PMCID: PMC3496179 DOI: 10.1016/j.jcpa.2011.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/01/2011] [Accepted: 12/19/2011] [Indexed: 01/10/2023]
Abstract
The malignant transformation of mesenchymal cells within the bone leads to the development of osteosarcoma (OS), but the genetic underpinnings of these events are not understood. From a clinical perspective, primary tumour management can be achieved successfully in most patients. However, the development of metastasis to the lungs represents the most common cause of death in OS patients. A clearer understanding of metastasis biology is required to improve cancer mortality and improve outcomes. Modelling the genetics, biology and therapy of OS can be accomplished through research involving a number of species. Most notable is the naturally occurring form of OS that develops in dogs. Through a cross-species and comparative approach important questions can be asked within specific and suitable models to advance our understanding of this disease and its common metastatic outcome. A comparative perspective on the problem of OS metastasis that utilizes a cross-species approach may offer unique opportunities to assist in this prioritization and generate new hypotheses related to this important clinical problem.
Collapse
Affiliation(s)
- T S Osborne
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
94
|
Abstract
Studies in the past several years highlight important features of the messenger RNA (mRNA) export process. For instance, groups of mRNAs acting in the same biochemical processes can be retained or exported in a coordinated manner thereby impacting on specific biochemistries and ultimately on cell physiology. mRNAs can be transported by either bulk export pathways involving NXF1/TAP or more specialized pathways involving chromosome region maintenance 1 (CRM1). Studies on primary tumor specimens indicate that many common and specialized mRNA export factors are dysregulated in cancer including CRM1, eukaryotic translation initiation factor 4E (eIF4E), HuR, nucleoporin 88, REF/Aly, and THO. This positions these pathways as potential therapeutic targets. Recently, specific targeting of the eIF4E-dependent mRNA export pathway in a phase II proof-of-principle trial with ribavirin led to impaired eIF4E-dependent mRNA export correlating with clinical responses including remissions in leukemia patients. Here, we provide an overview of these mRNA export pathways and highlight their relationship to cancer.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | | |
Collapse
|
95
|
Naji S, Ambrus G, Cimermančič P, Reyes JR, Johnson JR, Filbrandt R, Huber MD, Vesely P, Krogan NJ, Yates JR, Saphire AC, Gerace L. Host cell interactome of HIV-1 Rev includes RNA helicases involved in multiple facets of virus production. Mol Cell Proteomics 2011; 11:M111.015313. [PMID: 22174317 DOI: 10.1074/mcp.m111.015313] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 Rev protein plays a key role in the late phase of virus replication. It binds to the Rev Response Element found in underspliced HIV mRNAs, and drives their nuclear export by the CRM1 receptor pathway. Moreover, mounting evidence suggests that Rev has additional functions in viral replication. Here we employed proteomics and statistical analysis to identify candidate host cell factors that interact with Rev. For this we studied Rev complexes assembled in vitro with nuclear or cytosolic extracts under conditions emulating various intracellular environments of Rev. We ranked the protein-protein interactions by combining several statistical features derived from pairwise comparison of conditions in which the abundance of the binding partners changed. As a validation set, we selected the eight DEAD/H box proteins of the RNA helicase family from the top-ranking 5% of the proteins. These proteins all associate with ectopically expressed Rev in immunoprecipitates of cultured cells. From gene knockdown approaches, our work in combination with previous studies indicates that six of the eight DEAD/H proteins are linked to HIV production in our cell model. In a more detailed analysis of infected cells where either DDX3X, DDX5, DDX17, or DDX21 was silenced, we observed distinctive phenotypes for multiple replication features, variously involving virus particle release, the levels of unspliced and spliced HIV mRNAs, and the nuclear and cytoplasmic concentrations of these transcripts. Altogether the work indicates that our top-scoring data set is enriched in Rev-interacting proteins relevant to HIV replication. Our more detailed analysis of several Rev-interacting DEAD proteins suggests a complex set of functions for the helicases in regulation of HIV mRNAs. The strategy used here for identifying Rev interaction partners should prove effective for analyzing other viral and cellular proteins.
Collapse
Affiliation(s)
- Souad Naji
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Siddiqui N, Tempel W, Nedyalkova L, Volpon L, Wernimont AK, Osborne MJ, Park HW, Borden KLB. Structural insights into the allosteric effects of 4EBP1 on the eukaryotic translation initiation factor eIF4E. J Mol Biol 2011; 415:781-92. [PMID: 22178476 DOI: 10.1016/j.jmb.2011.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 01/11/2023]
Abstract
The eukaryotic translation initiation factor eIF4E plays key roles in cap-dependent translation and mRNA export. These functions rely on binding the 7-methyl-guanosine moiety (5'cap) on the 5'-end of all mRNAs. eIF4E is regulated by proteins such as eIF4G and eIF4E binding proteins (4EBPs) that bind the dorsal surface of eIF4E, distal to the cap binding site, and modulate cap binding activity. Both proteins increase the affinity of eIF4E for 5'cap. Our understanding of the allosteric effects and structural underpinnings of 4EBP1 or eIF4G binding can be advanced by obtaining structural data on cap-free eIF4E bound to one of these proteins. Here, we report the crystal structure of apo-eIF4E and cap-free eIF4E in complex with a 4EBP1 peptide. We also monitored 4EBP1 binding to cap-free eIF4E in solution using NMR. Together, these studies suggest that 4EBP1 transforms eIF4E into a cap-receptive state. NMR methods were also used to compare the allosteric routes activated by 4EBP1, eIF4G, and the arenavirus Z protein, a negative regulator of cap binding. We observed chemical shift perturbation at the dorsal binding site leading to alterations in the core of the protein, which were ultimately communicated to the unoccupied cap binding site of eIF4E. There were notable similarities between the routes taken by 4EBP1 and eIF4G and differences from the negative regulator Z. Thus, binding of 4EBP1 or eIF4G allosterically drives alterations throughout the protein that increase the affinity of eIF4E for the 5'cap.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada H3T 1J4
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
98
|
Chang KY, Tsai SY, Wu CM, Yen CJ, Chuang BF, Chang JY. Novel Phosphoinositide 3-Kinase/mTOR Dual Inhibitor, NVP-BGT226, Displays Potent Growth-Inhibitory Activity against Human Head and Neck Cancer Cells In Vitro and In Vivo. Clin Cancer Res 2011; 17:7116-26. [DOI: 10.1158/1078-0432.ccr-11-0796] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99
|
The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster. PLoS Genet 2011; 7:e1002185. [PMID: 21829374 PMCID: PMC3145617 DOI: 10.1371/journal.pgen.1002185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/20/2011] [Indexed: 11/27/2022] Open
Abstract
In female fruit flies, Sex-lethal (Sxl) turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2) mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors—the U1/U2 snRNP protein Sans-fils (Snf), the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2)d—that have been directly implicated in Sxl splicing regulation. Gene expression in eukaryotes is a complex process that occurs in several discrete steps. Some of those steps are separated into different sub-cellular compartments and thus might be expected to occur independently of one another and involve entirely distinct factors. For example pre-mRNA splicing takes place in the nucleus where it is coupled with transcription, while mRNA translation requires export to the cytoplasm and ribosome loading. We describe studies on the fruit fly Drosophila which indicate that a cytoplasmic translation initiation factor, the cap binding protein eIF4E, plays a key role in alternative splicing in the nucleus. When eIF4E activity is compromised, we observe defects in sex-specific splicing of pre-mRNAs that are regulated by the sex determination master switch gene Sex-lethal. Our data argue that eIF4E likely plays a direct role in the regulation of alternative splicing by Sex-lethal.
Collapse
|
100
|
Abstract
The AKT signalling pathway is a major regulator of protein synthesis that impinges on multiple cellular processes frequently altered in cancer, such as proliferation, cell growth, survival, and angiogenesis. AKT controls protein synthesis by regulating the multistep process of mRNA translation at every stage from ribosome biogenesis to translation initiation and elongation. Recent studies have highlighted the ability of oncogenic AKT to drive cellular transformation by altering gene expression at the translational level. Oncogenic AKT signalling leads to both global changes in protein synthesis as well as specific changes in the translation of select mRNAs. New and developing technologies are significantly advancing our ability to identify and functionally group these translationally controlled mRNAs into gene networks based on their modes of regulation. How oncogenic AKT activates ribosome biogenesis, translation initiation, and translational elongation to regulate these translational networks is an ongoing area of research. Currently, the majority of therapeutics targeting translational control are focused on blocking translation initiation through inhibition of eIF4E hyperactivity. However, it will be important to determine whether combined inhibition of ribosome biogenesis, translation initiation, and translation elongation can demonstrate improved therapeutic efficacy in tumours driven by oncogenic AKT.
Collapse
Affiliation(s)
- A C Hsieh
- Department of Urology, School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, Helen Diller Family Cancer Research Building, Room 386, 1450 3rd Street, San Francisco, CA 94158-3110, USA
| | | | | |
Collapse
|