51
|
Souza JB, Tsantarlis K, Tonelli RR. Oxygen-dependent regulation of permeability in low resistance intestinal epithelial cells infected with Giardia lamblia. Exp Parasitol 2022; 240:108329. [PMID: 35868574 DOI: 10.1016/j.exppara.2022.108329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Intestinal epithelial cells (IECs) reside in a highly anaerobic environment that is subject to daily fluctuations in partial oxygen pressure (pO2), depending on intestinal tissue perfusion. This condition, known as physiological hypoxia, has a major impact on the maintenance of gut homeostasis, such as effects on the integrity and function of the intestinal epithelial barrier. Giardia lamblia is a microaerophilic protozoan parasite that infects and colonizes the small intestine of its host, causing watery diarrhea. The disease, known as giardiasis, is associated with enhanced intestinal permeability and disruption or reorganization of tight junction (TJ) proteins between IECs. Given the central role of oxygen in gut homeostasis, in this study, we aimed to evaluate whether pO2 affects intestinal permeability (flux of ions and macromolecules) and TJ protein expression in human IECs during G. lamblia infection. Using human cell lines HuTu-80 and Caco-2 as models of "loose" (low resistance) and "tight" (high resistance) intestines, respectively, we elucidated that low pO2 drives intestinal barrier dysfunction in IECs infected with trophozoites through dephosphorylation of protein kinase C (PKC α/β II). Additionally, we demonstrated that IECs infected with trophozoites in the presence of a pharmacological PKC activator (phorbol 12-myristate 13-acetate) partially restored the barrier function, which was correlated with increased protein expression levels of zonula occludens (ZO)-2 and occludin. Collectively, these results support the emerging theory that molecular oxygen impacts gut homeostasis during Giardia infection via direct host signaling pathways. These findings further our knowledge regarding Giardia-host interactions and the pathophysiological mechanisms of human giardiasis.
Collapse
Affiliation(s)
- Juliana Bizarri Souza
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil
| | - Katherine Tsantarlis
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil
| | - Renata Rosito Tonelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil; Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09913-030, Diadema, SP, Brazil.
| |
Collapse
|
52
|
Fagundes RR, Bourgonje AR, Hu S, Barbieri R, Jansen BH, Sinnema N, Blokzijl T, Taylor CT, Weersma RK, Faber KN, Dijkstra G. HIF1α-Dependent Induction of TFRC by a Combination of Intestinal Inflammation and Systemic Iron Deficiency in Inflammatory Bowel Disease. Front Physiol 2022; 13:889091. [PMID: 35755436 PMCID: PMC9214203 DOI: 10.3389/fphys.2022.889091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/20/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Aims: Iron deficiency (ID) is a frequent extra-intestinal manifestation in patients with Inflammatory Bowel Disease (IBD), who often do not respond to iron supplementation. Iron is a cofactor for hydroxylases that suppress the hypoxia-inducible factor-1α (HIF1α), a transcription factor regulating iron homeostasis. We hypothesized that iron deficiency affects mucosal HIF1α activity in IBD. Methods: IBD patients (n = 101) were subdivided based on iron status (ferritin levels or transferrin saturation) and systemic inflammation (C-reactive protein levels). 154 corresponding ileal and colonic biopsies were analyzed for differential expression of 20 HIF1α pathway-associated genes and related to iron and inflammation status. In vitro expression of selected HIF1α pathway genes were analyzed in wild-type and HIF1A-null Caco-2 cells. Results: Gene expression of the mucosal HIF1α pathway was most affected by intestinal location and inflammatory status. Especially, ileal mucosal TFRC expression, encoding the transferrin receptor TFR1, was increased in inflamed tissue (p < 0.001), and further enhanced in ID. Accordingly, TFRC expression in inflamed tissue associated negatively with serum iron levels, which was not observed in the non-inflamed mucosa. The HIF1α pathway agonist DMOG increased TFRC expression in Caco-2 cells, which was blunted in HIF1A-null cells. Conclusion: We demonstrate that inflammation and anatomical location primarily determine HIF1α pathway activation and downstream TFRC expression in the intestinal mucosa. IBD patients with ID may benefit from treatment with HIF1α-agonists by 1) increasing TFRC-mediated iron absorption in non-inflamed tissue and 2) decreasing mucosal inflammation, thereby improving their responsiveness to oral iron supplementation.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ruggero Barbieri
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nienke Sinnema
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
53
|
McGrath CJ, Laveckis E, Bell A, Crost E, Juge N, Schüller S. Development of a novel human intestinal model to elucidate the effect of anaerobic commensals on Escherichia coli infection. Dis Model Mech 2022; 15:275170. [PMID: 35302159 PMCID: PMC9066490 DOI: 10.1242/dmm.049365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 01/01/2023] Open
Abstract
The gut microbiota plays a crucial role in protecting against enteric infection. However, the underlying mechanisms are largely unknown owing to a lack of suitable experimental models. Although most gut commensals are anaerobic, intestinal epithelial cells require oxygen for survival. In addition, most intestinal cell lines do not produce mucus, which provides a habitat for the microbiota. Here, we have developed a microaerobic, mucus-producing vertical diffusion chamber (VDC) model and determined the influence of Limosilactobacillus reuteri and Ruminococcus gnavus on enteropathogenic Escherichia coli (EPEC) infection. Optimization of the culture medium enabled bacterial growth in the presence of mucus-producing T84/LS174T cells. Whereas L. reuteri diminished EPEC growth and adhesion to T84/LS174T and mucus-deficient T84 epithelia, R. gnavus only demonstrated a protective effect in the presence of LS174T cells. Reduced EPEC adherence was not associated with altered type III secretion pore formation. In addition, co-culture with L. reuteri and R. gnavus dampened EPEC-induced interleukin 8 secretion. The microaerobic mucin-producing VDC system will facilitate investigations into the mechanisms underpinning colonization resistance and aid the development of microbiota-based anti-infection strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Conor J. McGrath
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Edgaras Laveckis
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Andrew Bell
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Emmanuelle Crost
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Nathalie Juge
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Stephanie Schüller
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK,Author for correspondence ()
| |
Collapse
|
54
|
Schubert C, Unden G. C 4-Dicarboxylates as Growth Substrates and Signaling Molecules for Commensal and Pathogenic Enteric Bacteria in Mammalian Intestine. J Bacteriol 2022; 204:e0054521. [PMID: 34978458 PMCID: PMC9017328 DOI: 10.1128/jb.00545-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C4-dicarboxylates (C4-DC) l-aspartate and l-malate have been identified as playing an important role in the colonization of mammalian intestine by enteric bacteria, such as Escherichia coli and Salmonella enterica serovar Typhimurium, and succinate as a signaling molecule for host-enteric bacterium interaction. Thus, endogenous and exogenous fumarate respiration and related functions are required for efficient initial growth of the bacteria. l-Aspartate represents a major substrate for fumarate respiration in the intestine and a high-quality substrate for nitrogen assimilation. During nitrogen assimilation, DcuA catalyzes an l-aspartate/fumarate antiport and serves as a nitrogen shuttle for the net uptake of ammonium only, whereas DcuB acts as a redox shuttle that catalyzes the l-malate/succinate antiport during fumarate respiration. The C4-DC two-component system DcuS-DcuR is active in the intestine and responds to intestinal C4-DC levels. Moreover, in macrophages and in mice, succinate is a signal that promotes virulence and survival of S. Typhimurium and pathogenic E. coli. On the other hand, intestinal succinate is an important signaling molecule for the host and activates response and protective programs. Therefore, C4-DCs play a major role in supporting colonization of enteric bacteria and as signaling molecules for the adaptation of host physiology.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
55
|
Chen T, Wagner AS, Reynolds TB. When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ß(1,3)-Glucan Exposure in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:842501. [PMID: 36908584 PMCID: PMC10003681 DOI: 10.3389/ffunb.2022.842501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
Abstract
Candida spp. are an important source of systemic and mucosal infections in immune compromised populations. However, drug resistance or toxicity has put limits on the efficacy of current antifungals. The C. albicans cell wall is considered a good therapeutic target due to its roles in viability and fungal pathogenicity. One potential method for improving antifungal strategies could be to enhance the detection of fungal cell wall antigens by host immune cells. ß(1,3)-glucan, which is an important component of fungal cell walls, is a highly immunogenic epitope. Consequently, multiple host pattern recognition receptors, such as dectin-1, complement receptor 3 (CR3), and the ephrin type A receptor A (EphA2) are capable of recognizing exposed (unmasked) ß(1,3)-glucan moieties on the cell surface to initiate an anti-fungal immune response. However, ß(1,3)-glucan is normally covered (masked) by a layer of glycosylated proteins on the outer surface of the cell wall, hiding it from immune detection. In order to better understand possible mechanisms of unmasking ß(1,3)-glucan, we must develop a deeper comprehension of the pathways driving this phenotype. In this review, we describe the medical importance of ß(1,3)-glucan exposure in anti-fungal immunity, and highlight environmental stimuli and stressors encountered within the host that are capable of inducing changes in the levels of surface exposed ß(1,3)-glucan. Furthermore, particular focus is placed on how signal transduction cascades regulate changes in ß(1,3)-glucan exposure, as understanding the role that these pathways have in mediating this phenotype will be critical for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
56
|
Park JH, Lee HK. Current Understanding of Hypoxia in Glioblastoma Multiforme and Its Response to Immunotherapy. Cancers (Basel) 2022; 14:1176. [PMID: 35267480 PMCID: PMC8909860 DOI: 10.3390/cancers14051176] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a hallmark of glioblastoma multiforme (GBM), the most aggressive cancer of the central nervous system, and is associated with multiple aspects of tumor pathogenesis. For example, hypoxia induces resistance to conventional cancer therapies and inhibits antitumor immune responses. Thus, targeting hypoxia is an attractive strategy for GBM therapy. However, traditional studies on hypoxia have largely excluded the immune system. Recently, the critical role of the immune system in the defense against multiple tumors has become apparent, leading to the development of effective immunotherapies targeting numerous cancer types. Critically, however, GBM is classified as a "cold tumor" due to poor immune responses. Thus, to improve GBM responsiveness against immunotherapies, an improved understanding of both immune function in GBM and the role of hypoxia in mediating immune responses within the GBM microenvironment is needed. In this review, we discuss the role of hypoxia in GBM from a clinical, pathological, and immunological perspective.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
57
|
pH-taxis drives aerobic bacteria in duodenum to migrate into the pancreas with tumors. Sci Rep 2022; 12:1783. [PMID: 35110595 PMCID: PMC8810860 DOI: 10.1038/s41598-022-05554-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
As oral or intestinal bacteria have been found in pancreatic cystic fluid and tumors, understanding bacterial migration from the duodenum into the pancreas via hepato-pancreatic duct is critical. Mathematical models of migration of aerobic bacteria from the duodenum to the pancreas with tumors were developed. Additionally, the bacterial distributions under the pH gradient and those under flow were measured in double-layer flow based microfluidic device and T-shaped cylinders. Migration of aerobic bacteria from the duodenum into pancreas is counteracted by bile and pancreatic juice flow but facilitated by pH-taxis from acidic duodenum fluid toward more favorable slightly alkaline pH in pancreatic juice. Additionally, the reduced flow velocity in cancer patients, due to compressed pancreatic duct by solid tumor, facilitates migration. Moreover, measured distribution of GFP E. coli under the pH gradient in a microfluidic device validated pH-tactic behaviors. Furthermore, Pseudomonas fluorescens in hydrochloride solution, but not in bicarbonate solution, migrated upstream against bicarbonate flow of > 20 μm/s, with an advancement at approximately 50 μm/s.
Collapse
|
58
|
Zhang W, Zhang X, Su Q, Tang M, Zheng H, Zhou X. Genomic features underlying the evolutionary transitions of Apibacter to honey bee gut symbionts. INSECT SCIENCE 2022; 29:259-275. [PMID: 33811731 DOI: 10.1111/1744-7917.12912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 05/16/2023]
Abstract
The gut bacteria of honey bee recognized as a mutualistic partner with the insect host might have originated from a free-living or parasitic lifestyle. However, little is known about the genomic features underlying this lifestyle transition. Here we compared the genomes of bee gut bacteria Apibacter with their close relatives living in different lifestyles. We found that despite general reduction in the Apibacter genome, genes involved in amino acid synthesis and monosaccharide detoxification were retained, which is putatively beneficial to the host. Interestingly, the microaerobic Apibacter species specifically acquired genes encoding for the nitrate respiration (NAR). These together with nitrate transporter and enzymatic cofactor synthesis genes were found clustered in the genomes. The NAR system is also conserved in the cohabitating bee gut microbe Snodgrassella, although with a different structure. This convergence suggests a key role of respiratory nitrate reduction for microaerophilic microbiomes to colonize bee gut epithelium. Genes involved in lipid, histidine degradation were found partially or completely lost in Apibacter. Particularly, genes encoding for the conversion to the toxic intermediates in phenylacetate degradation, as well as other potential virulence factors, are specifically lost in Apibacter group. Antibiotic resistance genes are only sporadically distributed among Apibacter species, but are prevalent in their relatives, which may be related to the remotely living feature and less exposure to antibiotics of their bee hosts. Collectively, this study advanced our knowledge of genomic features specialized to bee gut symbionts.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
59
|
Stabilization but no functional influence of HIF-1α expression in the intestinal epithelium during Salmonella Typhimurium infection. Infect Immun 2022; 90:e0022221. [PMID: 34978927 DOI: 10.1128/iai.00222-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and to ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we could infer significant activation of HIF-1 after oral infection of mice with Salmonella Typhimurium. Immunohistochemistry and western blot analysis confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a-deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced non-canonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact on inflammatory gene expression, bacterial spread or disease outcome. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro, HIF-1α-deficient macrophages showed an overall impaired transcription of mRNA encoding pro-inflammatory factors, however, intracellular survival of Salmonella was not impacted by HIF-1α deficiency.
Collapse
|
60
|
Shimizu T, Onuki M, Suzuki S, Hirai S, Yokoyama E, Matsumoto A, Hamabata T. Enhanced production of Shiga toxin 1 in enterohaemorrhagic Escherichia coli by oxygen. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34951398 DOI: 10.1099/mic.0.001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Although stx1 and stx2 were found within the late operons of the Stx-encoding phages (Stx-phages), stx1 could mainly be transcribed from the stx1 promoter (P Stx1), which represents the functional operator-binding site (Fur box) for the transcriptional regulator Fur (ferric uptake regulator), upstream of stx1. In this study, we found that the production of Stx1 by EHEC was affected by oxygen concentration. Increased Stx1 production in the presence of oxygen is dependent on Fur, which is an Fe2+-responsive transcription factor. The intracellular Fe2+ pool was lower under microaerobic conditions than under anaerobic conditions, suggesting that lower Fe2+ availability drove the formation of less Fe2+-Fur, less DNA binding to the P Stx1 region, and an increase in Stx1 production.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Manami Onuki
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shin Suzuki
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shinichiro Hirai
- Department of Infectious Disease Risk Management Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo-ku, Chiba, 260-8715, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Takashi Hamabata
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
61
|
He Y, Jinno C, Li C, Johnston SL, Xue H, Liu Y, Ji P. Effects of a blend of essential oils, medium-chain fatty acids and a toxin-adsorbing mineral on diarrhea and gut microbiome of weanling pigs experimentally infected with a pathogenic E. coli. J Anim Sci 2021; 100:6468858. [PMID: 34919701 DOI: 10.1093/jas/skab365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
A proprietary antimicrobial feed additive comprised of essential oils, medium-chain fatty acids, and a toxin-adsorbing mineral showed promising bacteriostatic and bactericidal effects in vitro. This study investigated the impacts of supplementing this blend on growth, gut microbiome, and enteric disease resilience in weaned pigs experimentally challenged with an enterotoxigenic Escherichia coli (ETEC). Thirty-six weanling pigs (6.88 ± 0.30 kg body weight (BW)) blocked by weight and gender were assigned to one of three dietary treatments: control or dietary supplementation with 0.25% or 0.50% of the antimicrobial blend. This study lasted 28 d with 7 d before and 21 d after the first ETEC inoculation (d 0). All pigs were orally inoculated with 10 10 cfu F18+ ETEC/3-mL dose for 3 consecutive days. Growth performance data and diarrhea scores were recorded throughout the experiment. Fecal samples collected on d -7, 0, 7 and 21 post first inoculation (PI), and ileal digesta and mucosal tissue collected on d 21 PI were further analyzed for gut microbiome using 16S rRNA sequencing. All data, except for frequency of diarrhea and gut microbiome, were analyzed by ANOVA using the PROC MIXED of SAS. The Chi-square test was used for analyzing frequency of diarrhea. Gut microbiome data were analyzed using QIIME2 and visualized using the R program. Dietary supplementation of 0.25% or 0.5% of the antimicrobial blend increased (P < 0.05) feed efficiency on d 14 to 21 PI of ETEC and reduced (P < 0.05) frequency of diarrhea during the study. Compared to the control group, adding 0.5% dietary antimicrobial blend increased (P < 0.05) relative abundance of Firmicutes but reduced (P < 0.05) Bacteroidetes and Proteobacteria in feces on d 7 PI. Pigs that received the antimicrobial blend also had higher (P < 0.05) relative abundance of Lactobacillaceae, but lower (P < 0.05) relative abundance of Enterobacteriaceae in feces on d 7 PI than pigs in control. In conclusion, supplementation of this antimicrobial blend at 0.5% reduced incidence of severe diarrhea in weaned pigs challenged with F18 ETEC and enhanced feed efficiency of weaned pigs at the last week of the experiment. Supplementation of this antimicrobial blend also modified the microbiota diversity in feces and ileal mucosa of weaned pigs.
Collapse
Affiliation(s)
- Yijie He
- Department of Animal Science, University of California, Davis, USA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, USA
| | - Chong Li
- Department of Nutrition, University of California, Davis, USA
| | | | | | - Yanhong Liu
- Department of Animal Science, University of California, Davis, USA
| | - Peng Ji
- Department of Nutrition, University of California, Davis, USA
| |
Collapse
|
62
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
63
|
Chakravarty D, Sahukhal G, Arick M, Davis ML, Donaldson JR. Transcriptomic Analysis of Listeria monocytogenes in Response to Bile Under Aerobic and Anaerobic Conditions. Front Microbiol 2021; 12:754748. [PMID: 34867878 PMCID: PMC8636025 DOI: 10.3389/fmicb.2021.754748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a gram-positive facultative anaerobic bacterium that causes the foodborne illness listeriosis. The pathogenesis of this bacterium depends on its survival in anaerobic, acidic, and bile conditions encountered throughout the gastrointestinal (GI) tract. This transcriptomics study was conducted to analyze the differences in transcript levels produced under conditions mimicking the GI tract. Changes in transcript levels were analyzed using RNA isolated from L. monocytogenes strain F2365 at both aerobic and anaerobic conditions, upon exposure to 0 and 1% bile at acidic and neutral pH. Transcripts corresponding to genes responsible for pathogenesis, cell wall associated proteins, DNA repair, transcription factors, and stress responses had variations in levels under the conditions tested. Upon exposure to anaerobiosis in acidic conditions, there were variations in the transcript levels for the virulence factors internalins, listeriolysin O, etc., as well as many histidine sensory kinases. These data indicate that the response to anaerobiosis differentially influences the transcription of several genes related to the survival of L. monocytogenes under acidic and bile conditions. Though further research is needed to decipher the role of oxygen in pathogenesis of L. monocytogenes, these data provide comprehensive information on how this pathogen responds to the GI tract.
Collapse
Affiliation(s)
- Damayanti Chakravarty
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gyan Sahukhal
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mark Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Morgan L. Davis
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Janet R. Donaldson
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
64
|
Fujiwara H, Seike K, Brooks MD, Mathew AV, Kovalenko I, Pal A, Lee HJ, Peltier D, Kim S, Liu C, Oravecz-Wilson K, Li L, Sun Y, Byun J, Maeda Y, Wicha MS, Saunders TL, Rehemtulla A, Lyssiotis CA, Pennathur S, Reddy P. Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology. Nat Immunol 2021; 22:1440-1451. [PMID: 34686860 PMCID: PMC9351914 DOI: 10.1038/s41590-021-01048-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023]
Abstract
Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.
Collapse
Affiliation(s)
- Hideaki Fujiwara
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Keisuke Seike
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Michael D Brooks
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Anna V Mathew
- Department of Internal Medicine, Division of Nephrology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Ilya Kovalenko
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anupama Pal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Peltier
- Department of Pediatrics, Division of Hematology/Oncology and BMT, University of Michigan Health System, Ann Arbor, MI, USA
| | - Stephanie Kim
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Lu Li
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yaping Sun
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jaeman Byun
- Department of Internal Medicine, Division of Nephrology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yoshinobu Maeda
- Department of Hematology Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Max S Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
65
|
Samouilov A, Komarov D, Petryakov S, Iosilevich A, Zweier JL. Development of an L-band resonator optimized for fast scan EPR imaging of the mouse head. Magn Reson Med 2021; 86:2316-2327. [PMID: 33938574 PMCID: PMC8295191 DOI: 10.1002/mrm.28821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a novel resonator for high-quality fast scan electron paramagnetic resonance (EPR) and EPR/NMR co-imaging of the head and brain of mice at 1.25 GHz. METHODS Resonator dimensions were scaled to fit the mouse head with maximum filling factor. A single-loop 6-gap resonator of 20 mm diameter and 20 mm length was constructed. High resonator stability was achieved utilizing a fixed position double coupling loop. Symmetrical mutually inverted connections rendered it insensitive to field modulation and fast scan. Coupling adjustment was provided by a parallel-connected variable capacitor located at the feeding line at λ/4 distance. To minimize radiation loss, the shield around the resonator was supplemented with a planar conductive disc that focuses return magnetic flux. RESULTS Coupling of the resonator loaded with the mouse head was efficient and easy. This resonator enabled high-quality in vivo 3D EPR imaging of the mouse head following intravenous infusion of nitroxide probes. With this resonator and rapid scan EPR system, 4 ms scans were acquired in forward and reverse directions so that images with 2-scan 3,136 projections were acquired in 25 s. Head images were achieved with resolutions of 0.4 mm, enabling visualization of probe localization and uptake across the blood-brain barrier. CONCLUSIONS This resonator design provides good sensitivity, high stability, and B1 field homogeneity for in vivo fast scan EPR of the mouse head and brain, enabling faster measurements and higher resolution imaging of probe uptake, localization, and metabolism than previously possible.
Collapse
Affiliation(s)
- Alexandre Samouilov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Denis Komarov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Sergey Petryakov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Arkadiy Iosilevich
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay L. Zweier
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
66
|
Fujiwara H. Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:703298. [PMID: 34512627 PMCID: PMC8429959 DOI: 10.3389/fimmu.2021.703298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an evidence based- cellular immunotherapy for hematological malignancies. Immune reactions not only promote graft-versus-tumor effects that kill hematological malignant cells but also graft-versus-host disease (GVHD) that is the primary complication characterized by systemic organ damages consisting of T-cells and antigen presenting cells (APCs) activation. GVHD has long been recognized as an immunological reaction that requires an immunosuppressive treatment targeting immune cells. However immune suppression cannot always prevent GVHD or effectively treat it once it has developed. Recent studies using high-throughput sequencing technology investigated the impact of microbial flora on GVHD and provided profound insights of the mechanism of GVHD other than immune cells. Allo-HSCT affects the intestinal microbiota and microbiome-metabolome axis that can alter intestinal homeostasis and the severity of experimental GVHD. This axis can potentially be manipulated via dietary intervention or metabolites produced by intestinal bacteria affected post-allo-HSCT. In this review, we discuss the mechanism of experimental GVHD regulation by the complex microbial community-metabolites-host tissue axis. Furthermore, we summarize the major findings of microbiome-based immunotherapeutic approaches that protect tissues from experimental GVHD. Understanding the complex relationships between gut microbiota-metabolites-host tissues axis provides crucial insight into the pathogenesis of GVHD and advances the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
67
|
Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling. Cell Mol Gastroenterol Hepatol 2021; 13:351-367. [PMID: 34454168 PMCID: PMC8688162 DOI: 10.1016/j.jcmgh.2021.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
The intestinal epithelium has one of the highest turnover rates in the human body, which is supported by intestinal stem cells. Culture models of intestinal physiology have been evolving to incorporate different tissue and microenvironmental elements. However, these models also display gaps that limit their similarity with native conditions. Microfluidics technology arose from the application of microfabrication techniques to fluid manipulation. Recently, microfluidic approaches have been coupled with cell culture, creating self-contained and modular in vitro models with easily controllable features named organs-on-chip. Intestine-on-chip models have enabled the recreation of the proliferative and differentiated compartments of the intestinal epithelium, the long-term maintenance of commensals, and the intraluminal perfusion of organoids. In addition, studies based on human primary intestinal cells have shown that these systems have a closer transcriptomic profile and functionality to the intestine in vivo, when compared with other in vitro models. The design flexibility inherent to microfluidic technology allows the simultaneous combination of components such as shear stress, peristalsis-like strain, 3-dimensional structure, oxygen gradient, and co-cultures with other important cell types involved in gut physiology. The versatility and complexity of the intestine-on-chip grants it the potential for applications in disease modeling, host-microbiota studies, stem cell biology, and, ultimately, the translation to the pharmaceutical industry and the clinic as a reliable high-throughput platform for drug testing and personalized medicine, respectively. This review focuses on the physiological importance of several components that have been incorporated into intestine-on-chip models and highlights interesting features developed in other types of in vitro models that might contribute to the refinement of these systems.
Collapse
|
68
|
Konjar Š, Pavšič M, Veldhoen M. Regulation of Oxygen Homeostasis at the Intestinal Epithelial Barrier Site. Int J Mol Sci 2021; 22:ijms22179170. [PMID: 34502078 PMCID: PMC8431628 DOI: 10.3390/ijms22179170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
The unique biology of the intestinal epithelial barrier is linked to a low baseline oxygen pressure (pO2), characterised by a high rate of metabolites circulating through the intestinal blood and the presence of a steep oxygen gradient across the epithelial surface. These characteristics require tight regulation of oxygen homeostasis, achieved in part by hypoxia-inducible factor (HIF)-dependent signalling. Furthermore, intestinal epithelial cells (IEC) possess metabolic identities that are reflected in changes in mitochondrial function. In recent years, it has become widely accepted that oxygen metabolism is key to homeostasis at the mucosae. In addition, the gut has a vast and diverse microbial population, the microbiota. Microbiome–gut communication represents a dynamic exchange of mediators produced by bacterial and intestinal metabolism. The microbiome contributes to the maintenance of the hypoxic environment, which is critical for nutrient absorption, intestinal barrier function, and innate and/or adaptive immune responses in the gastrointestinal tract. In this review, we focus on oxygen homeostasis at the epithelial barrier site, how it is regulated by hypoxia and the microbiome, and how oxygen homeostasis at the epithelium is regulated in health and disease.
Collapse
Affiliation(s)
- Špela Konjar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
- Correspondence:
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
69
|
Berthold DL, Jones KDJ, Udalova IA. Regional specialization of macrophages along the gastrointestinal tract. Trends Immunol 2021; 42:795-806. [PMID: 34373208 DOI: 10.1016/j.it.2021.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
The tissue microenvironment is a major driver in imprinting tissue-specific macrophage functions in various mammalian tissues. As monocytes are recruited into the gastrointestinal (GI) tract at steady state and inflammation, they rapidly adopt a tissue-specific and distinct transcriptome. However, the GI tract varies significantly along its length, yet most studies of intestinal macrophages do not directly compare the phenotype and function of these macrophages in the small and large intestine, thus leading to disparities in data interpretations. This review highlights differences along the GI tract that are likely to influence macrophage function, with a specific focus on diet and microbiota. This analysis may fuel further investigation regarding the interplay between the intestinal immune system and GI tissue microenvironments, ideally providing unique therapeutic targets to modulate specific intestinal macrophage populations and/or functions.
Collapse
Affiliation(s)
| | - Kelsey D J Jones
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK; Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
70
|
Hoter A, Naim HY. The glucose-regulated protein GRP94 interacts avidly in the endoplasmic reticulum with sucrase-isomaltase isoforms that are associated with congenital sucrase-isomaltase deficiency. Int J Biol Macromol 2021; 186:237-243. [PMID: 34242650 DOI: 10.1016/j.ijbiomac.2021.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
The glucose-regulated protein GRP94 is a molecular chaperone that is located in the endoplasmic reticulum (ER). Here, we demonstrate in pull down experiments an interaction between GRP94 and sucrase-isomaltase (SI), the most prominent disaccharidase of the small intestine. GRP94 binds to SI exclusively via its mannose-rich form compatible with an interaction occurring in the ER. We have also examined the interaction GRP94 to a panel of SI mutants that are associated with congenital sucrase-isomaltase deficiency (CSID). These mutants exhibited more efficient binding to GRP94 than wild type SI underlining a specific role of this chaperone in the quality control in the ER. In view of the hypoxic milieu of the intestine, we probed the interaction of GRP94 to SI and its mutants in cell culture under hypoxic conditions and observed a substantial increase in the binding of GRP94 to the SI mutants. The interaction of GRP94 to the major carbohydrate digesting enzyme and regulating its folding as well as retaining SI mutants in the ER points to a potential role of GRP94 in maintenance of intestinal homeostasis by chaperoning and stabilizing SI.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
71
|
Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol 2021; 42:604-621. [PMID: 34171295 DOI: 10.1016/j.it.2021.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Laís P Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José L Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Renan O Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Experimental Medicine Research Cluster, Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
72
|
Abass A, Okano T, Boonyaleka K, Kinoshita-Daitoku R, Yamaoka S, Ashida H, Suzuki T. Effect of low oxygen concentration on activation of inflammation by Helicobacter pylori. Biochem Biophys Res Commun 2021; 560:179-185. [PMID: 34000467 DOI: 10.1016/j.bbrc.2021.04.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
The gastrointestinal tract of the human body is characterized by a highly unique oxygenation profile, where the oxygen concentration decreases toward the lower tract, not found in other organs. The epithelial cells lining the mucosa where Helicobacter pylori resides exist in a relatively low oxygen environment with a partial pressure of oxygen (pO2) below 58 mm Hg. However, the contribution of hypoxia to H. pylori-induced host immune responses remains elusive. In this study, we investigated the inflammasome activation induced by H. pylori under hypoxic, compared with normoxic, conditions. Our results indicated that the activation of caspase-1 and the subsequent secretion of IL-1β were significantly enhanced in infected macrophages under 1% oxygen, compared with those under a normal 20% oxygen concentration. The proliferation of H. pylori under aerobic conditions was 3-fold higher than under microaerophilic conditions, and the bacterial growth was more dependent on CO2 than on oxygen. Also, we observed that hypoxia-induced cytokine production as well as HIF-1α accumulation were both decreased when murine macrophages were treated with an HIF-1α inhibitor, KC7F2. Furthermore, hypoxia enhanced the phagocytosis of H. pylori in an HIF-1α-dependent manner. IL-1β production was also affected by the HIF-1α inhibitor in a mouse infection model, suggesting the important role of HIF-1α in the host defense system during infection with H. pylori. Our findings provide new insights into the intersection of low oxygen, H. pylori, and inflammation and disclosed how H. pylori under low oxygen tension can aggravate IL-1β secretion.
Collapse
Affiliation(s)
- Adiza Abass
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kotchakorn Boonyaleka
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Kinoshita-Daitoku
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
73
|
Montoya CA, Maier E, Banic M, McNabb WC, Moughan PJ. Oxygen concentration of gut luminal contents varies post-prandially in growing pigs. J Anim Physiol Anim Nutr (Berl) 2021; 106:545-551. [PMID: 34169581 DOI: 10.1111/jpn.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The oxygen (O2 ) concentration of gastrointestinal tract (GIT) contents decreases distally, but little is known about how O2 concentrations are influenced by ingestion of a meal. The O2 concentration in luminal contents at different GIT locations (stomach [cardia and pylorus], proximal, mid- and distal small intestine and caecum) and how these concentrations changed post-prandially were determined. Fifty entire male pigs (22 kg bodyweight at the start of study) were fed semi-synthetic diets containing casein, α-lactalbumin, whey protein isolate or zein as the sole source of protein for 8 days. A further group of pigs received the casein diet for six days and a semi-synthetic protein-free diet for a further 2 days. On day 8, pigs (n = 2 per diet and time point) were euthanized post-prandially (0, 1, 2, 4 and 6 h), and the stomach, small intestine and caecum were isolated and O2 determined in the GIT contents. Observations at each time point were averaged across the diets (n = 10). The mean O2 concentration was markedly higher (p ≤ 0.05) in the stomach compared with the rest of the GIT. The O2 concentration was similar in the small intestinal regions (p > 0.05; 1.0%-1.1%) and the caecum (0.9%), apart for the proximal small intestine which had a 24% higher (p ≤ 0.05) O2 concentration than the caecum. The mean O2 concentration in the GIT varied post-prandially (p ≤ 0.05). The O2 concentration in the cardia decreased 1.8%/h over the first two hours post-feeding and thereafter increased 0.3%/h (p ≤ 0.05). In the caecum, the O2 concentration was constant during the first 4 h and thereafter increased slightly (p ≤ 0.05). The flow of food through the GIT influenced both the concentration and amount of O2 in GIT luminal contents.
Collapse
Affiliation(s)
- Carlos A Montoya
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North, New Zealand.,Riddet Institute, Te Ohu Rangahau Kai Facility, Massey University, Palmerston North, New Zealand
| | - Eva Maier
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North, New Zealand
| | - Milena Banic
- Riddet Institute, Te Ohu Rangahau Kai Facility, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Te Ohu Rangahau Kai Facility, Massey University, Palmerston North, New Zealand
| | - Paul J Moughan
- Riddet Institute, Te Ohu Rangahau Kai Facility, Massey University, Palmerston North, New Zealand
| |
Collapse
|
74
|
Garcia TM, van Roest M, Vermeulen JLM, Meisner S, Smit WL, Silva J, Koelink PJ, Koster J, Faller WJ, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Early Life Antibiotics Influence In Vivo and In Vitro Mouse Intestinal Epithelium Maturation and Functioning. Cell Mol Gastroenterol Hepatol 2021; 12:943-981. [PMID: 34102314 PMCID: PMC8346670 DOI: 10.1016/j.jcmgh.2021.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The use of antibiotics (ABs) is a common practice during the first months of life. ABs can perturb the intestinal microbiota, indirectly influencing the intestinal epithelial cells (IECs), but can also directly affect IECs independent of the microbiota. Previous studies have focused mostly on the impact of AB treatment during adulthood. However, the difference between the adult and neonatal intestine warrants careful investigation of AB effects in early life. METHODS Neonatal mice were treated with a combination of amoxicillin, vancomycin, and metronidazole from postnatal day 10 to 20. Intestinal permeability and whole-intestine gene and protein expression were analyzed. IECs were sorted by a fluorescence-activated cell sorter and their genome-wide gene expression was analyzed. Mouse fetal intestinal organoids were treated with the same AB combination and their gene and protein expression and metabolic capacity were determined. RESULTS We found that in vivo treatment of neonatal mice led to decreased intestinal permeability and a reduced number of specialized vacuolated cells, characteristic of the neonatal period and necessary for absorption of milk macromolecules. In addition, the expression of genes typically present in the neonatal intestinal epithelium was lower, whereas the adult gene expression signature was higher. Moreover, we found altered epithelial defense and transepithelial-sensing capacity. In vitro treatment of intestinal fetal organoids with AB showed that part of the consequences observed in vivo is a result of the direct action of the ABs on IECs. Lastly, ABs reduced the metabolic capacity of intestinal fetal organoids. CONCLUSIONS Our results show that early life AB treatment induces direct and indirect effects on IECs, influencing their maturation and functioning.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jacqueline L M Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam, the Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| |
Collapse
|
75
|
Schubert C, Winter M, Ebert‐Jung A, Kierszniowska S, Nagel‐Wolfrum K, Schramm T, Link H, Winter S, Unden G. C4
‐dicarboxylates and
l
‐aspartate utilization by
Escherichia coli
K‐12 in the mouse intestine:
l
‐aspartate as a major substrate for fumarate respiration and as a nitrogen source. Environ Microbiol 2021; 23:2564-2577. [DOI: 10.1111/1462-2920.15478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | - Maria Winter
- Department of Microbiology UT Southwestern Medical Center Dallas TX 75287 USA
| | - Andrea Ebert‐Jung
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | | | - Kerstin Nagel‐Wolfrum
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| | - Thorben Schramm
- Max Planck Institute for Terrestrial Microbiology Karl‐von‐Frisch‐Straße 10 Marburg 35043 Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology Karl‐von‐Frisch‐Straße 10 Marburg 35043 Germany
| | - Sebastian Winter
- Department of Microbiology UT Southwestern Medical Center Dallas TX 75287 USA
| | - Gottfried Unden
- Institute for Molecular Physiology Johannes Gutenberg‐University Mainz Mainz 55099 Germany
| |
Collapse
|
76
|
Dengler F, Sova S, Salo AM, Mäki JM, Koivunen P, Myllyharju J. Expression and Roles of Individual HIF Prolyl 4-Hydroxylase Isoenzymes in the Regulation of the Hypoxia Response Pathway along the Murine Gastrointestinal Epithelium. Int J Mol Sci 2021; 22:4038. [PMID: 33919829 PMCID: PMC8070794 DOI: 10.3390/ijms22084038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
The HIF prolyl 4-hydroxylases (HIF-P4H) control hypoxia-inducible factor (HIF), a powerful mechanism regulating cellular adaptation to decreased oxygenation. The gastrointestinal epithelium subsists in "physiological hypoxia" and should therefore have an especially well-designed control over this adaptation. Thus, we assessed the absolute mRNA expression levels of the HIF pathway components, Hif1a, HIF2a, Hif-p4h-1, 2 and 3 and factor inhibiting HIF (Fih1) in murine jejunum, caecum and colon epithelium using droplet digital PCR. We found a higher expression of all these genes towards the distal end of the gastrointestinal tract. We detected mRNA for Hif-p4h-1, 2 and 3 in all parts of the gastrointestinal tract. Hif-p4h-2 had significantly higher expression levels compared to Hif-p4h-1 and 3 in colon and caecum epithelium. To test the roles each HIF-P4H isoform plays in the gut epithelium, we measured the gene expression of classical HIF target genes in Hif-p4h-1-/-, Hif-p4h-2 hypomorph and Hif-p4h-3-/- mice. Only Hif-p4h-2 hypomorphism led to an upregulation of HIF target genes, confirming a predominant role of HIF-P4H-2. However, the abundance of Hif-p4h-1 and 3 expression in the gastrointestinal epithelium implies that these isoforms may have specific functions as well. Thus, the development of selective inhibitors might be useful for diverging therapeutic needs.
Collapse
Affiliation(s)
- Franziska Dengler
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, 1210 Vienna, Austria
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany
| | - Sofia Sova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Antti M. Salo
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Joni M. Mäki
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| | - Johanna Myllyharju
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland; (S.S.); (A.M.S.); (J.M.M.); (P.K.); (J.M.)
| |
Collapse
|
77
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
78
|
Laursen MF, Bahl MI, Licht TR. Settlers of our inner surface - Factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol Rev 2021; 45:6081092. [PMID: 33428723 PMCID: PMC8371275 DOI: 10.1093/femsre/fuab001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
During the first 3 years of life, the microbial ecosystem within the human gut undergoes a process that is unlike what happens in this ecosystem at any other time of our life. This period in time is considered a highly important developmental window, where the gut microbiota is much less resilient and much more responsive to external and environmental factors than seen in the adult gut. While advanced bioinformatics and clinical correlation studies have received extensive focus within studies of the human microbiome, basic microbial growth physiology has attracted much less attention, although it plays a pivotal role to understand the developing gut microbiota during early life. In this review, we will thus take a microbial ecology perspective on the analysis of factors that influence the temporal development of the infant gut microbiota. Such factors include sources of microbes that seed the intestinal environment, physico-chemical (abiotic) conditions influencing microbial growth and the availability of nutrients needed by the intestinal microbes.
Collapse
Affiliation(s)
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby
| |
Collapse
|
79
|
Guan X, Li W, Meng H. A double-edged sword: Role of butyrate in the oral cavity and the gut. Mol Oral Microbiol 2020; 36:121-131. [PMID: 33155411 DOI: 10.1111/omi.12322] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
Butyrate, a four-carbon short-chain fatty acid (SCFA), is a metabolite of anaerobic bacteria. Butyrate has primarily been described as an energy substance in the studies on the digestive tract. The multiple mechanisms of its protective function in the gut and on underlying diseases (including metabolic diseases, diseases of the nervous system, and osteoporosis) via interaction with intestinal epithelial cells and immune cells have been well documented. There are many butyrogenic bacteria in the oral cavity as well. As essential components of the oral microbiome, periodontal pathogens are also able to generate butyrate when undergoing metabolism. Considerable evidence has indicated that butyrate plays an essential role in the initiation and perpetuation of periodontitis. However, butyrate is considered to participate in the pro-inflammatory activities in periodontal tissue and the reactivation of latent viruses. In this review, we focused on the production and biological impact of butyrate in both intestine and oral cavity and explained the possible pathway of various diseases that were engaged by butyrate. Finally, we suggested two hypotheses, which may give a better understanding of the significantly different functions of butyrate in different organs (i.e., the expanded butyrate paradox).
Collapse
Affiliation(s)
- Xiaoyuan Guan
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenjing Li
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huanxin Meng
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
80
|
Dowdell AS, Cartwright IM, Goldberg MS, Kostelecky R, Ross T, Welch N, Glover LE, Colgan SP. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis. Mol Biol Cell 2020; 31:2249-2258. [PMID: 32726170 PMCID: PMC7550696 DOI: 10.1091/mbc.e20-05-0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cells (IECs) exist in a metabolic state of low oxygen tension termed "physiologic hypoxia." An important factor in maintaining intestinal homeostasis is the transcription factor hypoxia-inducible factor (HIF), which is stabilized under hypoxic conditions and mediates IEC homeostatic responses to low oxygen tension. To identify HIF transcriptional targets in IEC, chromatin immunoprecipitation (ChIP) was performed in Caco-2 IECs using HIF-1α- or HIF-2α-specific antibodies. ChIP-enriched DNA was hybridized to a custom promoter microarray (termed ChIP-chip). This unbiased approach identified autophagy as a major HIF-1-targeted pathway in IEC. Binding of HIF-1 to the ATG9A promoter, the only transmembrane component within the autophagy pathway, was particularly enriched by exposure of IEC to hypoxia. Validation of this ChIP-chip revealed prominent induction of ATG9A, and luciferase promoter assays identified a functional hypoxia response element upstream of the TSS. Hypoxia-mediated induction of ATG9A was lost in cells lacking HIF-1. Strikingly, we found that lentiviral-mediated knockdown (KD) of ATG9A in IECs prevents epithelial barrier formation by >95% and results in significant mislocalization of multiple tight junction (TJ) proteins. Extensions of these findings showed that ATG9A KD cells have intrinsic abnormalities in the actin cytoskeleton, including mislocalization of the TJ binding protein vasodilator-stimulated phosphoprotein. These results implicate ATG9A as essential for multiple steps of epithelial TJ biogenesis and actin cytoskeletal regulation. Our findings have novel applicability for disorders that involve a compromised epithelial barrier and suggest that targeting ATG9A may be a rational strategy for future therapeutic intervention.
Collapse
Affiliation(s)
- Alexander S. Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Ian M. Cartwright
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Matthew S. Goldberg
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Rachael Kostelecky
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Tyler Ross
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Nichole Welch
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Louis E. Glover
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Sean P. Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
81
|
Hurtado-Escobar GA, Grépinet O, Raymond P, Abed N, Velge P, Virlogeux-Payant I. H-NS is the major repressor of Salmonella Typhimurium Pef fimbriae expression. Virulence 2020; 10:849-867. [PMID: 31661351 PMCID: PMC6844306 DOI: 10.1080/21505594.2019.1682752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fimbriae play an important role in adhesion and are therefore essential for the interaction of bacteria with the environments they encounter. Most of them are expressed in vivo but not in vitro, thus making difficult the full characterization of these fimbriae. Here, we characterized the silencing of plasmid-encoded fimbriae (Pef) expression, encoded by the pef operon, in the worldwide pathogen Salmonella Typhimurium. We demonstrated that the nucleoid-associated proteins H-NS and Hha, and their respective paralogs StpA and YdgT, negatively regulate at pH 5.1 and pH 7.1 the transcription of the pef operon. Two promoters, PpefB and PpefA, direct the transcription of this operon. All the nucleoid-associated proteins silence the PpefB promoter and H-NS also targets the PpefA promoter. While Hha and YdgT are mainly considered as acting primarily through H-NS to modulate gene transcription, our results strongly suggest that Hha and YdgT silence pef transcription at acidic pH either by interacting with StpA or independently of H-NS and StpA. We also confirmed the previously described post-transcriptional repression of Pef fimbriae by CsrA titration via the fim mRNA and CsrB and CsrC sRNA. Finally, among all these regulators, H-NS clearly appeared as the major repressor of Pef expression. These results open new avenues of research to better characterize the regulation of these bacterial adhesive proteins and to clarify their role in the virulence of pathogens.
Collapse
Affiliation(s)
| | | | | | - Nadia Abed
- ISP, INRA, Université de Tours, Nouzilly, France
| | | | | |
Collapse
|
82
|
Barrier integrity and chronic inflammation mediated by HIF-1 impact on intestinal tumorigenesis. Cancer Lett 2020; 490:186-192. [PMID: 32711098 DOI: 10.1016/j.canlet.2020.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer ranks among the top three most frequent malignancies in the world. While overall incidence and mortality of colorectal cancer has substantially decreased in recent years, tumor subtypes with poor response rates to standard antiproliferative therapies remain particularly challenging. Hypoxia in the microenvironment of solid tumors is associated with malignant progression, e.g. local invasion, systemic spread and therapy resistance. A detailed molecular understanding of hypoxia's role for the pathobiology of colorectal cancer is a prerequisite to design and evaluate the consequences of interference with hypoxic signaling for the progression of this cancer type. Here, we summarize the current knowledge about the role of hypoxia-inducible factor 1, an essential molecular mediator of the hypoxic response, for colorectal cancer pathogenesis. Special attention is given to intestinal microbiota, gut barrier integrity and chronic inflammation as these are of pivotal importance for intestinal tumorigenesis and noticeably associated with hypoxic signaling.
Collapse
|
83
|
Wang X, Peng C, He K, Ji K, Tan X, Han G, Liu Y, Liu Y, Song Y. Intracellular delivery of liposome-encapsulated Finland trityl radicals for EPR oximetry. Analyst 2020; 145:4964-4971. [PMID: 32510063 DOI: 10.1039/d0an00108b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications in electron paramagnetic resonance (EPR) oximetry. However, the biomedical applications of TAM radicals were exclusively limited to an extracellular region owing to their negatively charged nature. The intracellular delivery of TAM radicals still remains a challenge. In the present work, we report a liposome-based method to encapsulate the water-soluble Finland trityl radical CT-03 for its intracellular delivery. Using the thin lipid film hydration method, CT-03-loaded liposomes were prepared from DSPC/cholesterol/DOTAP with a mean size of 167.5 ± 2.4 nm and a zeta potential of 27.8 ± 0.8 mV. EPR results showed that CT-03 was entrapped into the liposomes and still exhibited good oxygen (O2) sensitivity. Moreover, CT-03 was successfully delivered into HepG2 cells and HUVECs using the CT-03-loaded liposomes. Importantly, the combination of the liposome-encapsulated radical CT-03 and the other TAM radical CT02-H enabled simultaneous measurements of the intracellular and extracellular O2 concentrations and O2 consumption rates in HepG2 cells. Our present study provides a new approach for intracellular delivery of TAM radicals and could significantly expand their biomedical applications.
Collapse
Affiliation(s)
- Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem 2020; 295:10493-10505. [PMID: 32503843 DOI: 10.1074/jbc.rev120.011188] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is a highly proliferative and regenerative tissue. The intestine also harbors a large and diverse microbial population collectively called the gut microbiome (microbiota). The microbiome-intestine cross-talk includes a dynamic exchange of gaseous signaling mediators generated by bacterial and intestinal metabolisms. Moreover, the microbiome initiates and maintains the hypoxic environment of the intestine that is critical for nutrient absorption, intestinal barrier function, and innate and adaptive immune responses in the mucosal cells of the intestine. The response to hypoxia is mediated by hypoxia-inducible factors (HIFs). In hypoxic conditions, the HIF activation regulates the expression of a cohort of genes that promote adaptation to hypoxia. Physiologically, HIF-dependent genes contribute to the aforementioned maintenance of epithelial barrier function, nutrient absorption, and immune regulation. However, chronic HIF activation exacerbates disease conditions, leading to intestinal injury, inflammation, and colorectal cancer. In this review, we aim to outline the major roles of physiological and pathological hypoxic conditions in the maintenance of intestinal homeostasis and in the onset and progression of disease with a major focus on understanding the complex pathophysiology of the intestine.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA .,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
85
|
Bueno E, Pinedo V, Cava F. Adaptation of Vibrio cholerae to Hypoxic Environments. Front Microbiol 2020; 11:739. [PMID: 32425907 PMCID: PMC7212424 DOI: 10.3389/fmicb.2020.00739] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Bacteria can colonize virtually any environment on Earth due to their remarkable capacity to detect and respond quickly and adequately to environmental stressors. Vibrio cholerae is a cosmopolitan bacterium that inhabits a vast range of environments. The V. cholerae life cycle comprises diverse environmental and infective stages. The bacterium is found in aquatic ecosystems both under free-living conditions or associated with a wide range of aquatic organisms, and some strains are also capable of causing epidemics in humans. In order to adapt between environments, V. cholerae possesses a versatile metabolism characterized by the rapid cross-regulation of energy-producing pathways. Low oxygen concentration is a key environmental factor that governs V. cholerae physiology. This article reviews the metabolic plasticity that enables V. cholerae to thrive on low oxygen concentrations and its role in environmental and host adaptation.
Collapse
Affiliation(s)
- Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
86
|
Tiash S, Saunders J, Hart CJS, Ryan JH, Riches AG, Skinner-Adams TS. An image-based Pathogen Box screen identifies new compounds with anti-Giardia activity and highlights the importance of assay choice in phenotypic drug discovery. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 12:60-67. [PMID: 32234669 PMCID: PMC7113605 DOI: 10.1016/j.ijpddr.2020.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis, the most prevalent human intestinal parasite causes the disease, giardiasis. On an annual basis G. duodenalis infects ~1 billion people, of which ~280 million develop symptomatic disease. Giardiasis can be severe and chronic, causing malnutrition, stunted growth and poor cognitive development in children. Current treatment options rely on drugs with declining efficacy and side-effects. To improve the health and well-being of millions of people world-wide, new anti-Giardia drugs with different modes of action to currently used drugs are required. The Medicines for Malaria Venture's Pathogen Box, a collection of bio-active compounds specifically chosen to stimulate infectious disease drug discovery, represents an opportunity for the discovery of new anti-Giardia agents. While the anti-Giardia activity of Pathogen Box compounds has been reported, this work failed to identify known anti-Giardia controls within the compound set. It also reported the activity of compounds previously screened and shown to be inactive by others, suggesting data may be inaccurate. Given these concerns the anti-Giardia activity of Pathogen Box compounds was re-assessed in the current study. Data from this work identified thirteen compounds with anti-Giardia IC50 values ≤2 μM. Five of these compounds were reference compounds (marketed drugs with known anti-microbial activity), or analogues of compounds with previously described anti-Giardia activity. However, eight, including MMV676358 and MMV028694, which demonstrated potent sub-μM IC50s against assemblage A, B and metronidazole resistant parasites (0.3 μM and 0.9 μM respectively), may represent new leads for future drug development. Interestingly, only four of these compounds were identified in the previously reported Pathogen Box screen highlighting the importance of assay selection and design when assessing compounds for activity against infectious agents.
13 compounds with anti-Giardia IC50 values < 2 μM were identified. 8 compounds represent new leads for drug development. MMV676358 and MMV028694 demonstrated the most promising acting. Data highlight the importance of assay selection and design in drug discovery.
Collapse
Affiliation(s)
- Snigdha Tiash
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Jake Saunders
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - John H Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Bayview Av., Clayton, Victoria, 3168, Australia
| | - Andrew G Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Bayview Av., Clayton, Victoria, 3168, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
87
|
Zhang M, Chen H, Liu L, Xu L, Wang X, Chang L, Chang Q, Lu G, Jiang J, Zhu L. The Changes in the Frog Gut Microbiome and Its Putative Oxygen-Related Phenotypes Accompanying the Development of Gastrointestinal Complexity and Dietary Shift. Front Microbiol 2020; 11:162. [PMID: 32194513 PMCID: PMC7062639 DOI: 10.3389/fmicb.2020.00162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/22/2020] [Indexed: 12/05/2022] Open
Abstract
There are many examples of symbiotic and reciprocal relationships in ecological systems; animal gut microbiome-host interactions are one such kind of bidirectional and complex relationship. Here, we utilized several approaches (16S rRNA gene sequencing, metagenomics, and transcriptomics) to explore potential gut microbiome-host interactions accompanying the development of gastrointestinal complexity and a dietary shift from metamorphosis to maturity in ornamented pygmy frogs (Microhyla fissipes). We identified the possible coevolution between a particular gut microbial group (increased putative fat-digesting Erysipelotrichaceae and chitin-digesting Bacteroides and Ruminococcaceae) and the host dietary shift [from herbivore to insectivore (high proportion of dietary chitin and fat)] during metamorphosis. We also found that the remodeling and complexity of the gastrointestinal system during metamorphosis might have a profound effect on the gut microbial community (decreasing facultative anaerobic Proteobacteria and increasing anaerobic Firmicutes) and its putative oxygen-related phenotypes. Moreover, a high proportion of chitin-digesting bacteria and increased carbohydrate metabolism by gut microbiomes at the climax of metamorphosis would help the frog's nutrition and energy needs during metamorphosis and development. Considering the increased expression of particular host genes (e.g., chitinase) in juvenile frogs, we speculate that host plays an important role in amphibian metamorphosis, and their symbiotic gut microbiome may help in this process by providing the nutrition and energy needs. We provide this basic information for the amphibian conservation and managements.
Collapse
Affiliation(s)
- Mengjie Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hua Chen
- Hangzhou Legenomics Bio-Pham Technology Co., Ltd., Hangzhou, China
| | - Lusha Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liangliang Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xungang Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qing Chang
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guoqing Lu
- Department of Biology, University of Nebraska Omaha, Omaha, NE, United States
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lifeng Zhu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
88
|
Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res 2020; 29:1478-1494. [PMID: 31467028 PMCID: PMC6724677 DOI: 10.1101/gr.243147.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
The yeast Saccharomyces boulardii has been used worldwide as a popular, commercial probiotic, but the basis of its probiotic action remains obscure. It is considered conspecific with budding yeast Saccharomyces cerevisiae, which is generally used in classical food applications. They have an almost identical genome sequence, making the genetic basis of probiotic potency in S. boulardii puzzling. We now show that S. boulardii produces at 37°C unusually high levels of acetic acid, which is strongly inhibitory to bacterial growth in agar-well diffusion assays and could be vital for its unique application as a probiotic among yeasts. Using pooled-segregant whole-genome sequence analysis with S. boulardii and S. cerevisiae parent strains, we succeeded in mapping the underlying QTLs and identified mutant alleles of SDH1 and WHI2 as the causative alleles. Both genes contain a SNP unique to S. boulardii (sdh1F317Y and whi2S287*) and are fully responsible for its high acetic acid production. S. boulardii strains show different levels of acetic acid production, depending on the copy number of the whi2S287* allele. Our results offer the first molecular explanation as to why S. boulardii could exert probiotic action as opposed to S. cerevisiae. They reveal for the first time the molecular-genetic basis of a probiotic action-related trait in S. boulardii and show that antibacterial potency of a probiotic microorganism can be due to strain-specific mutations within the same species. We suggest that acquisition of antibacterial activity through medium acidification offered a selective advantage to S. boulardii in its ecological niche and for its application as a probiotic.
Collapse
|
89
|
Pedraz L, Blanco‐Cabra N, Torrents E. Gradual adaptation of facultative anaerobic pathogens to microaerobic and anaerobic conditions. FASEB J 2019; 34:2912-2928. [DOI: 10.1096/fj.201902861r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Lucas Pedraz
- "Bacterial Infections: Antimicrobial Therapies” group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Núria Blanco‐Cabra
- "Bacterial Infections: Antimicrobial Therapies” group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Eduard Torrents
- "Bacterial Infections: Antimicrobial Therapies” group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| |
Collapse
|
90
|
Woodward SE, Krekhno Z, Finlay BB. Here, there, and everywhere: How pathogenicEscherichia colisense and respond to gastrointestinal biogeography. Cell Microbiol 2019; 21:e13107. [DOI: 10.1111/cmi.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - Zakhar Krekhno
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - B. Brett Finlay
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
- Department of Biochemistry and Molecular BiologyUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
91
|
Valentine M, Benadé E, Mouton M, Khan W, Botha A. Binary interactions between the yeast Candida albicans and two gut-associated Bacteroides species. Microb Pathog 2019; 135:103619. [PMID: 31291601 DOI: 10.1016/j.micpath.2019.103619] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 07/06/2019] [Indexed: 01/15/2023]
Abstract
The yeast Candida albicans forms part of the natural gut microbiota of healthy human individuals and its interactions with other microbial symbionts can impact host well-being. We therefore studied binary interactions between potentially pathogenic representatives of the gut-associated bacterial genus Bacteroides and C. albicans using anaerobic bacteria/yeast co-cultures prepared with a quarter-strength brain heart infusion (¼ BHI; 9.25 g/l) broth. We found that, except for minor changes observed in the cell numbers of one out of four C. albicans strains tested, yeast growth was largely unaffected by the presence of the bacteria. In contrast, growth of Bacteroides fragilis NCTC 9343 and Bacteroides vulgatus ATCC 8482 was significantly enhanced in the presence of C. albicans. Supplementation of Bacteroides monocultures with dead Candida albicans CAB 392 cells, containing intact outer cell wall mannan layers, resulted in increased bacterial concentrations. Subsequent culturing of the Bacteroides strains in a liquid minimal medium supplemented with candidal mannan demonstrated that B. vulgatus ATCC 8482, unlike B. fragilis NCTC 9343, utilized the mannan. Furthermore, by reducing the initial oxygen levels in monocultures prepared with ¼ BHI broth, bacterial numbers were significantly enhanced compared to in monocultures prepared with ¼ BHI broth not supplemented with the reducing agent l-cysteine hydrochloride. This suggests that C. albicans can stimulate Bacteroides growth via aerobic respiration and/or antioxidant production. The cell-free supernatant of 24-h-old C. albicans CAB 392 monocultures was also found to increase Bacteroides growth and chloramphenicol sensitivity.
Collapse
Affiliation(s)
- Marisa Valentine
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Eliska Benadé
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marnel Mouton
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Wesaal Khan
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
92
|
Vissenaekens H, Grootaert C, Rajkovic A, Van De Wiele T, Calatayud M. The response of five intestinal cell lines to anoxic conditionsin vitro. Biol Cell 2019; 111:232-244. [DOI: 10.1111/boc.201800076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/22/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hanne Vissenaekens
- Department of Food technologySafety and HealthFaculty of Bioscience EngineeringGhent University Ghent 9000 Belgium
| | - Charlotte Grootaert
- Department of Food technologySafety and HealthFaculty of Bioscience EngineeringGhent University Ghent 9000 Belgium
| | - Andreja Rajkovic
- Department of Food technologySafety and HealthFaculty of Bioscience EngineeringGhent University Ghent 9000 Belgium
| | - Tom Van De Wiele
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent University Ghent 9000 Belgium
| | - Marta Calatayud
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent University Ghent 9000 Belgium
| |
Collapse
|
93
|
Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids. Arch Toxicol 2019; 93:2197-2209. [PMID: 31222523 DOI: 10.1007/s00204-019-02499-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are among the most significant groups of phytotoxins present in more than 6000 plants in the world. Hepatotoxic retronecine-type PAs and their corresponding N-oxides usually co-exist in plants. Although PA-induced hepatotoxicity is known for a long time and has been extensively studied, the toxicity of PA N-oxide is rarely investigated. Recently, we reported PA N-oxide-induced hepatotoxicity in humans and rodents and also suggested the association of such toxicity with metabolic conversion of PA N-oxides to the corresponding toxic PAs. However, the detailed biochemical mechanism of PA N-oxide-induced hepatotoxicity is largely unknown. The present study investigated biotransformation of four representative cyclic retronecine-type PA N-oxides to their corresponding PAs in both gastrointestinal tract and liver. The results demonstrated that biotransformation of PA N-oxides to PAs was mediated by both intestinal microbiota and hepatic cytochrome P450 monooxygenases (CYPs), in particular CYP1A2 and CYP2D6. Subsequently, the formed PAs were metabolically activated predominantly by hepatic CYPs to form reactive metabolites exerting hepatotoxicity. Our findings delineated, for the first time, that the metabolism-mediated mechanism of PA N-oxide intoxication involved metabolic reduction of PA N-oxides to their corresponding PAs in both intestine and liver followed by oxidative bioactivation of the resultant PAs in the liver to generate reactive metabolites which interact with cellular proteins leading to hepatotoxicity. In addition, our results raised a public concern and also encouraged further investigations on potentially remarkable variations in PA N-oxide-induced hepatotoxicity caused by significantly altered intestinal microbiota due to individual differences in diets, life styles, and medications.
Collapse
|
94
|
Wang Z, Sun J, Tian M, Xu Z, Liu Y, Fu J, Yan A, Liu X. Proteomic Analysis of FNR-Regulated Anaerobiosis in Salmonella Typhimurium. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1001-1012. [PMID: 30903387 DOI: 10.1007/s13361-019-02145-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Bacterial pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) have to cope with fluctuating oxygen levels during infection within host gastrointestinal tracts. The global transcription factor FNR (fumarate nitrate reduction) plays a vital role in the adaptation of enteric bacteria to the low oxygen environment. Nevertheless, a comprehensive profile of the FNR regulon on the proteome level is still lacking in S. Typhimurium. Herein, we quantitatively profiled S. Typhimurium proteome of an fnr-deletion mutant during anaerobiosis in comparison to its parental strain. Notably, we found that FNR represses the expression of virulence genes of Salmonella pathogenicity island 1 (SPI-1) and negatively regulates propanediol utilization by directly binding to the promoter region of the pdu operon. Importantly, we provided evidence that S. Typhimurium lacking fnr exhibited increased antibiotics susceptibility and membrane permeability as well. Furthermore, genetic deletion of fnr leads to decreased bacterial survival in a Caenorhabditis elegans infection model, highlighting an important role of this regulator in mediating host-pathogen interactions.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jingjing Sun
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China
| | - Mengdan Tian
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China
| | - Yanhua Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China.
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Rd, Haidian District, Beijing, China.
| |
Collapse
|
95
|
A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng 2019; 3:520-531. [PMID: 31086325 PMCID: PMC6658209 DOI: 10.1038/s41551-019-0397-0] [Citation(s) in RCA: 520] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The diverse bacterial populations that comprise the commensal microbiome of the human intestine play a central role in health and disease. A method that sustains complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro would thus enable investigations of host–microbiome interactions. Here, we show the extended co-culture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota, enabled by a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients. When compared to aerobic co-culture conditions, the establishment of a transluminal hypoxia gradient in the chip increased intestinal barrier function and sustained a physiologically relevant level of microbial diversity, consisting of over 200 unique operational taxonomic units from 11 different genera, and of an abundance of obligate anaerobic bacteria with ratios of Firmicutes and Bacteroidetes similar to those observed in human faeces. The intestine-on-a-chip may serve as a discovery tool for the development of microbiome-related therapeutics, probiotics and nutraceuticals.
Collapse
|
96
|
Rivera KR, Yokus MA, Erb PD, Pozdin VA, Daniele M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 2019; 144:3190-3215. [PMID: 30968094 PMCID: PMC6564678 DOI: 10.1039/c8an02201a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As microfabrication techniques and tissue engineering methods improve, microphysiological systems (MPS) are being engineered that recapitulate complex physiological and pathophysiological states to supplement and challenge traditional animal models. Although MPS provide unique microenvironments that transcend common 2D cell culture, without proper regulation of oxygen content, MPS often fail to provide the biomimetic environment necessary to activate and investigate fundamental pathways of cellular metabolism and sub-cellular level. Oxygen exists in the human body in various concentrations and partial pressures; moreover, it fluctuates dramatically depending on fasting, exercise, and sleep patterns. Regulating oxygen content inside MPS necessitates a sensitive biological sensor to quantify oxygen content in real-time. Measuring oxygen in a microdevice is a non-trivial requirement for studies focused on understanding how oxygen impacts cellular processes, including angiogenesis and tumorigenesis. Quantifying oxygen inside a microdevice can be achieved via an array of technologies, with each method having benefits and limitations in terms of sensitivity, limits of detection, and invasiveness that must be considered and optimized. This article will review oxygen physiology in organ systems and offer comparisons of organ-specific MPS that do and do not consider oxygen microenvironments. Materials used in microphysiological models will also be analyzed in terms of their ability to control oxygen. Finally, oxygen sensor technologies are critically compared and evaluated for use in MPS.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
97
|
Li D, Chen H, Zhao J, Zhang H, Chen W. Potential Functions of the Gastrointestinal Microbiome Inhabiting the Length of the Rat Digest Tract. Int J Mol Sci 2019; 20:E1232. [PMID: 30870968 PMCID: PMC6429386 DOI: 10.3390/ijms20051232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
The rat is an important model animal used frequently in biological researches exploring the correlations between gut microbiome and a wide array of diseases. In this study, we used an extended ancestral-state reconstruction algorithm to predict the functional capabilities of the rat gastrointestinal microbiome. Our results indicate an apparent tendency toward metabolic heterogeneity along the longitudinal and transverse axes of the rat gastrointestinal tract (GIT). This heterogeneity was suggested by the enriched small-molecule transport activity and amino acid metabolism in the upper GIT, the aerobic energy metabolism in the stomach and the mucolysis-related metabolism in the lower GIT mucus layer. In contrast to prior results, many functional overlaps were observed when the gastrointestinal microbiomes of different hosts were compared. These overlaps implied that although both the biogeographic location and host genotype were prominent driving forces in shaping the gastrointestinal microbiota, the microbiome functions were similar across hosts when observed under similar physicochemical conditions at identical anatomical sites. Our work effectively complements the rat microbial biogeography dataset we released in 2017 and, thus, contributes to a better understanding and prediction of disease-related alterations in microbial community function.
Collapse
Affiliation(s)
- Dongyao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
98
|
Establishment of Listeria monocytogenes in the Gastrointestinal Tract. Microorganisms 2019; 7:microorganisms7030075. [PMID: 30857361 PMCID: PMC6463042 DOI: 10.3390/microorganisms7030075] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes is a Gram positive foodborne pathogen that can colonize the gastrointestinal tract of a number of hosts, including humans. These environments contain numerous stressors such as bile, low oxygen and acidic pH, which may impact the level of colonization and persistence of this organism within the GI tract. The ability of L. monocytogenes to establish infections and colonize the gastrointestinal tract is directly related to its ability to overcome these stressors, which is mediated by the efficient expression of several stress response mechanisms during its passage. This review will focus upon how and when this occurs and how this impacts the outcome of foodborne disease.
Collapse
|
99
|
Grate JW, Liu B, Kelly RT, Anheier NC, Schmidt TM. Microfluidic Sensors with Impregnated Fluorophores for Simultaneous Imaging of Spatial Structure and Chemical Oxygen Gradients. ACS Sens 2019; 4:317-325. [PMID: 30609370 DOI: 10.1021/acssensors.8b00924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interior surfaces of polystyrene microfluidic structures were impregnated with the oxygen sensing dye Pt(II) tetra(pentafluorophenyl)porphyrin (PtTFPP) using a solvent-induced fluorophore impregnation (SIFI) method. Using this technique, microfluidic oxygen sensors are obtained that enable simultaneous imaging of both chemical oxygen gradients and the physical structure of the microfluidic interior. A gentle method of fluorophore impregnation using acetonitrile solutions of PtTFPP at 50 °C was developed leading to a 10-μm-deep region containing fluorophore. This region is localized at the surface to sense oxygen in the interior fluid during use. Regions of the device that do not contact the interior fluid pathways lack fluorophores and are dark in fluorescent imaging. The technique was demonstrated on straight microchannel and pore network devices, the latter having pillars of 300 μm diameter spaced center to center at 340 μm providing pore throats of 40 μm. Sensing within channels or pores and imaging across the pore network devices were performed using a Lambert LIFA-P frequency domain fluorescence lifetime imaging system on a Leica microscope platform. Calibrations of different devices prepared by the SIFI method were indistinguishable. Gradient imaging showed fluorescent regions corresponding to the fluid pore network, dark pillars, and fluorescent lifetime varying across the gradient, thus providing both physical and chemical imaging. More generally, the SIFI technique can impregnate the interior surfaces of other polystyrene containers, such as cuvettes or cell and tissue culture containers, to enable sensing of interior conditions.
Collapse
Affiliation(s)
- Jay W. Grate
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bingwen Liu
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Ryan T. Kelly
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Norman C. Anheier
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Thomas M. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
100
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|