51
|
Pachva MC, Lai H, Jia A, Rouleau M, Sorensen PH. Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Front Cell Dev Biol 2021; 9:726205. [PMID: 34604225 PMCID: PMC8484747 DOI: 10.3389/fcell.2021.726205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive cancer and the second most common malignant bone tumor of children and young adults. Although patients with localized disease have a survival rate of approximately 75%, the prognosis for patients with metastatic disease remains dismal (<30%) and has not improved in decades. Standard-of-care treatments include local therapies such as surgery and radiotherapy, in addition to poly-agent adjuvant chemotherapy, and are often associated with long-term disability and reduced quality of life. Novel targeted therapeutic strategies that are more efficacious and less toxic are therefore desperately needed, particularly for metastatic disease, given that the presence of metastasis remains the most powerful predictor of poor outcome in EwS. Intercellular communication within the tumor microenvironment is emerging as a crucial mechanism for cancer cells to establish immunosuppressive and cancer-permissive environments, potentially leading to metastasis. Altering this communication within the tumor microenvironment, thereby preventing the transfer of oncogenic signals and molecules, represents a highly promising therapeutic strategy. To achieve this, extracellular vesicles (EVs) offer a candidate mechanism as they are actively released by tumor cells and enriched with proteins and RNAs. EVs are membrane-bound particles released by normal and tumor cells, that play pivotal roles in intercellular communication, including cross-talk between tumor, stromal fibroblast, and immune cells in the local tumor microenvironment and systemic circulation. EwS EVs, including the smaller exosomes and larger microvesicles, have the potential to reprogram a diversity of cells in the tumor microenvironment, by transferring various biomolecules in a cell-specific manner. Insights into the various biomolecules packed in EwS EVs as cargos and the molecular changes they trigger in recipient cells of the tumor microenvironment will shed light on various potential targets for therapeutic intervention in EwS. This review details EwS EVs composition, their potential role in metastasis and in the reprogramming of various cells of the tumor microenvironment, and the potential for clinical intervention.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horton Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andy Jia
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Rouleau
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
52
|
Barroca-Ferreira J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA. Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. Int J Mol Sci 2021; 22:10012. [PMID: 34576175 PMCID: PMC8472055 DOI: 10.3390/ijms221810012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. METHODS The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. RESULTS The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of ~55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein's structural stability. CONCLUSIONS A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.
Collapse
Affiliation(s)
- Jorge Barroca-Ferreira
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Pedro Cruz-Vicente
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Marino F. A. Santos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Sandra M. Rocha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Teresa Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
| |
Collapse
|
53
|
Khanna K, Salmond N, Lynn KS, Leong HS, Williams KC. Clinical significance of STEAP1 extracellular vesicles in prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:802-811. [PMID: 33589770 PMCID: PMC8384631 DOI: 10.1038/s41391-021-00319-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/20/2020] [Accepted: 01/14/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-derived lipid bilayer enclosed structures shed from the plasma membrane by all cell types. Evidence of EV presence in biological fluids has led to considerable efforts focused on identifying their cargo and determining their utility as a non-invasive diagnostic platform for cancer. In this study, we identify circulating STEAP1 (six-transmembrane epithelial antigen of the prostate 1)-positive EVs in the plasma of healthy males and prostate cancer patients and evaluate its diagnostic and prognostic significance. METHODS STEAP1 was identified on EVs in prostate cancer patient plasma. EVs were validated using electron microscopy, Western blot, nanoparticle tracking analysis, and nanoscale flow cytometry. STEAP1-positive EVs were quantified for 121 males with prostate cancer and 55 healthy age-matched control males. An evaluation of STEAP1 in prostate cancer tissue was also performed using established prostate cancer cohort data (TCGA, MSKCC, and SU2C/PCF Dream Team). RESULTS Evaluation of STEAP1-positive EVs by nanoscale flow cytometry identified a significant increase in prostate cancer patient plasma compared to healthy males. However, no association was found between total STEAP1 EV levels and disease recurrence or overall survival. Cohort data from prostate cancer tissue also found STEAP1 to be elevated in prostate cancer while no significant association with recurrence or overall survival was identified. CONCLUSIONS STEAP1 is known to be enriched on the cells of the prostate with potential clinical significance in prostate cancer. Our results identify and quantitate STEAP1-positive EVs in plasma and provide rationale for a STEAP1 EV-based liquid biopsy as a diagnostic strategy in prostate cancer.
Collapse
Affiliation(s)
- Karan Khanna
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Nikki Salmond
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Kalan S Lynn
- Lawson Health Research Institute, London, ON, Canada
| | - Hon S Leong
- Translational Urology Research Laboratory, Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
54
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
55
|
Duarte DR, Barroca-Ferreira J, Gonçalves AM, Santos FM, Rocha SM, Pedro AQ, Maia CJ, Passarinha LA. Impact of glycerol feeding profiles on STEAP1 biosynthesis by Komagataella pastoris using a methanol-inducible promoter. Appl Microbiol Biotechnol 2021; 105:4635-4648. [PMID: 34059939 DOI: 10.1007/s00253-021-11367-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Currently, the lack of reliable strategies for the diagnosis and treatment of cancer makes the identification and characterization of new therapeutic targets a pressing matter. Several studies have proposed the Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) as a promising therapeutic target for prostate cancer. Although structural and functional studies may provide deeper insights on the role of STEAP1 in cancer, such techniques require high amounts of purified protein through biotechnological processes. Based on the results presented, this work proposes the application, for the first time, of a fed-batch profile to improve STEAP1 biosynthesis in mini-bioreactor Komagataella pastoris X-33 Mut+ methanol-induced cultures, by evaluating three glycerol feeding profiles-constant, exponential, and gradient-during the pre-induction phase. Interestingly, different glycerol feeding profiles produced differently processed STEAP1. This platform was optimized using a combination of chemical chaperones for ensuring the structural stabilization and appropriate processing of the target protein. The supplementation of culture medium with 6 % (v/v) DMSO and 1 M proline onto a gradient glycerol/constant methanol feeding promoted increased biosynthesis levels of STEAP1 and minimized aggregation events. Deglycosylation assays with peptide N-glycosidase F showed that glycerol constant feed is associated with an N-glycosylated pattern of STEAP1. The biological activity of recombinant STEAP1 was also validated, once the protein enhanced the proliferation of LNCaP and PC3 cancer cells, in comparison with non-tumoral cell cultures. This methodology could be a crucial starting point for large-scale production of active and stable conformation of recombinant human STEAP1. Thus, it could open up new strategies to unveil the structural rearrangement of STEAP1 and to better understand the biological role of the protein in cancer onset and progression.
Collapse
Affiliation(s)
- D R Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - J Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - A M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - F M Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.,Unidad de Proteomica, Centro Nacional de Biotecnologia, CSIC, Campus de Cantoblanco, Calle Darwin 3, 28049, Madrid, Spain
| | - S M Rocha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - A Q Pedro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - C J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - L A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal. .,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal. .,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
56
|
The Usefulness of STEAP Proteins in Prostate Cancer Clinical Practice. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.steap.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
57
|
Iijima K, Nakamura H, Takada K, Hayasaka N, Kubo T, Umeyama Y, Iyama S, Miyanishi K, Kobune M, Kato J. Six-transmembrane epithelial antigen of the prostate 1 accelerates cell proliferation by targeting c-Myc in liver cancer cells. Oncol Lett 2021; 22:546. [PMID: 34335918 PMCID: PMC8316717 DOI: 10.3892/ol.2021.12807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) has emerged as an ideal target in cancer therapeutics. However, the functions of STEAP1 in liver cancer remain unexplored. The current study aimed to characterize the biological roles of STEAP1 in liver cancer. STEAP1 expression was upregulated in tumor tissues, and high STEAP1 expression was associated with poor clinical outcomes in patients with liver cancer, according to several publicly available datasets. STEAP1 silencing using small interfering RNA inhibited cell proliferation and was accompanied by G1 arrest induced by the suppression of cyclin D1 and the promotion of p27. STEAP1 silencing suppressed c-Myc expression, which was identified as a component in STEAP1 signal transduction by mining publicly available datasets and was then confirmed by PCR array. In conclusion, the knockdown of STEAP1 in liver cancer cell lines led to inhibition of cell proliferation involving G1 arrest by suppressing c-Myc. The present study provides a preclinical concept for STEAP1 as a druggable target in liver cancer.
Collapse
Affiliation(s)
- Kazutaka Iijima
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Naotaka Hayasaka
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Tomohiro Kubo
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Yui Umeyama
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Satoshi Iyama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Masayoshi Kobune
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| |
Collapse
|
58
|
Zhao J, Liao Y, Miller-Little W, Xiao J, Liu C, Li X, Li X, Kang Z. STEAP4 expression in CNS resident cells promotes Th17 cell-induced autoimmune encephalomyelitis. J Neuroinflammation 2021; 18:98. [PMID: 33879167 PMCID: PMC8059164 DOI: 10.1186/s12974-021-02146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating neurological disease caused by autoimmune destruction of the myelin sheath. Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for the pathogenesis of MS. We and others have previously demonstrated that IL-17 is critical for the pathogenesis of EAE. The concentration of IL-17 is significantly higher in the sera of MS patients than in healthy controls and correlates with disease activity. Moreover, anti-IL-17 neutralizing antibody demonstrated promising efficacy in a phase II trial in MS patients, further substantiating a key pathogenic role for IL-17 in MS. While Th17 and IL-17 are emerging as a bona fide drivers for neuroinflammation, it remains unclear what effector molecule executes the inflammatory tissue destruction in Th17-driven EAE. METHODS By microarray analysis, we found STEAP4 is a downstream molecule of IL-17 signaling in EAE. We then used STEAP4 global knockout mice and STEAP4 conditional knockout mice to test its role in the pathogenesis of EAE. RESULTS Here, we report that the metalloreductase, STEAP4, is a key effector molecule that participates and contributes to the pathogenesis of Th17-mediated neuroinflammation in experimental autoimmune encephalomyelitis. STEAP4 knockout mice displayed delayed onset and reduced severity of EAE induced by active immunization. The reduced disease phenotype was not due to any impact of STEAP4 deficiency on myelin reactive T cells. In contrast, STEAP4 knockout mice were resistant to passively induced EAE, pointing to a role for STEAP4 in the effector stage of EAE. Notably, STEAP4 was only induced the spinal cord of EAE mice that received Th17 cells but not Th1 cells. Consistently, STEAP4 deficiency protected from only Th17 but not Th1-induced EAE. Finally, using Nestin-Cre STEAP4fl/fl mice, we showed that ablation of STEAP4 expression in the resident cells in the central nervous system attenuated disease severity in both active immunization and passive Th17 transfer-induced EAE. CONCLUSION In this study, we identified STEAP4 as a Th17-specific effector molecule that participates and contributes to the pathogenesis of neuroinflammation, thus potentially provide a novel target for MS therapy.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Yun Liao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - William Miller-Little
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Jianxing Xiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Caini Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Xiao Li
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA.
| | - Zizhen Kang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA. .,Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
59
|
STEAP1 facilitates metastasis and epithelial-mesenchymal transition of lung adenocarcinoma via the JAK2/STAT3 signaling pathway. Biosci Rep 2021; 40:225216. [PMID: 32515474 PMCID: PMC7300283 DOI: 10.1042/bsr20193169] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Six-transmembrane epithelial antigen of prostate-1 (STEAP1) is a relatively newly identified gene target from prostate cancer, breast cancer, and gastric cancer. However, functions of STEAP1 in lung adenocarcinoma (LUAD) are still unknown. In the present study, we explored the molecular and cellular mechanisms of STEAP1 in LUAD. Western blot and Q-PCR were conducted to detect the protein and mRNA expressions respectively. The cell proliferation was tested by CCK8 assay. The effects of STEAP1 on the metastasis and epithelial-mesenchymal transition (EMT) of LUAD were evaluated by EdU assay, wound healing assay, and transwell migratory assay. H1650, H358, HCC827, H1299, H23, A549, H1693 were selected as human LUAD cell lines in the study. Results have shown that STEAP1 expression was up-regulated in LUAD cells compared with normal lung epithelial cells. Knockdowning of STEAP1 suppressed the proliferation, migration, and invasion of LUAD epithelial cells. Importantly, after comparing the proliferation, migration, and invasion of LUAD to the corresponding control groups treated in STAT3 inhibitor ADZ1480, we found that STEAP1 regulates EMT via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. In conclusion, STEAP1 can serve as a therapeutic target, and it may have important clinical implications for LUAD treatment.
Collapse
|
60
|
Liu Z, Zhang H, Hu H, Cai Z, Lu C, Liang Q, Qian J, Wang C, Jiang L. A Novel Six-mRNA Signature Predicts Survival of Patients With Glioblastoma Multiforme. Front Genet 2021; 12:634116. [PMID: 33790946 PMCID: PMC8006298 DOI: 10.3389/fgene.2021.634116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating brain tumor and displays divergent clinical outcomes due to its high degree of heterogeneity. Reliable prognostic biomarkers are urgently needed for improving risk stratification and survival prediction. In this study, we analyzed genome-wide mRNA profiles in GBM patients derived from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify mRNA-based signatures for GBM prognosis with survival analysis. Univariate Cox regression model was used to evaluate the relationship between the expression of mRNA and the prognosis of patients with GBM. We established a risk score model that consisted of six mRNA (AACS, STEAP1, STEAP2, G6PC3, FKBP9, and LOXL1) by the LASSO regression method. The six-mRNA signature could divide patients into a high-risk and a low-risk group with significantly different survival rates in training and test sets. Multivariate Cox regression analysis confirmed that it was an independent prognostic factor in GBM patients, and it has a superior predictive power as compared with age, IDH mutation status, MGMT, and G-CIMP methylation status. By combining this signature and clinical risk factors, a nomogram can be established to predict 1-, 2-, and 3-year OS in GBM patients with relatively high accuracy.
Collapse
Affiliation(s)
- Zhentao Liu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Neurosurgery, No. 988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Hao Zhang
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zheng Cai
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, Shanghai Tong Ji University School of Medicine, Shanghai, China
| | - Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
61
|
Liang W, Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol 2021; 11:626812. [PMID: 33679721 PMCID: PMC7928394 DOI: 10.3389/fimmu.2020.626812] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cells of the innate immune system are a major component of the tumor microenvironment. They play complex and multifaceted roles in the regulation of cancer initiation, growth, metastasis and responses to therapeutics. Innate immune cells like neutrophils and macrophages are recruited to cancerous tissues by chemotactic molecules released by cancer cells and cancer-associated stromal cells. Once they reach the tumor, they can be instructed by a network of proteins, nucleic acids and metabolites to exert protumoral or antitumoral functions. Altered iron metabolism is a feature of cancer. Epidemiological studies suggest that increased presence of iron and/or iron binding proteins is associated with increased risks of cancer development. It has been shown that iron metabolism is involved in shaping the immune landscapes in inflammatory/infectious diseases and cancer-associated inflammation. In this article, we will dissect the contribution of macrophages and neutrophils to dysregulated iron metabolism in malignant cells and its impact on cancer growth and metastasis. The mechanisms involved in regulating the actions of macrophages and neutrophils will also be discussed. Moreover, we will examine the effects of iron metabolism on the phenotypes of innate immune cells. Both iron chelating and overloading agents are being explored in cancer treatment. This review highlights alternative strategies for management of iron content in cancer cells by targeting the iron donation and modulation properties of macrophages and neutrophils in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- Oncology, BioDuro LLC, San Diego, CA, United States
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
62
|
Rosellini M, Santoni M, Mollica V, Rizzo A, Cimadamore A, Scarpelli M, Storti N, Battelli N, Montironi R, Massari F. Treating Prostate Cancer by Antibody-Drug Conjugates. Int J Mol Sci 2021; 22:ijms22041551. [PMID: 33557050 PMCID: PMC7913806 DOI: 10.3390/ijms22041551] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is the most frequent malignancy in the worldwide male population; it is also one of the most common among all the leading cancer-related death causes. In the last two decades, the therapeutic scenario of metastatic castration-resistant prostate cancer has been enriched by the use of chemotherapy and androgen receptor signaling inhibitors (ARSI) and, more recently, by immunotherapy and poly(ADP–ribose) polymerase (PARP) inhibitors. At the same time, several trials have shown the survival benefits related to the administration of novel ARSIs among patients with non-castration-resistant metastatic disease along with nonmetastatic castration-resistant cancer too. Consequently, the therapeutic course of this malignancy has been radically expanded, ensuring survival benefits never seen before. Among the more recently emerging agents, the so-called “antibody–drug conjugates” (ADCs) are noteworthy because of their clinical practice changing outcomes obtained in the management of other malignancies (including breast cancer). The ADCs are novel compounds consisting of cytotoxic agents (also known as the payload) linked to specific antibodies able to recognize antigens expressed over cancer cells’ surfaces. As for prostate cancer, researchers are focusing on STEAP1, TROP2, PSMA, CD46 and B7-H3 as optimal antigens which may be targeted by ADCs. In this paper, we review the pivotal trials that have currently changed the therapeutic approach to prostate cancer, both in the nonmetastatic castration-resistant and metastatic settings. Therefore, we focus on recently published and ongoing trials designed to investigate the clinical activity of ADCs against prostate malignancy, characterizing these agents. Lastly, we briefly discuss some ADCs-related issues with corresponding strategies to overwhelm them, along with future perspectives for these promising novel compounds.
Collapse
Affiliation(s)
- Matteo Rosellini
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
- Correspondence: (M.S.); (F.M.)
| | - Veronica Mollica
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Alessandro Rizzo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Nadia Storti
- Direzione Sanitaria Azienda Sanitaria Unica Regionale, 60122 Ancona, Italy;
| | | | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesco Massari
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.R.); (V.M.); (A.R.)
- Correspondence: (M.S.); (F.M.)
| |
Collapse
|
63
|
Veach DR, Storey CM, Lückerath K, Braun K, von Bodman C, Lamminmäki U, Kalidindi T, Strand SE, Strand J, Altai M, Damoiseaux R, Zanzonico P, Benabdallah N, Pankov D, Scher HI, Scardino P, Larson SM, Lilja H, McDevitt MR, Thorek DLJ, Ulmert D. PSA-Targeted Alpha-, Beta-, and Positron-Emitting Immunotheranostics in Murine Prostate Cancer Models and Nonhuman Primates. Clin Cancer Res 2021; 27:2050-2060. [PMID: 33441295 DOI: 10.1158/1078-0432.ccr-20-3614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Most patients with prostate cancer treated with androgen receptor (AR) signaling inhibitors develop therapeutic resistance due to restoration of AR functionality. Thus, there is a critical need for novel treatment approaches. Here we investigate the theranostic potential of hu5A10, a humanized mAb specifically targeting free PSA (KLK3). EXPERIMENTAL DESIGN LNCaP-AR (LNCaP with overexpression of wildtype AR) xenografts (NSG mice) and KLK3_Hi-Myc transgenic mice were imaged with 89Zr- or treated with 90Y- or 225Ac-labeled hu5A10; biodistribution and subcellular localization were analyzed by gamma counting, PET, autoradiography, and microscopy. Therapeutic efficacy of [225Ac]hu5A10 and [90Y]hu5A10 in LNCaP-AR tumors was assessed by tumor volume measurements, time to nadir (TTN), time to progression (TTP), and survival. Pharmacokinetics of [89Zr]hu5A10 in nonhuman primates (NHP) were determined using PET. RESULTS Biodistribution of radiolabeled hu5A10 constructs was comparable in different mouse models. Specific tumor uptake increased over time and correlated with PSA expression. Treatment with [90Y]/[225Ac]hu5A10 effectively reduced tumor burden and prolonged survival (P ≤ 0.0054). Effects of [90Y]hu5A10 were more immediate than [225Ac]hu5A10 (TTN, P < 0.0001) but less sustained (TTP, P < 0.0001). Complete responses were observed in 7 of 18 [225Ac]hu5A10 and 1 of 9 mice [90Y]hu5A10. Pharmacokinetics of [89Zr]hu5A10 were consistent between NHPs and comparable with those in mice. [89Zr]hu5A10-PET visualized the NHP-prostate over the 2-week observation period. CONCLUSIONS We present a complete preclinical evaluation of radiolabeled hu5A10 in mouse prostate cancer models and NHPs, and establish hu5A10 as a new theranostic agent that allows highly specific and effective downstream targeting of AR in PSA-expressing tissue. Our data support the clinical translation of radiolabeled hu5A10 for treating prostate cancer.
Collapse
Affiliation(s)
- Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Claire M Storey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Katharina Lückerath
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California.,Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Urology, David Geffen School of Medicine, Institute of Urologic Oncology, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katharina Braun
- Department of Urology, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | | | - Urpo Lamminmäki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sven-Erik Strand
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Joanna Strand
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mohamed Altai
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadia Benabdallah
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dmitry Pankov
- Immunology Program, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Peter Scardino
- Department of Medicine, Weill Cornell Medical College, New York, New York.,Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Hans Lilja
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Daniel L J Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
| | - David Ulmert
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California. .,Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Urology, David Geffen School of Medicine, Institute of Urologic Oncology, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
64
|
Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, Lin WT, Liu J. Regulatory Roles of Six-Transmembrane Epithelial Antigen of the Prostate Family Members in the Occurrence and Development of Malignant Tumors. Front Cell Dev Biol 2021; 9:752426. [PMID: 34778263 PMCID: PMC8586211 DOI: 10.3389/fcell.2021.752426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) proteins, which include STEAP1-4 and atypical STEAP1B, contain six transmembrane domains and are located in the cell membrane. STEAPs are considered archaeal metal oxidoreductases, based on their heme groups and F420H2:NADP+ oxidoreductase (FNO)-like structures, and play an important role in cell metal metabolism. Interestingly, STEAPs not only participate in biological processes, such as molecular transport, cell cycling, immune response, and intracellular and extracellular activities, but also are closely related to the occurrence and development of several diseases, especially malignant tumors. Up to now, the expression patterns of STEAPs have been found to be diverse in different types of tumors, with controversial participation in different aspects of malignancy, such as cell proliferation, migration, invasion, apoptosis, and therapeutic resistance. It is clinically important to explore the potential roles of STEAPs as new immunotherapeutic targets for the treatment of different malignant tumors. Therefore, this review focuses on the molecular mechanism and function of STEAPs in the occurrence and development of different cancers in order to understand the role of STEAPs in cancer and provide a new theoretical basis for the treatment of diverse cancers.
Collapse
Affiliation(s)
- Wen-Jia Chen
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Lan Li
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Yi-Ke Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
- *Correspondence: Jing Liu,
| |
Collapse
|
65
|
Batool M, Berghausen EM, Zierden M, Vantler M, Schermuly RT, Baldus S, Rosenkranz S, Ten Freyhaus H. The six-transmembrane protein Stamp2 ameliorates pulmonary vascular remodeling and pulmonary hypertension in mice. Basic Res Cardiol 2020; 115:68. [PMID: 33188479 PMCID: PMC7666299 DOI: 10.1007/s00395-020-00826-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Six-transmembrane protein of prostate (Stamp2) protects from diabetes and atherosclerosis in mice via anti-inflammatory mechanisms. As chronic inflammation is a hallmark of pulmonary arterial hypertension (PAH), we investigated the role of Stamp2. Stamp2 expression was substantially reduced in the lung of humans with idiopathic PAH, as well as in experimental PAH. In Stamp2-deficient mice, hypoxia modestly aggravated pulmonary vascular remodeling and right ventricular pressure compared to WT. As endothelial cell (EC) and pulmonary arterial smooth muscle cell (PASMC) phenotypes drive remodeling in PAH, we explored the role of Stamp2. Knock-down of Stamp2 in human EC neither affected apoptosis, viability, nor release of IL-6. Moreover, Stamp2 deficiency in primary PASMC did not alter mitogenic or migratory properties. As Stamp2 deficiency augmented expression of inflammatory cytokines and numbers of CD68-positive cells in the lung, actions of Stamp2 in macrophages may drive vascular remodeling. Thus, PASMC responses were assessed following treatment with conditioned media of primary Stamp2−/− or WT macrophages. Stamp2−/− supernatants induced PASMC proliferation and migration stronger compared to WT. A cytokine array revealed CXCL12, MCP-1 and IL-6 as most relevant candidates. Experiments with neutralizing antibodies confirmed the role of these cytokines in driving Stamp2’s responses. In conclusion, Stamp2 deficiency aggravates pulmonary vascular remodeling via cross-talk between macrophages and PASMC. Despite a substantial pro-inflammatory response, the hemodynamic effect of Stamp2 deficiency is modest suggesting that additional mechanisms apart from inflammation are necessary to induce severe PAH.
Collapse
Affiliation(s)
- Mehreen Batool
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Eva M Berghausen
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Mario Zierden
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Marius Vantler
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Stephan Baldus
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Stephan Rosenkranz
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany
| | - Henrik Ten Freyhaus
- Cologne Cardiovascular Research Center (CCRC), and Center for Molecular Medicine Cologne (CMMC), Klinik III Für Innere Medizin, Herzzentrum Der Universität Zu Köln, Kerpener Str. 62, 50937, Köln, Germany.
| |
Collapse
|
66
|
Zhang Z, Hou WB, Zhang C, Tan YE, Zhang DD, An W, Pan SW, Wu WD, Chen QC, Xu HM. A research of STEAP1 regulated gastric cancer cell proliferation, migration and invasion in vitro and in vivos. J Cell Mol Med 2020; 24:14217-14230. [PMID: 33128353 PMCID: PMC7754049 DOI: 10.1111/jcmm.16038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Six‐Transmembrane Epithelial Antigene of the Prostate 1 (STEAP1) is associated with the occurrence and development of cancer. This study aimed to clarify the role of STEAP1 in gastric cancer tumour growth and metastasis, as well as its molecular mechanism of action.Statistical methods were used for clinical data analysis. Protein expression was detected using immunohistochemistry(IHC). The mRNA and protein expression in the cell cultures were detected using reverse transcription‐polymerase chain reaction(RT‐PCR) and western blot analysis. Overexpression and silencing models were constructed using plasmid and lentivirus transfection. To detect cell proliferation in vitro, Cell Counting Kit‐8(CCK‐8), flow cytometry and colony formation assays were used; transwell and wound healing assays were used to detect cell migration and invasion;For in vivo experiments, nude BALB/c mice were used for detecting subcutaneous tumorigenesis and intraperitoneal implantation. In the results,we found STEAP1 was overexpressed in gastric cancer tissues and cell lines. Single‐factor and Cox analyses showed that STEAP1 gene expression level correlated with poor prognosis. Up‐regulation of STEAP1 increased cell proliferation, migration and invasion, which decreased after STEAP1 was knocked down. These changes were achieved via the activation of the AKT/FoxO1 pathway and epithelial‐mesenchymal transformation (EMT). The in vivo animal experiments showed that STEAP1 knock down, resulted in a decrease in the subcutaneous tumour and peritoneal tumour formation.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen-Bin Hou
- Department of Gastrointestinal surgery, The First Affiliated Hospital of Sun Yat sen University, Guangzhou, China
| | - Chao Zhang
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-En Tan
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Dong Zhang
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen An
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Si-Wei Pan
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wan-di Wu
- Department of Operation room, The Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Qing-Chuan Chen
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui-Mian Xu
- Department of Oncology surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
67
|
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020; 25:E4764. [PMID: 33081383 PMCID: PMC7587605 DOI: 10.3390/molecules25204764] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| |
Collapse
|
68
|
Chen H, Xu C, Yu Q, Zhong C, Peng Y, Chen J, Chen G. Comprehensive landscape of STEAP family functions and prognostic prediction value in glioblastoma. J Cell Physiol 2020; 236:2988-3000. [PMID: 32964440 DOI: 10.1002/jcp.30060] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GBM) is the most common, malignant, and deadly primary glioma. Six-transmembrane epithelial antigen of prostate (STEAP) family is involved in tumorigenesis; here, we have explored the biological function and the prognostic value of the STEAP family in GBM. Differentially expressed STEAP genes in tumor and normal samples were screened by using The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression identified the prognosis-related genes: STEAP2 and STEAP3, which were involved in the regulation of immune response and cell cycle. Finally, a prognostic nomogram combining age, gender, chemotherapy, radiotherapy, IDH1 status, and the risk score model based on STEAP2 and STEAP3 was built and further validated in TCGA and Chinese Glioma Genome Atlas (CGGA) cohorts via concordance index and calibration plot, which suggested a favorable value for prognosis prediction. In conclusion, our results provided a comprehensive analysis of the STEAP family and a model for the prognosis prediction of GBM.
Collapse
Affiliation(s)
- Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
69
|
Oosterheert W, Reis J, Gros P, Mattevi A. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination. Acc Chem Res 2020; 53:1969-1980. [PMID: 32815713 DOI: 10.1021/acs.accounts.0c00400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ferric reductase superfamily comprises several oxidoreductases that use an intracellular electron source to reduce an extracellular acceptor substrate. NADPH oxidases (NOXs) and six-transmembrane epithelial antigen of the prostate enzymes (STEAPs) are iconic members of the superfamily. NOXs produce extracellular reactive oxygen species that exert potent bactericidal activities and trigger redox-signaling cascades that regulate cell division and differentiation. STEAPs catalyze the reduction of extracellular iron and copper which is necessary for the bioavailability of these essential elements. Both NOXs and STEAPs are present as multiple isozymes with distinct regulatory properties and physiological roles. Despite the important roles of NOXs and STEAPs in human physiology and despite their wide involvement in diseases like cancer, their mode of action at the molecular level remained incompletely understood for a long time, in part due to the absence of high-resolution models of the complete enzymes. Our two laboratories have elucidated the three-dimensional structures of NOXs and STEAPs, providing key insight into their mechanisms and evolution. The enzymes share a conserved transmembrane helical domain with an eye-catching hourglass shape. On the extracellular side, a heme prosthetic group is at the bottom of a pocket where the substrate (O2 in NOX, chelated iron or copper in STEAP) is reduced. On the intracellular side, the inner heme of NOX and the FAD of STEAP are bound to topological equivalent sites. This is a rare case where critical amino acid substitutions and local conformational changes enable a cofactor (heme vs FAD) swap between two structurally and functionally conserved scaffolds. The catalytic core of these enzymes is completed by distinct cytosolic NADPH-binding domains that are topologically unrelated (a ferredoxin reductase-like flavoprotein domain in NOX and a F420H2:NADP+-like domain in STEAP), feature different quaternary structures, and underlie specific regulatory mechanisms. Despite their differences, these domains all establish electron-transfer chains that direct the electrons from NADPH to the transmembrane domain. The multistep nature of the process and the chemical nature of the products pose considerable problems in the enzymatic assays. We learned that great care must be exerted in the validation of a candidate inhibitor. Multiple orthogonal assays are required to rule out off-target effects such as ROS-scavenging activities or nonspecific interference with the enzyme redox chain. The structural analysis of STEAP/NOX enzymes led us to further notice that their transmembrane heme-binding topology is shared by other enzymes. We found that the core domain of the cytochrome b subunits of the mitochondrial complex III and photosynthetic cytochrome b6f are closely related to NOXs and STEAPs and likely arose from the same ancestor protein. This observation expands the substrate portfolio of the superfamily since cytochromes b act on ubiquinone. The rigidly packed helices of the NOX/STEAP/cytochrome b domain contrast with the more malleable membrane proteins like ion channels or amino-acid transporters, which undergo large conformational changes to allow passage of relatively large metabolites. This notion of a rigid hourglass scaffold found an unexpected confirmation in the observation, revealed by structural comparisons, that an helical bundle identical to the NOX/STEAP/cytochrome b enzymes is featured by a de novo designed heme-binding protein, PS1. Apparently, nature and protein designers have independently converged to this fold as a versatile scaffold for heme-mediated reactions. The challenge is now to uncover the molecular mechanisms that implement the isozyme-specific regulation of the enzyme functions and develop much needed inhibitors and modulators for chemical biology and drug design studies.
Collapse
Affiliation(s)
- Wout Oosterheert
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joana Reis
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
70
|
Salicylidene acylhydrazides attenuate survival of SH-SY5Y neuroblastoma cells through affecting mitotic regulator Speedy/RINGO and ERK/MAPK-PI3K/AKT signaling. Med Oncol 2020; 37:65. [PMID: 32691165 DOI: 10.1007/s12032-020-01391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
Salicylidene acylhydrazide group synthetic compounds ME0053, ME005 and ME0192 are known for their iron chelating properties and due to these properties they are primarily used for blocking the bacterial type 3 secretory virulence system. On the other side, targeting the metabolic pathways of iron can provide new tools for cancer prognosis and treatment. Therefore, in this study, considering their iron chelating function, the effects of the compounds ME0053, ME0055 and ME0192 were investigated in SH-SY5Y neuroblastoma cell line. Iron chelating compounds are generally known to be effective in tumor development and metastasis by targeting iron in the cell. They can exert this effect through molecules such as cyclin, CDKs, as well as signaling pathways such as PI3K/AKT and ERK/MAPK. For this reason, we analyzed the effect of the iron chelating compounds of ME0053, ME0055 and ME0192 on cell viability and proliferation rate both through ERK/MAPK and PI3K/AKT signal paths, and through the oncogenic Speedy/RINGO protein that is likely to have a regulatory effect on these two signaling pathways. Apoptosis was also investigated by measuring the amount of active caspase-3, an apoptotic marker. Along with the decrease observed in the Speedy/RINGO level, it was observed that the PI3K/AKT and ERK/MAPK signaling were decreased. This suggests that ME0053, ME0055 and ME0192 compounds significantly decrease the Speedy/RINGO expression which has a regulatory effect on the ERK/MAPK and PI3K/AKT signaling. Besides, analyzing active caspase-3 levels showed that the compounds ME0053, ME0055 and ME0192 increased its level by 218%, 60% and 175% in SH-SY5Y cells, respectively. The results of this study will pave the way for better understanding of the regulation of cancer-related ERK/MAPK and PI3K/AKT pathways and the oncogenic Speedy/RINGO which potentially affects these pathways, through synthetic salicylidene acylhydrazides and their therapeutic use in cancer.
Collapse
|
71
|
Oosterheert W, Gros P. Cryo-electron microscopy structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1 (STEAP1). J Biol Chem 2020; 295:9502-9512. [PMID: 32409586 PMCID: PMC7363144 DOI: 10.1074/jbc.ra120.013690] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Indexed: 11/28/2022] Open
Abstract
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is an integral membrane protein that is highly up-regulated on the cell surface of several human cancers, making it a promising therapeutic target to manage these diseases. It shares sequence homology with three enzymes (STEAP2–STEAP4) that catalyze the NADPH-dependent reduction of iron(III). However, STEAP1 lacks an intracellular NADPH-binding domain and does not exhibit cellular ferric reductase activity. Thus, both the molecular function of STEAP1 and its role in cancer progression remain elusive. Here, we present a ∼3.0-Å cryo-EM structure of trimeric human STEAP1 bound to three antigen-binding fragments (Fabs) of the clinically used antibody mAb120.545. The structure revealed that STEAP1 adopts a reductase-like conformation and interacts with the Fabs through its extracellular helices. Enzymatic assays in human cells revealed that STEAP1 promotes iron(III) reduction when fused to the intracellular NADPH-binding domain of its family member STEAP4, suggesting that STEAP1 functions as a ferric reductase in STEAP heterotrimers. Our work provides a foundation for deciphering the molecular mechanisms of STEAP1 and may be useful in the design of new therapeutic strategies to target STEAP1 in cancer.
Collapse
Affiliation(s)
- Wout Oosterheert
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
72
|
Jiao Z, Huang L, Sun J, Xie J, Wang T, Yin X, Zhang H, Chen J. Six-transmembrane epithelial antigen of the prostate 1 expression promotes ovarian cancer metastasis by aiding progression of epithelial-to-mesenchymal transition. Histochem Cell Biol 2020; 154:215-230. [PMID: 32382787 DOI: 10.1007/s00418-020-01877-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is a severe malignant tumour of the female genital organs. Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) expression is correlated with the occurrence and progression of multiple cancers. Here, we assessed STEAP1 expression in ovarian cancer and explored the relationship between STEAP1 and ovarian cancer progression. We used immunohistochemistry and public databases to test STEAP1 expression in normal human ovarian tissues, benign ovarian tumours, and ovarian cancer. The expression of STEAP1 and epithelial-to-mesenchymal transition (EMT)-related genes was analysed using immunocytochemistry, quantitative reverse transcription polymerase chain reaction, and western blotting in ovarian cancer cell lines. Lentivirus was used to knockdown and overexpress STEAP1. Invasion, migration, growth, clonogenicity, and apoptosis were assessed using transwell assay, growth curve, plate clone formation assay, and flow cytometry. We used a tumour xenograft to verify the relationship between STEAP1 and in vivo ovarian cancer cell growth. Matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) activities were examined using Matrix metalloproteinase zymography assay. STEAP1 was highly expressed in the human ovarian cancer tissues and a highly invasive ovarian cancer cell line. Overexpression of STEAP1 was related to poor prognosis in ovarian cancer patients. Down-regulation of STEAP1 suppressed the invasion, migration, proliferation, clonogenicity, EMT progression in human ovarian cancer cells and xenograft tumour growth in vivo, but it enhanced apoptosis. In human ovarian cancer, the STEAP1 gene is highly expressed, and its function is correlated with human ovarian cancer cell metastasis and growth. STEAP1 may be a possible target for suppressing ovarian cancer metastasis.
Collapse
Affiliation(s)
- Zhi Jiao
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Lei Huang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shandong Province, Jinan, 250014, China
| | - Jiali Sun
- Department of Vascular Anomalies and Interventional Radiology, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Jie Xie
- Child Healthcare Department, Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Tiantian Wang
- Shibei District Disease Prevention and Control Center, Qingdao, 266012, China
| | - Xiu Yin
- Department of Scientific Research, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Haozheng Zhang
- Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
73
|
Czerwińska M, Bilewicz A, Kruszewski M, Wegierek-Ciuk A, Lankoff A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules 2020; 25:E1743. [PMID: 32290196 PMCID: PMC7181060 DOI: 10.3390/molecules25071743] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related deaths in Western civilization. Although localized prostate cancer can be treated effectively in different ways, almost all patients progress to the incurable metastatic castration-resistant prostate cancer. Due to the significant mortality and morbidity rate associated with the progression of this disease, there is an urgent need for new and targeted treatments. In this review, we summarize the recent advances in research on identification of prostate tissue-specific antigens for targeted therapy, generation of highly specific and selective molecules targeting these antigens, availability of therapeutic radionuclides for widespread medical applications, and recent achievements in the development of new-generation small-molecule inhibitors and antibody-based strategies for targeted prostate cancer therapy with alpha-, beta-, and Auger electron-emitting radionuclides.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Aneta Wegierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| |
Collapse
|
74
|
Chen Q, Bao Y, Burner D, Kaushal S, Zhang Y, Mendoza T, Bouvet M, Ozkan C, Minev B, Ma W. Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8 + T cell immune responses. Drug Deliv Transl Res 2020; 9:1095-1105. [PMID: 31228097 DOI: 10.1007/s13346-019-00652-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly(lactic-co-glycolic) acid (PLGA) has been successfully used in drug delivery and biomaterial applications, but very little attention has been directed towards the potential in vivo effects of peptide-loaded PLGA nanoparticles (NPs), specifically the potency of intravenous (IV) STEAP peptide-loaded PLGA-NP (nanovaccine) dosing and whether STEAP-specific CD8+ T cells directly play a key role in tumor inhibition. To address these concerns, syngeneic prostate cancer mouse models were established and treated with either mSTEAP peptide emulsified in incomplete Freund's adjuvant (IFA) via subcutaneous (SC) injection or mSTEAP peptide nanovaccine containing the same amount of peptide via IV or SC injection. Meanwhile, mice were treated with either CD8b mAb followed by nanovaccine treatment, free mSTEAP peptide, or empty PLGA-NPs. Immune responses in these mice were examined using cytotoxicity assays at 14 days after treatment. Tumor size and survival in various treatment groups were measured and monitored. The results demonstrated that mSTEAP peptide nanovaccine resulted in tumor inhibition by eliciting a significantly stronger CD8+ T cell immune response when compared with the controls. Moreover, the survival periods of mice treated with mSTEAP nanovaccine were significantly longer than those of mice treated with mSTEAP peptide emulsified in IFA or the treatment controls. Additionally, it was observed that the peptide nanovaccine was mainly distributed in the mouse liver and lungs after IV injection. These findings suggest that the peptide nanovaccine is a promising immunotherapeutic approach and offers a new opportunity for prostate cancer therapies.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
- Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - Ying Bao
- Key Laboratory for Translational Medicine, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - Danielle Burner
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sharmeela Kaushal
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yu Zhang
- Materials Science and Engineering Program, Department of Mechanical Engineering, University of California Riverside, Riverside, CA, 92521, USA
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Theresa Mendoza
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Bouvet
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cengiz Ozkan
- Materials Science and Engineering Program, Department of Mechanical Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Boris Minev
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Calidi Biotherapeutics, San Diego, CA, 92121, USA.
| | - Wenxue Ma
- Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China.
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
75
|
Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:121-147. [PMID: 31900908 DOI: 10.1007/978-3-030-32656-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.
Collapse
Affiliation(s)
| | - Dana A Emerson
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
76
|
Estradiol-17β-Induced Changes in the Porcine Endometrial Transcriptome In Vivo. Int J Mol Sci 2020; 21:ijms21030890. [PMID: 32019139 PMCID: PMC7037416 DOI: 10.3390/ijms21030890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Estradiol-17β (E2) is a key hormone regulating reproductive functions in females. In pigs, E2, as the main conceptus signal, initiates processes resulting in prolonged corpus luteum function, embryo development, and implantation. During early pregnancy the endometrium undergoes morphological and physiological transitions that are tightly related to transcriptome changes. Recently, however, the importance of E2 as a primary conceptus signal in the pig has been questionable. Thus, the aim of the present study was to determine the effects of E2 on the porcine endometrial transcriptome in vivo and to compare these effects with transcriptome profiles on day 12 of pregnancy. Microarray analysis revealed differentially expressed genes (DEGs) in response to E2 with overrepresented functional terms related to secretive functions, extracellular vesicles, cell adhesion, proliferation and differentiation, tissue rearrangements, immune response, lipid metabolism, and many others. Numerous common DEGs and processes for the endometrium on day 12 of pregnancy and E2-treated endometrium were identified. In summary, the present study is the first evidence for the effect of E2 on transcriptome profiles in porcine endometrium in vivo in the period corresponding to the maternal recognition of pregnancy. The presented results provide a valuable resource for further targeted studies considering genes and pathways regulated by conceptus-derived estrogens and their role in pregnancy establishment.
Collapse
|
77
|
Wu HT, Chen WJ, Xu Y, Shen JX, Chen WT, Liu J. The Tumor Suppressive Roles and Prognostic Values of STEAP Family Members in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9578484. [PMID: 32802887 PMCID: PMC7421016 DOI: 10.1155/2020/9578484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the expression patterns and prognostic values of STEAP family members in the occurrence and development of breast cancer. MATERIALS AND METHODS The Human Protein Atlas was used to analyze the expression level of STEAPs in human normal tissues and malignant tumors. ONCOMINE datasets were analyzed for the comparison of the STEAPs levels between malignant cancers and corresponding normal tissues. Kaplan-Meier plotter was used to analyze the prognostic value of STEAPs in breast cancer patients. RESULTS STEAPs were widely distributed in human normal tissues with diverse levels. Normally, it is predicted that STEAP1 and STEAP2 were involved in the mineral absorption process, while STEAP3 participated in the TP53 signaling pathway and iron apoptosis. The results from ONCOMINE showed downregulation of STEAP1, STEAP2, and STEAP4 in breast cancers. Survival analysis revealed that breast cancer patients with high levels of STEAP1, STEAP2, and STEAP4 had a good prognosis, while those with low expression had high overall mortality. CONCLUSION STEAP1, STEAP2, and STEAP4 are predicted to be the potential prognostic biomarkers for breast cancer patients, providing novel therapeutic strategies for them.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
| | - Jia-Xin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wen-Tian Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
78
|
Yang Q, Ji G, Li J. STEAP2 is down-regulated in breast cancer tissue and suppresses PI3K/AKT signaling and breast cancer cell invasion in vitro and in vivo. Cancer Biol Ther 2019; 21:278-291. [PMID: 31696760 DOI: 10.1080/15384047.2019.1685290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The six-transmembrane epithelial antigen of prostate 2 (STEAP2) protein was identified in advanced prostate cancer, and is highly over-expressed in various types of cancer. This study aimed to investigate the prognostic value and the function of STEAP2 in breast cancer. STEAP2 mRNA and protein expressions in breast normal and cancer tissues, breast cancer cell lines (MCF-7, BT-549, BT-474, MDA-MB-361, HCC1937, and MDA-MB-468) and normal mammary epithelial cell lines (HBL-100 and MCF-10A) were evaluated by immunohistochemistry, real time RT-qPCR and western blotting. The expression of STEAP2 in breast cancer tissues and its value of evaluating the prognosis of breast cancer patients was validated in the Public Databases (Oncomine and Kaplan-Meier plotter database). Lentiviral vectors with STEAP2 cDNA and shRNA were constructed and used to infect breast cancer cell lines and normal mammary epithelial cell line to investigate the effects of STEAP2 up- and down- regulation on the biological behavior of breast cells. The low expression of STEAP2 was detected in breast cancer tissues, which was associated with malignant phenotype and poor prognosis of breast cancer. The public databases analyses were consistent with our findings. STEAP2 up-regulation hindered cellular proliferation, invasion and metastasis abilities by inhibiting EMT process and suppressing PI3K/AKT/mTOR signaling pathway. On the other hand, STEAP2 down-regulation could promote cell proliferation and invasion by inducing EMT and activating the PI3K/AKT/mTOR signaling pathway. Collectively, STEAP2 acted as an anti-oncogene in breast cancer development, which suggested a new research objective for the future studies.
Collapse
Affiliation(s)
- Qing Yang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guoxin Ji
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jiyu Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
79
|
Danila DC, Szmulewitz RZ, Vaishampayan U, Higano CS, Baron AD, Gilbert HN, Brunstein F, Milojic-Blair M, Wang B, Kabbarah O, Mamounas M, Fine BM, Maslyar DJ, Ungewickell A, Scher HI. Phase I Study of DSTP3086S, an Antibody-Drug Conjugate Targeting Six-Transmembrane Epithelial Antigen of Prostate 1, in Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol 2019; 37:3518-3527. [PMID: 31689155 DOI: 10.1200/jco.19.00646] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is highly expressed in prostate cancers. DSTP3086S is a humanized immunoglobulin G1 anti-STEAP1 monoclonal antibody linked to the potent antimitotic agent monomethyl auristatin E. This study evaluated the safety and activity of DSTP3086S in patients with metastatic castration-resistant prostate cancer. METHODS Patients were enrolled in a 3 + 3 dose escalation study to evaluate DSTP3086S (0.3 to 2.8 mg/kg intravenously) given once every 3 weeks followed by cohort expansion at the recommended phase II dose or weekly (0.8 to 1.0 mg/kg). RESULTS Seventy-seven patients were given DSTP3086S once every 3 weeks, and seven were treated weekly. Two patients in the once-every-3-weeks dose escalation had dose-limiting grade 3 transaminitis. Grade 3 hyperglycemia and grade 4 hypophosphatemia were dose-limiting toxicities in one patient treated at 1.0 mg/kg weekly. Initial cohort expansion evaluated dosing at 2.8 mg/kg once every 3 weeks (n = 10), but frequent dose reductions led to testing of 2.4 mg/kg (n = 39) in the expansion phase. Common related adverse events (> 20%) across doses (once every 3 weeks) were fatigue, peripheral neuropathy, nausea, constipation, anorexia, diarrhea, and vomiting. DSTP3086S pharmacokinetics were linear. Among 62 patients who received > 2 mg/kg DSTP3086S once every 3 weeks, 11 (18%) demonstrated a ≥ 50% decline in prostate-specific antigen; two (6%) of 36 with measurable disease at baseline achieved a radiographic partial response; and of 27 patients with informative unfavorable baseline circulating tumor cells ≥ 5/7.5 mL of blood, 16 (59%) showed conversions to favorable circulating tumor cells < 5. No prostate-specific antigen or RECIST responses were seen with weekly dosing. CONCLUSION DSTP3086S has acceptable safety at the recommended phase II dose level of 2.4 mg/kg once every 3 weeks. Antitumor activity at doses between 2.25 and 2.8 mg/kg once every 3 weeks supports the potential benefit of treating STEAP1-expressing metastatic castration-resistant prostate cancer with an STEAP1-targeting antibody-drug conjugate.
Collapse
Affiliation(s)
- Daniel C Danila
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | | | | | - Celestia S Higano
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ari D Baron
- California Pacific Medical Center, San Francisco, CA
| | | | | | | | - Bei Wang
- Genentech, South San Francisco, CA
| | | | | | | | | | | | - Howard I Scher
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| |
Collapse
|
80
|
Carrasquillo JA, Fine BM, Pandit-Taskar N, Larson SM, Fleming SE, Fox JJ, Cheal SM, O'Donoghue JA, Ruan S, Ragupathi G, Lyashchenko SK, Humm JL, Scher HI, Gönen M, Williams SP, Danila DC, Morris MJ. Imaging Patients with Metastatic Castration-Resistant Prostate Cancer Using 89Zr-DFO-MSTP2109A Anti-STEAP1 Antibody. J Nucl Med 2019; 60:1517-1523. [PMID: 31053681 PMCID: PMC6836860 DOI: 10.2967/jnumed.118.222844] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Six-transmembrane epithelial antigen of prostate-1 (STEAP1) is a relatively newly identified target in prostate cancer. We evaluated the ability of PET/CT with 89Zr-DFO-MSTP2109A, an antibody that recognizes STEAP1, to detect lesions in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: Nineteen mCRPC patients were prospectively imaged using approximately 185 MBq/10 mg of 89Zr-DFO-MSTP2109A. 89Zr-DFO-MSTP2109A PET/CT images obtained 4-7 d after injection were compared with bone and CT scans. Uptake in lesions was measured. Fifteen patients were treated with an antibody-drug conjugate (ADC) based on MSTP2109A; ADC treatment-related data were correlated with tumor uptake by PET imaging. Bone or soft-tissue biopsy samples were evaluated. Results: No significant toxicity occurred. Excellent uptake was observed in bone and soft-tissue disease. Median SUVmax was 20.6 in bone and 16.8 in soft tissue. Sixteen of 17 lesions biopsied were positive on 89Zr-DFO-MSTP2109A, and all sites were histologically positive (1 on repeat biopsy). Bayesian analysis resulted in a best estimate of 86% of histologically positive lesions being true-positive on imaging (95% confidence interval, 75%-100%). There was no correlation between SUVmax tumor uptake and STEAP1 immunohistochemistry, survival after ADC treatment, number of ADC treatment cycles, or change in prostate-specific antigen level. Conclusion:89Zr-DFO-MSTP2109A is well tolerated and shows localization in mCRPC sites in bone and soft tissue. Given the high SUV in tumor and localization of a large number of lesions, this reagent warrants further exploration as a companion diagnostic in patients undergoing STEAP1-directed therapy.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical Center, New York, New York
- Center for Targeted Radioimmunotherapy and Diagnosis, Ludwig Center for Cancer Immunotherapy, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical Center, New York, New York
- Center for Targeted Radioimmunotherapy and Diagnosis, Ludwig Center for Cancer Immunotherapy, New York, New York
| | - Stephen E Fleming
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josef J Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah M Cheal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shutian Ruan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Govind Ragupathi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Serge K Lyashchenko
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Mithat Gönen
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Daniel C Danila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| |
Collapse
|
81
|
Utilisation of the STEAP protein family in a diagnostic setting may provide a more comprehensive prognosis of prostate cancer. PLoS One 2019; 14:e0220456. [PMID: 31393902 PMCID: PMC6687176 DOI: 10.1371/journal.pone.0220456] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer is the second most common cancer diagnosed in men worldwide; however, few patients are affected by clinically significant disease within their lifetime. Unfortunately, the means to discriminate between patients with indolent disease and those who progress to aggressive prostate cancer is currently unavailable, resulting in over-treatment of patients. We therefore aimed to determine biomarkers of prostate cancer that can be used in the clinic to aid the diagnosis and prognosis. Immunohistochemistry analysis was carried out on prostate cancer specimens with a range of Gleason scores. Samples were stained and analysed for intensity of the Seven Transmembrane Epithelial Antigen of the Prostate (STEAP)-1, -2, -3, -4 and the Divalent Metal Transporter 1 (DMT1) proteins to determine suitable biomarkers for classification of patients likely to develop aggressive prostate cancer. Additionally, these proteins were also analysed to determine whether any would be able to predict future relapse using Kaplan Meier analysis. Data generated demonstrated that the protein expression levels of STEAP2 correlated significantly with Gleason score; furthermore, STEAP4 was a significant predictor of relapse. This data indicates that STEAP2 could be potential prognostic candidate for use in combination with the current prostate cancer detection methods and the presence of STEAP4 could be an indicator of possible relapse.
Collapse
|
82
|
Sun J, Ji G, Xie J, Jiao Z, Zhang H, Chen J. Six-transmembrane epithelial antigen of the prostate 1 is associated with tumor invasion and migration in endometrial carcinomas. J Cell Biochem 2019; 120:11172-11189. [PMID: 30714206 DOI: 10.1002/jcb.28393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1), a member of the STEAP family, is a general tumor antigen. However, no information has been available to date regarding the function of STEAP1 in the progression of endometrial carcinoma. In this study, we used in vitro and in vivo strategies to prove that STEAP1 plays an important role in the progression of endometrial carcinoma. Immunohistochemistry, immunocytochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot analysis were used to detect the expression of STEAP1 in normal endometrial cells and endometrial cancer cell lines. The progression of the cell cycle, plate clone formation assay, and transwell migration and invasion assays were performed to examine the effects of STEAP1 on cell proliferation, clonogenicity, migration, and their invasive capacity. In addition, we confirmed that STEAP1 was tightly correlated with the development of tumor in vivo. The relationship between epithelial to mesenchymal transition (EMT) and STEAP1 expression was evaluated by RT-qPCR and Western blot analysis. Matrix metalloproteinase (MMP) zymography assay was used to detect the activities of MMP2 and MMP9. STEAP1 was restrictively expressed in endometrial carcinoma and downregulation of the STEAP1 gene increased proliferation and clonogenicity, as well as promoted cell migration, invasion, and the progress of EMT. STEAP1 is downregulated in endometrial carcinoma and can restrict migration and invasion of endometrial carcinoma cells. Overall, STEAP1 may be an ideal target for tumor therapy and diagnosis in the future.
Collapse
Affiliation(s)
- Jiali Sun
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Guoxin Ji
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie Xie
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Zhi Jiao
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Haozheng Zhang
- Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
83
|
Casey DL, Lin TY, Cheung NKV. Exploiting Signaling Pathways and Immune Targets Beyond the Standard of Care for Ewing Sarcoma. Front Oncol 2019; 9:537. [PMID: 31275859 PMCID: PMC6593481 DOI: 10.3389/fonc.2019.00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Ewing sarcoma (ES) family of tumors includes bone and soft tissue tumors that are often characterized by a specific translocation between chromosome 11 and 22, resulting in the EWS-FLI1 fusion gene. With the advent of multi-modality treatment including cytotoxic chemotherapy, surgery, and radiation therapy, the prognosis for patients with ES has substantially improved. However, a therapeutic plateau is now reached for both localized and metastatic disease over the last two decades. Burdened by the toxicity limits associated with the current frontline systemic therapy, there is an urgent need for novel targeted therapeutic strategies. In this review, we discuss the current treatment paradigm of ES, and explore preclinical evidence and emerging treatments directed at tumor signaling pathways and immune targets.
Collapse
Affiliation(s)
- Dana L Casey
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tsung-Yi Lin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
84
|
O'Donoghue JA, Danila DC, Pandit-Taskar N, Beylergil V, Cheal SM, Fleming SE, Fox JJ, Ruan S, Zanzonico PB, Ragupathi G, Lyashchenko SK, Williams SP, Scher HI, Fine BM, Humm JL, Larson SM, Morris MJ, Carrasquillo JA. Pharmacokinetics and Biodistribution of a [ 89Zr]Zr-DFO-MSTP2109A Anti-STEAP1 Antibody in Metastatic Castration-Resistant Prostate Cancer Patients. Mol Pharm 2019; 16:3083-3090. [PMID: 31117485 DOI: 10.1021/acs.molpharmaceut.9b00326] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A six-transmembrane epithelial antigen of prostate-1 (STEAP1) is a newly identified target in prostate cancer. The use of radio-labeled STEAP1-targeting antibodies with positron emission tomography (PET) may allow for detection of sites of metastatic prostate cancer and may refine patient selection for antigen-directed therapies. This was a prospective study in seven patients with metastatic castration-resistant prostate cancer who had at least one archival biopsy that was STEAP1-positive by immunohistochemistry. Patients received intravenous injections of ∼185 MBq and 10 mg of [89Zr]Zr-DFO-MSTP2109A, a humanized IgG1 monoclonal antibody directed against STEAP1. PET/CT images, blood samples, and whole-body counts were monitored longitudinally in six patients. Here, we report on safety, biodistribution, pharmacokinetics, dose estimates to normal tissues, and initial tumor targeting for this group of patients. There was no significant acute or subacute toxicity. Favorable biodistribution and enhanced lesion uptake (in both bone and soft tissue) were observed on imaging using a mass of 10 mg of DFO-MSTP2109A. The best lesion discrimination was seen at the latest imaging time, a median of 6 days postadministration. Pharmacokinetics showed a median serum T1/2 β of 198 h, volume of central compartment of 3.54 L (similar to plasma volume), and clearance of 19.7 mL/h. The median biologic T1/2 for whole-body retention was 469 h. The highest mean absorbed doses to normal organs (mGy/MBq) were 1.18, 1.11, 0.78, 0.73, and 0.71 for liver, heart wall, lung, kidney, and spleen, respectively. Excellent targeting of metastatic prostate sites in both bone and soft tissue was observed, with an optimal imaging time of 6 days postadministration. The liver and heart were the normal organs that experienced the highest absorbed doses. The pharmacokinetics were similar to other antibodies without major cross-reactivity with normal tissues. A more detailed analysis of lesion targeting in a larger patient population with correlation to immunohistology and standard imaging modalities has been reported.
Collapse
Affiliation(s)
| | - Daniel C Danila
- Department of Medicine , Joan and Sanford I. Weill College of Medicine of Cornell University , New York , New York 10065 , United States
| | - Neeta Pandit-Taskar
- Department of Radiology , Joan and Sanford I. Weill Cornell Medical Center , New York , New York 10065 , United States
| | | | | | | | | | | | | | | | | | - Simon P Williams
- Genentech , South San Francisco , California 94080 , United States
| | - Howard I Scher
- Department of Medicine , Joan and Sanford I. Weill College of Medicine of Cornell University , New York , New York 10065 , United States
| | - Bernard M Fine
- Genentech , South San Francisco , California 94080 , United States
| | | | - Steven M Larson
- Department of Radiology , Joan and Sanford I. Weill Cornell Medical Center , New York , New York 10065 , United States.,Center for Targeted Radioimmunotherapy and Diagnosis of the Ludwig Center for Cancer Immunotherapy , New York , New York 10065 , United States
| | - Michael J Morris
- Department of Medicine , Joan and Sanford I. Weill College of Medicine of Cornell University , New York , New York 10065 , United States
| | - Jorge A Carrasquillo
- Department of Radiology , Joan and Sanford I. Weill Cornell Medical Center , New York , New York 10065 , United States.,Center for Targeted Radioimmunotherapy and Diagnosis of the Ludwig Center for Cancer Immunotherapy , New York , New York 10065 , United States
| |
Collapse
|
85
|
A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Semin Cancer Biol 2018; 53:125-138. [DOI: 10.1016/j.semcancer.2018.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
|
86
|
Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer. Cancer Gene Ther 2018; 26:313-322. [PMID: 30401882 DOI: 10.1038/s41417-018-0056-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022]
Abstract
The over-expression of six-transmembrane epithelial antigen of the prostate 1 (STEAP1) underlies the pathogenesis of a large subset of human cancers. Expressed on the cancer cell surface, STEAP1 is an attractive target for antibody-based therapy or immunotherapy. However, its role in modulating the pathophysiology of colorectal cancer (CRC) remains relatively unexplored. In this study, we first demonstrated that the STEAP1 transcript level was significantly higher in CRC tissues than in normal colonic tissues. Of note, STEAP1 expression negatively correlated with overall survival as determined from a publicly accessible gene expression profile data set. A loss-of-function approach in cultured CRC cell lines revealed that STEAP1 silencing suppressed cell growth and increased reactive oxygen species (ROS) production, followed by apoptosis, through an intrinsic pathway. Mechanistically, the inhibition of STEAP1 was associated with decreased expression of antioxidant molecules regulated by the transcription factor, nuclear erythroid 2-related factor (NRF2), in CRC cells. Taken together, we identified high STEAP1 transcript levels leading to reduced ROS production that prevented apoptosis via the NRF2 pathway in CRC cells as a pathological mechanism in CRC. This study highlights the STEAP1-NRF2 axis as a therapeutic target for CRC and its manipulation as a novel strategy to conquer CRC.
Collapse
|
87
|
Oh YJ, Kim HY, Lee MH, Suh SH, Choi Y, Nam TG, Kwon WY, Lee SY, Yoo YH. Cilostazol Improves HFD-Induced Hepatic Steatosis by Upregulating Hepatic STAMP2 Expression through AMPK. Mol Pharmacol 2018; 94:1401-1411. [PMID: 30366981 DOI: 10.1124/mol.118.113217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly studied condition that can progress to end-stage liver disease. Although NAFLD was first described in 1980, a complete understanding of the mechanism and causes of this disease is still lacking. Six-transmembrane protein of prostate 2 (STAMP2) plays a role in integrating inflammatory and nutritional signals with metabolism. Our previous study suggested that STAMP2 may be a suitable target for treating NAFLD. In the current study, we performed a focused drug-screening and found that cilostazol could be a potential STAMP2 enhancer. Thus, we examined whether cilostazol alleviates NAFLD through STAMP2. The in vivo and in vitro pharmacological efficacies of cilostazol on STAMP2 expression and lipid accumulation were analyzed in NAFLD mice induced by high-fat diet (HFD) and in HepG2 cell lines treated by oleic acid (OA), respectively. Cilostazol increased the expression of STAMP2 through transcriptional regulation in vivo and in vitro. Cilostazol also dampened the STAMP2 downregulation caused by the HFD and by OA in vivo and in vitro, respectively. Cilostazol activated AMP-activated protein kinase (AMPK) in vivo and in vitro, and AMPK functions upstream of STAMP2, and reversed downregulation of STAMP2 expression through AMPK in the NAFLD model. Cilostazol ameliorates hepatic steatosis by enhancing hepatic STAMP2 expression through AMPK. Enhancing STAMP2 expression with cilostazol represents a potential therapeutic avenue for treatment of NAFLD.
Collapse
Affiliation(s)
- Yoo Jin Oh
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Hye Young Kim
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Mi Hwa Lee
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Sung Hwan Suh
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Yongmun Choi
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Tae-Gyu Nam
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Woo Young Kwon
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Sang Yeob Lee
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| | - Young Hyun Yoo
- Departments of Anatomy and Cell Biology (Y.J.O., H.Y.K., M.H.L., W.Y.K., Y.H.Y.), Endocrinology Medicine (S.H.S.), and Rheumatology (S.Y.L.), Dong-A University College of Medicine, Busan, Republic of Korea; Gyeonggi Bio Center, Gyeonggi-do Business and Science Accelerator, Suwon, Republic of Korea (Y.C.); and Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea (T.-G.N.)
| |
Collapse
|
88
|
Oosterheert W, van Bezouwen LS, Rodenburg RNP, Granneman J, Förster F, Mattevi A, Gros P. Cryo-EM structures of human STEAP4 reveal mechanism of iron(III) reduction. Nat Commun 2018; 9:4337. [PMID: 30337524 PMCID: PMC6194020 DOI: 10.1038/s41467-018-06817-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023] Open
Abstract
Enzymes of the six-transmembrane epithelial antigen of the prostate (STEAP) family reduce Fe3+ and Cu2+ ions to facilitate metal-ion uptake by mammalian cells. STEAPs are highly upregulated in several types of cancer, making them potential therapeutic targets. However, the structural basis for STEAP-catalyzed electron transfer through an array of cofactors to metals at the membrane luminal side remains elusive. Here, we report cryo-electron microscopy structures of human STEAP4 in absence and presence of Fe3+-NTA. Domain-swapped, trimeric STEAP4 orients NADPH bound to a cytosolic domain onto axially aligned flavin-adenine dinucleotide (FAD) and a single b-type heme that cross the transmembrane-domain to enable electron transfer. Substrate binding within a positively charged ring indicates that iron gets reduced while in complex with its chelator. These molecular principles of iron reduction provide a basis for exploring STEAPs as therapeutic targets. Enzymes of the six-transmembrane epithelial antigen of the prostate (STEAP) family reduce Fe3+ and Cu2+ ions to facilitate metal-ion uptake by mammalian cells. Here, authors employ single-particle cryo-EM to gain insights into the molecular principles of iron reduction by human STEAP4 .
Collapse
Affiliation(s)
- Wout Oosterheert
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Laura S van Bezouwen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Remco N P Rodenburg
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Joke Granneman
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, 27100, Pavia, Italy
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
89
|
Xie J, Yang Y, Sun J, Jiao Z, Zhang H, Chen J. STEAP1 Inhibits Breast Cancer Metastasis and Is Associated With Epithelial-Mesenchymal Transition Procession. Clin Breast Cancer 2018; 19:e195-e207. [PMID: 30253922 DOI: 10.1016/j.clbc.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Six-transmembrane epithelial antigen of prostate 1 (STEAP1) is a cell surface antigen overexpressed in multiple cancers and is associated with malignancy and disease prognosis. The aims of this study were to evaluate STEAP1 expression in breast cancer and to determine the mechanisms involved. METHODS STEAP1 expression was compared in normal breast tissue (n = 40), benign fibroadenoma (n = 52), and primary breast cancer (n = 211) using immunohistochemistry. Quantitative real-time polymerase chain reaction, Western blot analysis, and immunocytochemistry were used to evaluate STEAP1 expression in 3 breast cancer cell lines and in a normal mammary epithelial cell line. STEAP1 expression and its prognostic value in breast cancer were verified using the Oncomine and Kaplan-Meier Plotter databases. Transfection of cells to up-regulate or knock down STEAP1 expression was used to determine the effect of STEAP1 on cell invasion and proliferation, and to evaluate its relationship to epithelial-mesenchymal transition (EMT) progression. RESULTS STEAP1 expression was lower in breast cancers cells, and low expression was associated with a malignant phenotype and poor prognosis. Analysis of public databases supported our conclusions. Knockdown of STEAP1 expression enhanced cellular invasion and migration abilities, increased expression of EMT-related genes MMP2, MMP9, MMP13, VIM, and CDH2, and decreased CDH1 expression. Enhanced STEAP1 expression significantly inhibited cellular invasion and migration abilities, decreased expression of the EMT-related genes, and increased CDH1 expression. Up-regulation or knockdown of STEAP1 had little effect on cellular proliferation. CONCLUSION STEAP1 was down-regulated in breast cancer, inhibited metastasis of breast cancer, and hampered the levels of EMT markers, which thus implicated STEAP1 in the suppression of EMT.
Collapse
Affiliation(s)
- Jie Xie
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Yan Yang
- Health Examination Center, Qilu Hospital, Shandong University, Jinan, China
| | - Jiali Sun
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Zhi Jiao
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China
| | - Haozheng Zhang
- Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Shandong University, Jinan, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Shandong University, Jinan, China.
| |
Collapse
|
90
|
Wu YY, Jiang JN, Fang XD, Ji FJ. STEAP1 Regulates Tumorigenesis and Chemoresistance During Peritoneal Metastasis of Gastric Cancer. Front Physiol 2018; 9:1132. [PMID: 30246786 PMCID: PMC6110897 DOI: 10.3389/fphys.2018.01132] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
In China, majority of the mortality in gastric cancer are associated with peritoneal metastasis. Since most gastric tumors are metastatic at initial diagnosis, the treatment of gastric cancer is limited to radical resection. Therefore, it is imperative to identify diagnostic and prognostic biomarkers. From 2014 to 2015, 20 patients were enrolled in the study. To search translationally upregulated genes in the context of epithelial to mesenchymal transition (EMT), polysome profiling was performed. The MTT, migration, and invasion assay were conducted to determine cell proliferation, migration, and invasion ability respectively. Experiments of gain and loss of function were performed using the overexpression plasmid, siRNA, and shRNA. Xenograft assay was established using nude mice to explore the role of targets translationally upregulated gene in vivo. Polysome profiling defined the landscape of translationally regulated gene products with differential expression between non-metastatic and metastatic cohorts. Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) was found to be the most translationally upregulated gene product in either experimental groups. STEAP1 was found to be required for cell proliferation, in vitro migration and invasion, and in vivo tumorigenesis. RNAi-mediated silencing of STEAP1 potentiated chemosensitivity of the MKN45 cells to docetaxel treatment, highlighting the importance of STEAP1 as a novel biomarker in gastric cancer patients with peritoneal metastasis. STEAP1 is thus induced translationally and its expression promotes proliferation, migration, invasiveness, and tumorigenicity of gastric cancer. STEAP1 can be a potent candidate for designing of targeted therapy.
Collapse
Affiliation(s)
| | | | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Jian Ji
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
91
|
Han M, Xu R, Wang S, Yang N, Ni S, Zhang Q, Xu Y, Zhang X, Zhang C, Wei Y, Ji J, Huang B, Zhang D, Chen A, Li W, Bjerkvig R, Li X, Wang J. Six-Transmembrane Epithelial Antigen of Prostate 3 Predicts Poor Prognosis and Promotes Glioblastoma Growth and Invasion. Neoplasia 2018; 20:543-554. [PMID: 29730475 PMCID: PMC5994776 DOI: 10.1016/j.neo.2018.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/20/2017] [Accepted: 04/02/2018] [Indexed: 01/20/2023] Open
Abstract
Recent evidence suggests that dysregulation of iron regulatory factors may play essential roles in cancer pathophysiology. Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is a metalloreductase, which is vital for cellular iron uptake and homeostasis. However, the clinical significance and function of STEAP3 in the development of human gliomas remain unclear. Through analysis of publicly available databases, we found that STEAP3 was highly expressed in malignant gliomas, especially in the mesenchymal glioma molecular subtype and isocitrate dehydrogenase 1/2 (IDH1/2) wild-type gliomas. Expression levels of STEAP3 in gliomas correlated inversely with patient overall survival (OS) and served as an independent prognostic marker by multivariate Cox regression analysis. In functional assays performed with RNA knockdown, loss of STEAP3 attenuated aggressive phenotypes in glioma cells, including cell proliferation, invasion, and sphere formation in vitro and tumor growth in vivo. Finally, STEAP3 drives these activities by inducing mesenchymal transition, promoting transferrin receptor (TfR) expression, and activating STAT3-FoxM1 axis signaling. Taken together, these results indicate that STEAP3 functions as an oncogenic mediator in glioma progression and is thus a potential therapeutic target for the treatment of the disease.
Collapse
Affiliation(s)
- Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China; K G Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China; Brain and Mind Center, Sydney Medical School and Faculty of Health Sciences, University of Sydney, Sydney, NSW, 2050, Australia
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China; Department of Neurosurgery, Jining No.1 People's Hospital, Jiankang Road, Jining, 272011, China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China
| | - Rolf Bjerkvig
- K G Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, 250012, China; K G Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| |
Collapse
|
92
|
Burnell SEA, Spencer-Harty S, Howarth S, Bodger O, Kynaston H, Morgan C, Doak SH. STEAP2 Knockdown Reduces the Invasive Potential of Prostate Cancer Cells. Sci Rep 2018; 8:6252. [PMID: 29674723 PMCID: PMC5908900 DOI: 10.1038/s41598-018-24655-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Six-transmembrane epithelial antigen of the prostate-2 (STEAP2) expression is increased in prostate cancer when compared to normal prostate, suggesting STEAP2 may drive prostate cancer progression. This study aimed to establish the functional role of STEAP2 in prostate tumourigenesis and evaluate if its knockdown resulted in reduced invasive potential of prostate cancer cells. PC3 and LNCaP cells were transfected with STEAP2 siRNA and proliferation, migration, invasion and gene expression analyses were performed. STEAP2 immunohistochemistry was applied to assess the protein expression and localisation according to Gleason score in 164 prostate cancer patients. Invasion significantly decreased in both cell lines following STEAP2 knockdown. PC3 proliferation and migration capacity significantly reduced, while LNCaP cell morphology and growth characteristics were altered. Additionally, STEAP2 downstream targets associated with driving invasion were identified as MMP3, MMP10, MMP13, FGFR4, IL1β, KiSS1 and SERPINE1 in PC3 cells and, MMP7 in LNCaP cells, with CD82 altered in both. In patient tissues, STEAP2 expression was significantly increased in prostate cancer samples and this significantly correlated with Gleason score. These data demonstrate that STEAP2 drives aggressive prostate cancer traits by promoting proliferation, migration and invasion and significantly influencing the transcriptional profile of ten genes underlying the metastatic cascade.
Collapse
Affiliation(s)
- Stephanie E A Burnell
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Samantha Spencer-Harty
- Cellular Pathology, Abertawe Bro Morgannwg University Health Board, Singleton Hospital, Sketty Lane, Sketty, Swansea, SA2 8QA, Wales, UK
| | - Suzie Howarth
- Histopathology, Abertawe Bro Morgannwg University Health Board, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea, SA6 6NL, Wales, UK
| | - Owen Bodger
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Howard Kynaston
- Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, Wales, UK
| | - Claire Morgan
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
93
|
Atherton MJ, Stephenson KB, Tzelepis F, Bakhshinyan D, Nikota JK, Son HH, Jirovec A, Lefebvre C, Dvorkin-Gheva A, Ashkar AA, Wan Y, Stojdl DF, Belanger EC, Breau RH, Bell JC, Saad F, Singh SK, Diallo JS, Lichty BD. Transforming the prostatic tumor microenvironment with oncolytic virotherapy. Oncoimmunology 2018; 7:e1445459. [PMID: 29900060 PMCID: PMC5993491 DOI: 10.1080/2162402x.2018.1445459] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) was estimated to have the second highest global incidence rate for male non-skin tumors and is the fifth most deadly in men thus mandating the need for novel treatment options. MG1-Maraba is a potent and versatile oncolytic virus capable of lethally infecting a variety of prostatic tumor cell lines alongside primary PCa biopsies and exerts direct oncolytic effects against large TRAMP-C2 tumors in vivo. An oncolytic immunotherapeutic strategy utilizing a priming vaccine and intravenously administered MG1-Maraba both expressing the human six-transmembrane antigen of the prostate (STEAP) protein generated specific CD8+ T-cell responses against multiple STEAP epitopes and resulted in functional breach of tolerance. Treatment of mice with bulky TRAMP-C2 tumors using oncolytic STEAP immunotherapy induced an overt delay in tumor progression, marked intratumoral lymphocytic infiltration with an active transcriptional profile and up-regulation of MHC class I. The preclinical data generated here offers clear rationale for clinically evaluating this approach for men with advanced PCa.
Collapse
Affiliation(s)
- Matthew J. Atherton
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | | | - Fanny Tzelepis
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | - Hwan Hee Son
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Anna Jirovec
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Charles Lefebvre
- Stojdl Lab, CHEO Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - David F. Stojdl
- Turnstone Biologics, Ottawa, Canada
- Stojdl Lab, CHEO Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Eric C. Belanger
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | | | - John C. Bell
- Turnstone Biologics, Ottawa, Canada
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Fred Saad
- Department of Surgery, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada
| | - Sheila K. Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jean-Simone Diallo
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Brian D. Lichty
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
- Turnstone Biologics, Ottawa, Canada
| |
Collapse
|
94
|
Gomes IM, Rocha SM, Gaspar C, Alvelos MI, Santos CR, Socorro S, Maia CJ. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens. Med Oncol 2018; 35:40. [PMID: 29464393 DOI: 10.1007/s12032-018-1100-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is overexpressed in numerous types of tumors, especially in prostate cancer. STEAP1 is located in the plasma membrane of epithelial cells and may play an important role in inter- and intracellular communication. Several studies suggest STEAP1 as a potential biomarker and an immunotherapeutic target for prostate cancer. However, the role of STEAP1 in cell proliferation and apoptosis remains unclear. Therefore, the role of STEAP1 in prostate cancer cells proliferation and apoptosis was determined by inducing STEAP1 gene knockdown in LNCaP cells. In addition, the effect of DHT on the proliferation of LNCaP cells knocked down for STEAP1 gene was evaluated. Our results demonstrated that silencing the STEAP1 gene reduces LNCaP cell viability and proliferation, while inducing apoptosis. In addition, we showed that the cellular and molecular effects of STEAP1 gene knockdown may be independent of DHT treatment, and blocking STEAP1 may reveal to be an appropriate strategy to activate apoptosis in cancer cells, as well as to prevent the proliferative and anti-apoptotic effects of DHT in prostate cancer.
Collapse
Affiliation(s)
- Inês Margarida Gomes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sandra Moreira Rocha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carlos Gaspar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Cecília Reis Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Cláudio Jorge Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
95
|
Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A 2017; 114:E9608-E9617. [PMID: 29078383 DOI: 10.1073/pnas.1712946114] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder and is a major risk factor for colorectal cancer (CRC). Hypoxia is a feature of IBD and modulates cellular and mitochondrial metabolism. However, the role of hypoxic metabolism in IBD is unclear. Because mitochondrial dysfunction is an early hallmark of hypoxia and inflammation, an unbiased proteomics approach was used to assess the mitochondria in a mouse model of colitis. Through this analysis, we identified a ferrireductase: six-transmembrane epithelial antigen of prostate 4 (STEAP4) was highly induced in mouse models of colitis and in IBD patients. STEAP4 was regulated in a hypoxia-dependent manner that led to a dysregulation in mitochondrial iron balance, enhanced reactive oxygen species production, and increased susceptibility to mouse models of colitis. Mitochondrial iron chelation therapy improved colitis and demonstrated an essential role of mitochondrial iron dysregulation in the pathogenesis of IBD. To address if mitochondrial iron dysregulation is a key mechanism by which inflammation impacts colon tumorigenesis, STEAP4 expression, function, and mitochondrial iron chelation were assessed in a colitis-associated colon cancer model (CAC). STEAP4 was increased in human CRC and predicted poor prognosis. STEAP4 and mitochondrial iron increased tumor number and burden in a CAC model. These studies demonstrate the importance of mitochondrial iron homeostasis in IBD and CRC.
Collapse
|
96
|
Characterization of epithelial-mesenchymal transition intermediate/hybrid phenotypes associated to resistance to EGFR inhibitors in non-small cell lung cancer cell lines. Oncotarget 2017; 8:103340-103363. [PMID: 29262566 PMCID: PMC5732732 DOI: 10.18632/oncotarget.21132] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence points to a key role played by epithelial-mesenchymal transition (EMT) in cancer progression and drug resistance. In this study, we used wet and in silico approaches to investigate whether EMT phenotypes are associated to resistance to target therapy in a non-small cell lung cancer model system harboring activating mutations of the epidermal growth factor receptor. The combination of different analysis techniques allowed us to describe intermediate/hybrid and complete EMT phenotypes respectively in HCC827- and HCC4006-derived drug-resistant human cancer cell lines. Interestingly, intermediate/hybrid EMT phenotypes, a collective cell migration and increased stem-like ability associate to resistance to the epidermal growth factor receptor inhibitor, erlotinib, in HCC827 derived cell lines. Moreover, the use of three complementary approaches for gene expression analysis supported the identification of a small EMT-related gene list, which may have otherwise been overlooked by standard stand-alone methods for gene expression analysis.
Collapse
|
97
|
Liang Y, Xing X, Beamer MA, Swindell WR, Sarkar MK, Roberts LW, Voorhees JJ, Kahlenberg JM, Harms PW, Johnston A, Gudjonsson JE. Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. J Allergy Clin Immunol 2016; 139:1217-1227. [PMID: 27884600 DOI: 10.1016/j.jaci.2016.10.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pustular skin disorders are a category of difficult-to-treat and potentially life-threatening conditions that involve the appearance of neutrophil-rich pustules. The molecular basis of most pustular skin conditions has remained unknown. OBJECTIVE We sought to investigate the molecular basis of 3 pustular skin disorders: generalized pustular psoriasis (GPP), palmoplantar pustulosis (PPP), and acute generalized exanthematous pustulosis (AGEP). METHODS Microarray analyses were performed to profile genome-wide gene expression of skin biopsy specimens obtained from patients with GPP, PPP, or AGEP and healthy control subjects. Functional enrichment, gene network, and k-means clustering analyses were used to identify molecular pathways dysregulated in patients with these disorders. Immunohistochemistry and immunofluorescence were used to determine protein localization. Quantitative RT-PCR and ELISA were used to determine transcript and secreted cytokine levels. Small interfering RNA was used to decrease transcript levels. RESULTS Molecules and pathways related to neutrophil chemotaxis emerged as common alterations in patients with GPP, PPP, and AGEP, which is consistent with the pustular phenotypes. Expression of two 6-transmembrane epithelial antigens of the prostate (STEAP) proteins, STEAP1 and STEAP4, was increased in patients' skin and colocalized with IL-36γ around neutrophilic pustules. STEAP1/4 expression clustered with and positively correlated with that of IL-1, the IL-36 family proteins, and CXCL1/8. STEAP4 expression was activated by cytokines and suppressed by inhibition of mitogen-activated protein kinase kinase 1/2, whereas STEAP1 expression appeared less prone to such dynamic regulation. Importantly, STEAP1/4 knockdown resulted in impaired induction of a broad spectrum of proinflammatory cytokines, including IL-1, IL-36, and the neutrophil chemotaxins CXCL1 and CXCL8. STEAP1/4 knockdown also reduced the ability of keratinocytes to induce neutrophil chemotaxis. CONCLUSION Transcriptomic changes in 3 pustular skin disorders, GPP, PPP, and AGEP, converged on neutrophil chemotaxis and diapedesis and cytokines known to drive neutrophil-rich inflammatory processes, including IL-1 and members of the IL-36 family. STEAP1 and STEAP4 positively regulate the induction of proinflammatory neutrophil-activating cytokines.
Collapse
Affiliation(s)
- Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Maria A Beamer
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Mich
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | |
Collapse
|
98
|
Kim K, Mitra S, Wu G, Berka V, Song J, Yu Y, Poget S, Wang DN, Tsai AL, Zhou M. Six-Transmembrane Epithelial Antigen of Prostate 1 (STEAP1) Has a Single b Heme and Is Capable of Reducing Metal Ion Complexes and Oxygen. Biochemistry 2016; 55:6673-6684. [PMID: 27792302 DOI: 10.1021/acs.biochem.6b00610] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
STEAP1, six-transmembrane epithelial antigen of prostate member 1, is strongly expressed in several types of cancer cells, particularly in prostate cancer, and inhibition of its expression reduces the rate of tumor cell proliferation. However, the physiological function of STEAP1 remains unknown. Here for the first time, we purified a mammalian (rabbit) STEAP1 at a milligram level, permitting its high-quality biochemical and biophysical characterizations. We found that STEAP1 likely assembles as a homotrimer and forms a heterotrimer when co-expressed with STEAP2. Each STEAP1 protomer binds one heme prosthetic group that is mainly low-spin with a pair of histidine axial ligands, with small portions of high-spin and P450-type heme. In its ferrous state, STEAP1 is capable of reducing transition metal ion complexes of Fe3+ and Cu2+. Ferrous STEAP1 also reacts readily with O2 through an outer sphere redox mechanism. Kinetics with all three substrates are biphasic with ∼80 and ∼20% for the fast and slow phases, respectively, in line with its heme heterogeneity. STEAP1 retained a low level of bound FAD during purification, and the binding equilibrium constant, KD, was ∼30 μM. These results highlight STEAP as a novel metal reductase and superoxide synthase and establish a solid basis for further research into understanding how STEAP1 activities may affect cancer progression.
Collapse
Affiliation(s)
- Kwangsoo Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston, Texas 77030, United States
| | - Sharmistha Mitra
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston, Texas 77030, United States
| | - Gang Wu
- Division of Hematology, Department of Internal Medicine, University of Texas-McGovern Medical School , Houston, Texas 77030, United States
| | - Vladimir Berka
- Division of Hematology, Department of Internal Medicine, University of Texas-McGovern Medical School , Houston, Texas 77030, United States
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine , New York, New York 10016, United States
| | - Ye Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston, Texas 77030, United States.,Institute of Medical Sciences and Department of Pharmacology, Shanghai Jiao Tong University School of Medicine , Shanghai 200025, China
| | - Sebastien Poget
- Department of Chemistry, College of Staten Island , Staten Island, New York 10314, United States
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine , New York, New York 10016, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, University of Texas-McGovern Medical School , Houston, Texas 77030, United States
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston, Texas 77030, United States
| |
Collapse
|
99
|
Casellas J, Cañas-Álvarez JJ, González-Rodríguez A, Puig-Oliveras A, Fina M, Piedrafita J, Molina A, Díaz C, Baró JA, Varona L. Bayesian analysis of parent-specific transmission ratio distortion in seven Spanish beef cattle breeds. Anim Genet 2016; 48:93-96. [PMID: 27650416 DOI: 10.1111/age.12509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 01/09/2023]
Abstract
Transmission ratio distortion (TRD) is the departure from the expected Mendelian ratio in offspring, a poorly investigated biological phenomenon in livestock species. Given the current availability of specific parametric methods for the analysis of segregation data, this study focused on the screening of TRD in 602 402 single nucleotide polymorphisms covering all autosomal chromosomes in seven Spanish beef cattle breeds. On average, 0.13% (n = 786) and 0.01% (n = 29) of genetic markers evidenced sire- or dam-specific TRD respectively. There were no single nucleotide polymorphisms accounting for both sire- and dam-specific TRD at the same time, and only one marker (rs43147474) accounted for (sire-specific) TRD in all seven breeds. It must be noted that rs43147474 is located in the fourth intronic region of the GTP-binding protein 10 gene, and this locus has been previously linked to the maintenance of mitochondria and nucleolar architectures. Alternatively, other candidate genes surround this hot-spot for sire-specific TRD in the cattle genome, and they are related to embryonic and postnatal lethality as well as prostate cancer, among others. This research characterized the distribution of TRD in the bovine genome, highlighting heterogeneous results when comparing across breeds.
Collapse
Affiliation(s)
- J Casellas
- Grup de Recerca en Millora Genètica Molecular Veterinària, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - J J Cañas-Álvarez
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A González-Rodríguez
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - A Puig-Oliveras
- Grup de Recerca en Millora Genètica Molecular Veterinària, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - M Fina
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - J Piedrafita
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A Molina
- MERAGEM, Universidad de Córdoba, 14071, Córdoba, Spain
| | - C Díaz
- Departamento de Mejora Genética Animal, INIA, 28040, Madrid, Spain
| | - J A Baró
- Departamento de Ciencias Agroforestales, Universidad de Valladolid, 34004, Palencia, Spain
| | - L Varona
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Zaragoza, Spain
| |
Collapse
|
100
|
Lui GYL, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget 2016; 6:18748-79. [PMID: 26125440 PMCID: PMC4662454 DOI: 10.18632/oncotarget.4349] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/12/2015] [Indexed: 12/30/2022] Open
Abstract
Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer.
Collapse
Affiliation(s)
- Goldie Y L Lui
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Zaklina Kovacevic
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Vera Richardson
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Angelica M Merlot
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|