Goto Y, Takagi N. Maternally inherited X chromosome is not inactivated in mouse blastocysts due to parental imprinting.
Chromosome Res 2000;
8:101-9. [PMID:
10780698 DOI:
10.1023/a:1009234217981]
[Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mouse embryos having an additional maternally inherited X chromosome (X(M)) invariably die before midgestation with the deficient extraembryonic ectoderm of the polar trophectoderm lineage, whereas postnatal mice having an additional paternally inherited X chromosome (X(P)) survive beyond parturition. A cytogenetic study led us to hypothesize that abnormal development of such embryos disomic for X(M) (DsX(M)) is attributable to two doses of active X(M) chromosome in extraembryonic tissues. To test the validity of this hypothesis, we examined the initial X chromosome inactivation pattern in embryos at the blastocyst stage by means of replication banding method as well as RNA FISH detecting Xist transcripts. X(P) was the only asynchronously replicating X chromosome, if any, in X(M)X(M)X(P) blastocysts, and no such allocyclic X chromosome was ever detected in X(M)X(M)Y blastocysts. In agreement with these findings, only one Xist paint signal was detected in 79% of X(M)X(M)X(P) cells, whereas no such signal was found in X(M)X(M)Y embryos. Thus, the present study supports the hypothesis that two X chromosomes remaining active in the extraembryonic cell lineages due to the maternal imprinting explain the underdevelopment of extraembryonic structures and hence early postimplantation death of DsX(M) embryos.
Collapse