51
|
Borgbo T, Macek M, Chrudimska J, Jeppesen JV, Hansen LL, Andersen CY. Size matters: Associations between the androgen receptor CAG repeat length and the intrafollicular hormone milieu. Mol Cell Endocrinol 2016; 419:12-7. [PMID: 26404660 DOI: 10.1016/j.mce.2015.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Granulosa cell (GC) expressed androgen receptors (AR) and intrafollicular androgens are central to fertility. The transactivating domain of the AR contains a polymorphic CAG repeat sequence, which is linked to the transcriptional activity of AR and may influence the GC function. This study aims to evaluate the effects of the AR CAG repeat length on the intrafollicular hormone profiles, and the gene expression profiles of GC from human small antral follicles. In total, 190 small antral follicles (3-11 mm in diameter) were collected from 58 women undergoing ovarian cryopreservation for fertility preservation. The biallelic mean of the CAG repeat lengths were calculated for each woman, and grouped in three groups: Long CAG repeats (23-26 mean CAG); medium CAG repeats (20.5-22.5 mean CAG) and short CAG repeats (17.5-20.0 mean CAG). The following parameters were measured: follicle diameter, intrafollicular levels of Anti-Müllerian Hormone (AMH), progesterone, oestradiol, testosterone and androstenedione, and GC gene expression levels of FSHR, LHR, AR, CYP19A1, and AMH. The long CAG repeat lengths were associated with significantly decreased testosterone levels, as compared to medium CAG repeats (P = 0.05) and short CAG repeats (P = 0.003). Furthermore, in follicles 3-6 mm in diameter, the long CAG repeats were associated with significantly increased LHR and CYP19A1 gene expression levels compared to short CAG repeat lengths (P = 0.004 and P = 0.04 respectively), and significantly increased LHR expression compared to medium CAG repeat lengths (P = 0.03). In conclusion, long CAG repeat lengths in the AR were associated to significant attenuated levels of androgens and an increased conversion of testosterone into oestradiol, in human small antral follicles.
Collapse
Affiliation(s)
- T Borgbo
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark; Laboratory of Reproductive Biology, Rigshospitalet, Copenhagen, Denmark.
| | - M Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine Charles University, University Hospital Motol, Prague, Czech Republic
| | - J Chrudimska
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine Charles University, University Hospital Motol, Prague, Czech Republic
| | - J V Jeppesen
- Laboratory of Reproductive Biology, Rigshospitalet, Copenhagen, Denmark
| | - L L Hansen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
52
|
Kaushik D, Vashistha V, Isharwal S, Sediqe SA, Lin MF. Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials. Ther Adv Urol 2015; 7:388-95. [PMID: 26622323 DOI: 10.1177/1756287215597637] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Historically, androgen-deprivation therapy has been the cornerstone for treatment of metastatic prostate cancer. Unfortunately, nearly majority patients with prostate cancer transition to the refractory state of castration-resistant prostate cancer (CRPC). Newer therapeutic agents are needed for treating these CRPC patients that are unresponsive to androgen deprivation and/or chemotherapy. The histone deacetylase (HDAC) family of enzymes limits the expression of genomic regions by improving binding between histones and the DNA backbone. Modulating the role of HDAC enzymes can alter the cell's regulation of proto-oncogenes and tumor suppressor genes, thereby regulating potential neoplastic proliferation. As a result, histone deacetylase inhibitors (HDACi) are now being evaluated for CRPC or chemotherapy-resistant prostate cancer due to their effects on the expression of the androgen receptor gene. In this paper, we review the molecular mechanism and functional target molecules of different HDACi as applicable to CRPC as well as describe recent and current clinical trials involving HDACi in prostate cancer. To date, four HDAC classes comprising 18 isoenzymes have been identified. Recent clinical trials of vorinostat, romidepsin, and panobinostat have provided cautious optimism towards improved outcomes using these novel therapeutic agents for CPRC patients. Nevertheless, no phase III trial has been conducted to cement one of these drugs as an adjunct to androgen-deprivation therapy. Consequently, further investigation is necessary to delineate the benefits and drawbacks of these medications.
Collapse
Affiliation(s)
- Dharam Kaushik
- Department of Urology, University of Texas Health Science Center and Cancer Therapy and Research Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Vishal Vashistha
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sudhir Isharwal
- Section of Urology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Soud A Sediqe
- Department of Internal Medicine, MetroHealth Medical Center, Cleveland, OH, USA
| | - Ming-Fong Lin
- Section of Urology, and Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
53
|
Shah K, Bradbury NA. Kinase modulation of androgen receptor signaling: implications for prostate cancer. ACTA ACUST UNITED AC 2015; 2. [PMID: 28580371 DOI: 10.14800/ccm.1023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Androgens and androgen receptors play essential roles in the development and progression of prostate cancer, a disease that claims roughly 28,000 lives annually. In addition to androgen biding, androgen receptor activity can be regulated via several post-translational modifications such as ubiquitination, acetylation, phosphorylation, methylation & SUMO-ylation. Off these modifications, phosphorylation has been the most extensively studied. Modification by phosphorylation can alter androgen receptor localization, protein stability and transcriptional activity, ultimately leading to changes in the biology of cancer cells and cancer progression. Understanding, role of phosphorylated androgen receptor species holds the key to identifying a potential therapeutic drug target for patients with prostate cancer and castrate resistant prostate cancer. Here, we present a brief review of recently discovered protein kinases phosphorylating AR, focusing on the functional role of phosphorylated androgen receptor species in prostate cancer and castrate resistant prostate cancer.
Collapse
Affiliation(s)
- Kalpit Shah
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine & Sciences, North Chicago, IL, 60064, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine & Sciences, North Chicago, IL, 60064, USA
| |
Collapse
|
54
|
17-DMCHAG, a new geldanamycin derivative, inhibits prostate cancer cells through Hsp90 inhibition and survivin downregulation. Cancer Lett 2015; 362:83-96. [DOI: 10.1016/j.canlet.2015.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/21/2022]
|
55
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
56
|
Mitra R, Goodman OB. CYP3A5 regulates prostate cancer cell growth by facilitating nuclear translocation of AR. Prostate 2015; 75:527-38. [PMID: 25586052 DOI: 10.1002/pros.22940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/11/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The central role of androgen receptor (AR) signaling is established in prostate cancer growth and progression. We propose CYP3A5 is part of a feedback loop that modulates the sensitivity of AR to androgen exposure. The purpose of this study is to elucidate the mechanism of regulation of AR expression by CYP3A5. METHODS To identify the role of CYP3A5 in regulating AR signaling, CYP3A5 protein expression was inhibited using CYP3A5 siRNA and azamulin. Both cell fractionation and immunocytochemical approaches in combination with dihydrotestosterone (DHT) and R1881 treatment were used to evaluate changes in AR nuclear translocation. RESULTS CYP3A5 siRNA blocked growth of LNCaP and C4-2 cells by 30-60% (P ≤ 0.005). Azamulin, a CYP3A pharmacologic inhibitor, reduced the growth of LNCaP, C4-2 and 22RV1 lines by ∼ 40% (P ≤ 0.005). CYP3A5 siRNA inhibited growth in response to DHT and R1881 treatment in LNCaP and C4-2 by decreasing nuclear AR localization and resulting in diminished PSA and TMPRSS2 expression. Decreased AR nuclear localization resulting from CYP3A5 inhibition resulted in growth inhibition comparable to IC60 and IC40 of bicalutamide in LNCaP and C4-2 cell lines. Conversely, the CYP3A inducer rifampicin enhanced AR nuclear localization. CONCLUSION As CYP3A5 regulates the nuclear translocation of AR; co-targeting CYP3A5 may provide a novel strategy for enhancing the efficacy of androgen deprivation therapy. Consequentially, these data suggest that concomitant medications may impact androgen deprivation therapy's efficacy.
Collapse
Affiliation(s)
- Ranjana Mitra
- College of Biomedical Sciences, Roseman University of Health Sciences, Nevada
| | | |
Collapse
|
57
|
Abstract
The androgen receptor (AR), ligand-induced transcription factor, is expressed in primary prostate cancer and in metastases. AR regulates multiple cellular events, proliferation, apoptosis, migration, invasion, and differentiation. Its expression in prostate cancer cells is regulated by steroid and peptide hormones. AR downregulation by various compounds which are contained in fruits and vegetables is considered a chemopreventive strategy for prostate cancer. There is a bidirectional interaction between the AR and micro-RNA (miRNA) in prostate cancer; androgens may upregulate or downregulate the selected miRNA, whereas the AR itself is a target of miRNA. AR mutations have been discovered in prostate cancer, and their incidence may increase with tumor progression. AR mutations and increased expression of selected coactivators contribute to the acquisition of agonistic properties of anti-androgens. Expression of some of the coactivators is enhanced during androgen ablation. AR activity is regulated by peptides such as cytokines or growth factors which reduce the concentration of androgen required for maximal stimulation of the receptor. In prostate cancer, variant ARs which exhibit constitutive activity were detected. Novel therapies which interfere with intracrine synthesis of androgens or inhibit nuclear translocation of the AR have been introduced in the clinic.
Collapse
Affiliation(s)
- Zoran Culig
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | |
Collapse
|
58
|
Azad AA, Zoubeidi A, Gleave ME, Chi KN. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 2014; 12:26-36. [DOI: 10.1038/nrurol.2014.320] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
59
|
Lamb AD, Massie CE, Neal DE. The transcriptional programme of the androgen receptor (AR) in prostate cancer. BJU Int 2014; 113:358-66. [PMID: 24053777 DOI: 10.1111/bju.12415] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors.
Collapse
Affiliation(s)
- Alastair D Lamb
- Cambridge University Department of Urology, Addenbrooke's Hospital and Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | | | | |
Collapse
|
60
|
A Novel Mechanism for Cross-Adaptation between Heat and Altitude Acclimation: The Role of Heat Shock Protein 90. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/121402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat shock protein 90 (HSP90) is a member of a family of molecular chaperone proteins which can be upregulated by various stressors including heat stress leading to increases in HSP90 protein expression. Its primary functions include (1) renaturing and denaturing of damaged proteins caused by heat stress and (2) interacting with client proteins to induce cell signaling for gene expression. The latter function is of interest because, in cancer cells, HSP90 has been reported to interact with the transcription hypoxic-inducible factor 1α (HIF1α). In a normoxic environment, HIF1α is degraded and therefore has limited physiological function. In contrast, in a hypoxic environment, stabilized HIF1α acts to promote erythropoiesis and angiogenesis. Since HSP90 interacts with HIF1α, and HSP90 can be upregulated from heat acclimation in humans, we present a proposal that heat acclimation can mimic molecular adaptations to those of altitude exposure. Specifically, we propose that heat acclimation increases HSP90 which then stabilizes HIF1α in a normoxic environment. This has many implications since HIF1α regulates red blood cell and vasculature formation. In this paper we will discuss (1) the functional roles of HSP90 and HIF1α, (2) the interaction between HSP90 and other client proteins including HIF1α, and (3) results from in vitro studies that may suggest how the relationship between HSP90 and HIF1α might be applied to individuals preparing to make altitude sojourns.
Collapse
|
61
|
Changes in the expression of Heat Shock Proteins in ovaries from bovines with cystic ovarian disease induced by ACTH. Res Vet Sci 2013; 95:1059-67. [DOI: 10.1016/j.rvsc.2013.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/12/2013] [Accepted: 07/13/2013] [Indexed: 02/08/2023]
|
62
|
Chhipa RR, Halim D, Cheng J, Zhang HY, Mohler JL, Ip C, Wu Y. The direct inhibitory effect of dutasteride or finasteride on androgen receptor activity is cell line specific. Prostate 2013; 73:1483-94. [PMID: 23813737 PMCID: PMC3992475 DOI: 10.1002/pros.22696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/15/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Finasteride and dutasteride were developed originally as 5α-reductase inhibitors to block the conversion of testosterone to dihydrotestosterone (DHT). These drugs may possess off-target effects on the androgen receptor (AR) due to their structural similarity to DHT. METHODS A total of four human prostate cancer cell models were examined: LNCaP (T877A mutant AR), 22Rv1 (H874Y mutant AR), LAPC4 (wild-type AR), and VCaP (wild-type AR). Cells were cultured in 10% charcoal-stripped fetal bovine serum, either with or without DHT added to the medium. AR activity was evaluated using the ARE-luciferase assay or the expression of AR regulated genes. RESULTS Dutasteride was more potent than finasteride in interfering with DHT-stimulated AR signaling. Disruption of AR function was accompanied by decreased cell growth. Cells that rely on DHT for protection against death were particularly vulnerable to dutasteride. Different prostate cancer cell models exhibited different sensitivities to dutasteride and finasteride. LNCaP was most sensitive, LAPC4 and VCaP were intermediate, while 22Rv1 was least sensitive. Regardless of the AR genotype, if AR was transfected into drug-sensitive cells, AR was inhibited by drug treatment; and if AR was transfected into drug-resistant cells, AR was not inhibited. CONCLUSIONS The direct inhibitory effect of dutasteride or finasteride on AR signaling is cell line specific. Mutations in the ligand binding domain of AR do not appear to play a significant role in influencing the AR antagonistic effect of these drugs. Subcellular constituent is an important factor in determining the drug effect on AR function.
Collapse
Affiliation(s)
- Rishi Raj Chhipa
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - Danny Halim
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
- Health Research Unit Faculty of Medicine Universitas Padjadjaran Bandung 40161, Indonesia
| | - Jinrong Cheng
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - Huan Yi Zhang
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - James L. Mohler
- Department of Urology Roswell Park Cancer Institute Buffalo, NY 14263
- Department of Urology University at Buffalo School of Medicine and Biotechnology Buffalo, NY 14263
| | - Clement Ip
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
| | - Yue Wu
- Department of Cancer Prevention and Control Roswell Park Cancer Institute Buffalo, NY 14263
- Corresponding Author: Department of Cancer Prevention and Control Roswell Park Cancer Institute Elm & Carlton Streets Buffalo, NY 14263 Phone: 716-845-1704; Fax: 716-845-8100
| |
Collapse
|
63
|
Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp. Nat Struct Mol Biol 2013; 20:1265-72. [DOI: 10.1038/nsmb.2677] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023]
|
64
|
Specificity in the actions of the UBR1 ubiquitin ligase in the degradation of nuclear receptors. FEBS Open Bio 2013; 3:394-7. [PMID: 24251101 PMCID: PMC3821023 DOI: 10.1016/j.fob.2013.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/23/2022] Open
Abstract
The UBR1 ubiquitin ligase promotes degradation of proteins via the N-end rule and by another mechanism that detects a misfolded conformation. Although UBR1 was shown recently to act on protein kinases whose misfolding was promoted by inhibition of Hsp90, it was unknown whether this ubiquitin ligase targeted other client types of the chaperone. We analyzed the role of UBR1 in the degradation of nuclear receptors that are classical clients of Hsp90. Our results showed that UBR1 deletion results in impaired degradation of the glucocorticoid receptor and the androgen receptor but not the estrogen receptor α. These findings demonstrate specificity in the actions of the UBR1 ubiquitin ligase in the degradation of Hsp90 clients in the presence of small molecule inhibitors that promote client misfolding. UBR1 promotes degradation of misfolded glucocorticoid receptors (GR) upon Hsp90 inhibition. Overexpression of UBR1 promotes degradation of the GR without Hsp90 inhibition. UBR1 also promotes degradation of the androgen receptor (AR) but not the estrogen receptor α (ERα).
Collapse
|
65
|
Colucci JK, Ortlund EA. Expression, purification and crystallization of the ancestral androgen receptor-DHT complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:994-6. [PMID: 23989146 DOI: 10.1107/s1744309113018745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/05/2013] [Indexed: 11/10/2022]
Abstract
Steroid receptors (SRs) are a closely related family of ligand-dependent nuclear receptors that mediate the transcription of genes critical for development, reproduction and immunity. SR dysregulation has been implicated in cancer, inflammatory diseases and metabolic disorders. SRs bind their cognate hormone ligand with exquisite specificity, offering a unique system to study the evolution of molecular recognition. The SR family evolved from an estrogen-sensitive ancestor and diverged to become sensitive to progestagens, corticoids and, most recently, androgens. To understand the structural mechanisms driving the evolution of androgen responsiveness, the ancestral androgen receptor (ancAR1) was crystallized in complex with 5α-dihydrotestosterone (DHT) and a fragment of the transcriptional mediator/intermediary factor 2 (Tif2). Crystals diffracted to 2.1 Å resolution and the resulting structure will permit a direct comparison with its progestagen-sensitive ancestor, ancestral steroid receptor 2 (AncSR2).
Collapse
Affiliation(s)
- Jennifer K Colucci
- Department of Biochemistry and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30033, USA
| | | |
Collapse
|
66
|
Ai J, Wang Z. HDAC6 Regulation of Androgen Signaling in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
67
|
Chan SC, Li Y, Dehm SM. Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal. J Biol Chem 2012; 287:19736-49. [PMID: 22532567 DOI: 10.1074/jbc.m112.352930] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of truncated androgen receptor (AR) splice variants has emerged as an important mechanism of prostate cancer (PCa) resistance to AR-targeted therapy and progression to a lethal castration-resistant phenotype. However, the precise role of these factors at this stage of the disease is not clear due to loss of multiple COOH-terminal AR protein domains, including the canonical nuclear localization signal (NLS) in the AR hinge region. Despite loss of this NLS, we show that diverse truncated AR variant species have a basal level of nuclear localization sufficient for ligand-independent transcriptional activity. Whereas full-length AR requires Hsp90 and importin-β for active nuclear translocation, basal nuclear localization of truncated AR variants is independent of these classical signals. For a subset of truncated AR variants, this basal level of nuclear import can be augmented by unique COOH-terminal sequences that reconstitute classical AR NLS activity. However, this property is separable from ligand-independent transcriptional activity. Therefore, the AR splice variant core consisting of the AR NH(2)-terminal domain and DNA binding domain is sufficient for nuclear localization and androgen-independent transcriptional activation of endogenous AR target genes. Indeed, we show that truncated AR variants with nuclear as well as nuclear/cytoplasmic localization patterns can drive androgen-independent growth of PCa cells. Together, our data demonstrate that diverse truncated AR species with varying efficiencies of nuclear localization can contribute to castration-resistant PCa pathology by driving persistent ligand-independent AR transcriptional activity.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
68
|
SAYEED AEJAZ, ALAM NAVED, TREROTOLA MARCO, LANGUINO LUCIAR. Insulin-like growth factor 1 stimulation of androgen receptor activity requires β(1A) integrins. J Cell Physiol 2012; 227:751-8. [PMID: 21465482 PMCID: PMC3195902 DOI: 10.1002/jcp.22784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the findings that β1 integrins play a vital role in the regulation of cell proliferation and survival, the mechanisms through which they operate and lead to cancer progression remain elusive. Previously, our laboratory has shown that β(1A) integrins support insulin-like growth factor 1 (IGFI)-mediated mitogenic and transforming activities. Here, we report that β(1A) integrins regulate basal levels of IGF-IR, although they are not critical for maintaining cancer cell morphology. Upon transfection of β(1A) siRNA and consequent downregulation of IGF-IR, we show inhibition of anchorage-independent growth of prostate cancer cells, a function which is dependent on IGF-IR expression. In addition, we demonstrate that IGFI-mediated activation of androgen receptor (AR), known to occur in prostate cancer cells, requires expression of β(1A) integrins as evaluated by luciferase reporter assays and immunoblotting analysis. Since β(1A) integrin levels are increased by R1881 or dihydrotestosterone (DHT), our results imply that β(1A) integrins support an androgen-enhanced feedback loop that regulates the expression of IGF-IR. β(1A) integrins also regulate inducible levels of IGF-IR in cells stimulated by androgen or by a combination of androgen and IGFI, as evaluated by flow cytometric analysis and immunoblotting. Furthermore, upon transfection of β(1A) siRNA and consequent downregulation of IGF-IR, neither activation of AKT, an effector of IGF-IR, nor AR levels are affected. We conclude that β(1A) integrin expression is critical for maintaining the regulatory crosstalk between IGF-IR and AR.
Collapse
Affiliation(s)
- AEJAZ SAYEED
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - NAVED ALAM
- Premas Biotechnology Pvt. Limited, Gurgaon, Haryana 122050, India
| | - MARCO TREROTOLA
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - LUCIA R. LANGUINO
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
69
|
Lack NA, Axerio-Cilies P, Tavassoli P, Han FQ, Chan KH, Feau C, LeBlanc E, Guns ET, Guy RK, Rennie PS, Cherkasov A. Targeting the binding function 3 (BF3) site of the human androgen receptor through virtual screening. J Med Chem 2011; 54:8563-73. [PMID: 22047606 PMCID: PMC3668559 DOI: 10.1021/jm201098n] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The androgen receptor (AR) is the best studied drug target for the treatment of prostate cancer. While there are a number of drugs that target the AR, they all work through the same mechanism of action and are prone to the development of drug resistance. There is a large unmet need for novel AR inhibitors which work through alternative mechanism(s). Recent studies have identified a novel site on the AR called binding function 3 (BF3) that is involved into AR transcriptional activity. In order to identify inhibitors that target the BF3 site, we have conducted a large-scale in silico screen followed by experimental evaluation. A number of compounds were identified that effectively inhibited the AR transcriptional activity with no obvious cytotoxicity. The mechanism of action of these compounds was validated by biochemical assays and X-ray crystallography. These findings lay a foundation for the development of alternative or supplementary therapies capable of combating prostate cancer even in its antiandrogen resistant forms.
Collapse
Affiliation(s)
- Nathan A. Lack
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Peter Axerio-Cilies
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Peyman Tavassoli
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Frank Q. Han
- Structure Based Design Inc, 6048 Cornerstone Court West, San Diego, CA 92121
| | - Ka Hong Chan
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Clementine Feau
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38103
| | - Eric LeBlanc
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Emma Tomlinson Guns
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - R. Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38103
| | - Paul S. Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660, Oak Street, Vancouver, BC, V6H 3Z6, Canada
| |
Collapse
|
70
|
New insights into the androgen-targeted therapies and epigenetic therapies in prostate cancer. Prostate Cancer 2011; 2011:918707. [PMID: 22111003 PMCID: PMC3196248 DOI: 10.1155/2011/918707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/27/2011] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most common cancer in men in the United States, and it is the second leading cause of cancer-related death in American men. The androgen receptor (AR), a receptor of nuclear family and a transcription factor, is the most important target in this disease. While most efforts in the clinic are currently directed at lowering levels of androgens that activate AR, resistance to androgen deprivation eventually develops. Most prostate cancer deaths are attributable to this castration-resistant form of prostate cancer (CRPC). Recent work has shed light on the importance of epigenetic events including facilitation of AR signaling by histone-modifying enzymes, posttranslational modifications of AR such as sumoylation. Herein, we provide an overview of the structure of human AR and its key structural domains that can be used as targets to develop novel antiandrogens. We also summarize recent findings about the antiandrogens and the epigenetic factors that modulate the action of AR.
Collapse
|
71
|
Axerio-Cilies P, Lack NA, Nayana MRS, Chan KH, Yeung A, Leblanc E, Guns EST, Rennie PS, Cherkasov A. Inhibitors of androgen receptor activation function-2 (AF2) site identified through virtual screening. J Med Chem 2011; 54:6197-205. [PMID: 21846139 DOI: 10.1021/jm200532b] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The androgen receptor (AR) is one of the most studied drug targets for the treatment of prostate cancer. However, all current anti-androgens directly interact with the AR at the androgen binding site, which is prone to resistant mutations, calling for new strategies of the AR inhibition. The current study represents the first attempt to use virtual screening to identify inhibitors of activation function-2 (AF2) of the human AR. By combining large-scale docking with experimental approaches, we were able to identify several small molecules that interact with the AF2 and effectively prevent the transcriptional activation of the AR. The crystallographic structure of one of these inhibitors in complex with the AR provides critical insight into the corresponding protein-ligand interactions and suitable for future hit optimization. Taken together, our results provide a promising ground for development of novel anti-androgens that can help to address the problem of drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Peter Axerio-Cilies
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Li J, Cao B, Liu X, Fu X, Xiong Z, Chen L, Sartor O, Dong Y, Zhang H. Berberine suppresses androgen receptor signaling in prostate cancer. Mol Cancer Ther 2011; 10:1346-56. [PMID: 21613449 PMCID: PMC3154574 DOI: 10.1158/1535-7163.mct-10-0985] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is critical in the normal development and function of the prostate, as well as in prostate carcinogenesis. Androgen deprivation therapy is the mainstay in the treatment of advanced prostate cancer; however, after an initial response, the disease inevitably progresses to castration-resistant prostate cancer (CRPC). Recent evidence suggests that continued AR activation, sometimes in a ligand-independent manner, is commonly associated with the development of CRPC. Thus, novel agents targeting the AR are urgently needed as a strategic step in developing new therapies for this disease state. In this study, we investigated the effect of berberine on AR signaling in prostate cancer. We report that berberine decreased the transcriptional activity of AR. Berberine did not affect AR mRNA expression, but induced AR protein degradation. Several ligand-binding, domain-truncated AR splice variants have been identified, and these variants are believed to promote the development of CRPC in patients. Interestingly, we found that these variants were more susceptible to berberine-induced degradation than the full-length AR. Furthermore, although the growth of LNCaP xenografts in nude mice was inhibited by berberine, and AR expression was reduced in the tumors, the morphology and AR expression in normal prostates were not affected. This study is the first to show that berberine suppresses AR signaling and suggests that berberine, or its derivatives, presents a promising agent for the prevention and/or treatment of prostate cancer.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology and Laboratory Medicine, Tulane University School of medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of medicine, New Orleans, LA 70112
- Department of Pharmacology, Norman Bethune School of Medicine, Jilin University, Changchun, Jilin, 130023, China
| | - Bo Cao
- Department of Structural and Cellular Biology, Tulane University School of medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of medicine, New Orleans, LA 70112
| | - Xichun Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of medicine, New Orleans, LA 70112
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, Jilin, 130023, China
| | - Zhenggang Xiong
- Department of Pathology and Laboratory Medicine, Tulane University School of medicine, New Orleans, LA 70112
| | - Li Chen
- Department of Pharmacology, Norman Bethune School of Medicine, Jilin University, Changchun, Jilin, 130023, China
| | - Oliver Sartor
- Department of Urology, Tulane University School of medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of medicine, New Orleans, LA 70112
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of medicine, New Orleans, LA 70112
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, Jilin, 130023, China
| | - Haitao Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of medicine, New Orleans, LA 70112
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, Jilin, 130023, China
| |
Collapse
|
73
|
Pacey S, Wilson RH, Walton M, Eatock MM, Hardcastle A, Zetterlund A, Arkenau HT, Moreno-Farre J, Banerji U, Roels B, Peachey H, Aherne W, de Bono JS, Raynaud F, Workman P, Judson I. A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin Cancer Res 2011; 17:1561-70. [PMID: 21278242 PMCID: PMC3060938 DOI: 10.1158/1078-0432.ccr-10-1927] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A phase I study to define toxicity and recommend a phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response, and definition of a biologically effective dose (BED). PATIENTS AND METHODS Patients with advanced solid cancers were treated with weekly, intravenous (i.v.) 17-DMAG. An accelerated titration dose escalation design was used. The maximum tolerated dose (MTD) was the highest dose at which ≤ 1/6 patients experienced dose limiting toxicity (DLT). Dose de-escalation from the MTD was planned with mandatory, sequential tumor biopsies to determine a BED. Pharmacokinetic and pharmacodynamic assays were validated prior to patient accrual. RESULTS Twenty-five patients received 17-DMAG (range 2.5-106 mg/m(2)). At 106 mg/m(2) of 17-DMAG 2/4 patients experienced DLT, including one treatment-related death. No DLT occurred at 80 mg/m(2). Common adverse events were gastrointestinal, liver function changes, and ocular. Area under the curve and mean peak concentration increased proportionally with 17-DMAG doses 80 mg/m(2) or less. In peripheral blood mononuclear cells significant (P < 0.05) HSP72 induction was detected (≥ 20 mg/m(2)) and sustained for 96 hours (≥ 40 mg/m(2)). Plasma HSP72 levels were greatest in the two patients who experienced DLT. At 80 mg/m(2) client protein (CDK4, LCK) depletion was detected and tumor samples from 3 of 5 patients confirmed HSP90 inhibition. Clinical activity included complete response (castration refractory prostate cancer, CRPC 124 weeks), partial response (melanoma, 159 weeks), and stable disease (chondrosarcoma, CRPC, and renal cancer for 28, 59, and 76 weeks, respectively). CONCLUSIONS The recommended phase II dose of 17-DMAG is 80 mg/m(2) weekly i.v.
Collapse
Affiliation(s)
- Simon Pacey
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Richard H. Wilson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AB, N. Ireland, UK
| | - Mike Walton
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Martin M. Eatock
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AB, N. Ireland, UK
| | - Anthea Hardcastle
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Anna Zetterlund
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | - Udai Banerji
- The Royal Marsden Foundation NHS Trust, Sutton, Surrey, UK
| | - Belle Roels
- Cancer Research UK, Lincolns Inn Fields, London, UK
| | | | - Wynne Aherne
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Ian Judson
- The Royal Marsden Foundation NHS Trust, Sutton, Surrey, UK
| |
Collapse
|
74
|
Mashima T, Okabe S, Seimiya H. Pharmacological targeting of constitutively active truncated androgen receptor by nigericin and suppression of hormone-refractory prostate cancer cell growth. Mol Pharmacol 2010; 78:846-54. [PMID: 20709811 DOI: 10.1124/mol.110.064790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
In prostate cancer, blockade of androgen receptor (AR) signaling confers a therapeutic benefit. Nevertheless, this standard therapy allows relapse of hormone-refractory prostate cancer (HRPC) with a poor prognosis. HRPC cells often express variant ARs, such as point-mutated alleles and splicing isoforms, resulting in androgen-independent cell growth and resistance to antiandrogen (e.g., flutamide). However, a pharmacological strategy to block such aberrant ARs remains to be established. Here, we established a reporter system that monitors AR-mediated activation of a prostate-specific antigen (PSA) promoter. Our chemical library screening revealed that the antibiotic nigericin inhibits AR-mediated activation of the PSA promoter and PSA production in prostate cancer cells. Nigericin suppressed the androgen-dependent LNCaP cell growth even though the cells expressed a flutamide-resistant mutant AR. These effects were caused by AR suppression at the mRNA and post-translational levels. In HRPC 22Rv1 cells, which express the full-length AR and the constitutively active, truncated ARs lacking the carboxyl-terminal ligand-binding domain, small interfering RNA-mediated knockdown of both AR isoforms efficiently suppressed the androgen-independent cell growth, whereas knockdown of the full-length AR alone had no significant effect. It is noteworthy that nigericin was able to mimic the knockdown of both AR isoforms: it reduced the expression of the full-length and the truncated ARs, and it induced G(1) cell-cycle arrest and apoptosis of 22Rv1 cells. These observations suggest that nigericin-like compounds that suppress AR expression at the mRNA level could be applied as new-type therapeutic agents that inhibit a broad spectrum of AR variants in HRPC.
Collapse
MESH Headings
- Androgen Receptor Antagonists/pharmacology
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Gene Knockdown Techniques
- Genes, Reporter
- Humans
- Male
- Nigericin/pharmacology
- Promoter Regions, Genetic
- Prostate-Specific Antigen/biosynthesis
- Prostate-Specific Antigen/genetics
- Prostatic Neoplasms/pathology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Protein Processing, Post-Translational
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/genetics
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | |
Collapse
|
75
|
Powell E, Wang Y, Shapiro DJ, Xu W. Differential requirements of Hsp90 and DNA for the formation of estrogen receptor homodimers and heterodimers. J Biol Chem 2010; 285:16125-34. [PMID: 20353944 DOI: 10.1074/jbc.m110.104356] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The two estrogen receptor (ER) subforms, ERalpha and ERbeta, are capable of forming DNA-binding homodimers and heterodimers. Although binding to DNA is thought to stabilize ER dimers, how ERalpha/alpha, ERbeta/beta, and ERalpha/beta dimerization is regulated by DNA and the chaperone protein Hsp90 is poorly understood. Using our highly optimized bioluminescence resonance energy transfer assays in conjunction with assays for transcriptional activation of ERs, we determined that DNA binding appears to play a minor role in the stabilization of ER dimers, especially in the case of ERbeta/beta homodimers. These findings suggest that ER dimers form before they associate with chromatin and that DNA binding plays a minor role in stabilizing ER dimers. Additionally, although Hsp90 is essential for the proper dimerization of ERalpha/alpha and ERalpha/beta, it is not required for the proper dimerization of ERbeta/beta. Despite this, Hsp90 is critical for the estrogen-dependent transcriptional activity of the ERbeta/beta homodimer. Thus, Hsp90 is implicated as an important regulator of distinct aspects of ERalpha and ERbeta action.
Collapse
Affiliation(s)
- Emily Powell
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
76
|
Verkleij LM, van de Ven ALM, Wohlgemuth M, Kruyt FA. [Ending up in a wheelchair in a strange way]. Tijdschr Gerontol Geriatr 2010; 41:27-31. [PMID: 20333954 DOI: 10.1007/bf03096177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this case-report we present a patient with a genetic disease which was first diagnosed in his eighties. The genetic disease is a rare neurologic disease, Kennedy's disease or spinobulbar muscular atrophy (SBMA). We also discuss the genetics of the disease and developments of future therapies.
Collapse
|
77
|
|
78
|
Molife LR, Attard G, Fong PC, Karavasilis V, Reid AHM, Patterson S, Riggs CE, Higano C, Stadler WM, McCulloch W, Dearnaley D, Parker C, de Bono JS. Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann Oncol 2010; 21:109-13. [PMID: 19608618 DOI: 10.1093/annonc/mdp270] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Histone deacetylase blockade can promote heat shock protein 90 (HSP90) acetylation, abrogating androgen receptor signaling. A phase II trial of the histone deacetylase inhibitor (HDACi) romidepsin was conducted in patients with progressing, metastatic, castration-resistant prostate cancer (CRPC). PATIENTS AND METHODS A dose of 13 mg/m(2) was administered i.v. over 4 h on days 1, 8 and 15 every 28 days. The primary end point was rate of disease control defined as no evidence of radiological progression at 6 months. A sample size of 16 assessable patients in stage 1 and nine assessable patients in stage 2 was selected; progression to stage 2 required one or more patients with disease control in stage 1 (H(o) = 0.10, H(a) = 0.30; alpha and beta = 0.10). RESULTS Thirty-five patients were enrolled. Two patients achieved a confirmed radiological partial response (RECIST) lasting > or = 6 months, along with a confirmed prostate-specific antigen decline of > or = 50%. Eleven patients experienced toxicity necessitating early discontinuation. The commonest adverse events were nausea (30 patients; 85.7%), fatigue (28 patients; 80.0%), vomiting (23 patients; 65.7%) and anorexia (20 patients; 57.1%). There was no significant cardiac toxicity. CONCLUSIONS At the dose and schedule selected, romidepsin demonstrated minimal antitumor activity in chemonaive patients with CRPC. Further studies of improved HDACi, alone and in combination with other therapies, should nevertheless be investigated.
Collapse
Affiliation(s)
- L R Molife
- Drug Development Unit, Royal Marsden National Health Service Foundation Trust and Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zhou XE, Suino-Powell K, Ludidi PL, McDonnell DP, Xu HE. Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs. Protein Expr Purif 2009; 71:21-7. [PMID: 19995608 DOI: 10.1016/j.pep.2009.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/19/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
The androgen receptor (AR) is a DNA-binding and hormone-activated transcription factor that plays critical roles in the development and progression of prostate cancer. The transcriptional function of AR is modulated by intermolecular interactions with DNA elements and coactivator proteins, as well as intramolecular interactions between AR domains; thus, the structural information from the full-length AR or a multi-domain fragment is essential for understanding the molecular basis of AR functions. Here we report the expression and purification of full-length AR protein and of a fragment containing its DNA-binding and ligand-binding domains connected by the hinge region in the presence of its natural ligand, dihydrotestosterone. Crystals of ligand-bound full-length AR and of the AR fragment in complex with DNA elements and coactivator motifs have been obtained and diffracted to low resolutions. These results help establish a foundation for pursuing further crystallographic studies of an AR/DNA complex.
Collapse
Affiliation(s)
- X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue, NE Grand Rapids, MI 49503, USA.
| | | | | | | | | |
Collapse
|
80
|
Single plasmids expressing human steroid hormone receptors and a reporter gene for use in yeast signaling assays. Plasmid 2009; 63:73-8. [PMID: 19962400 DOI: 10.1016/j.plasmid.2009.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/17/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022]
Abstract
Single plasmids designed to express the six human type I steroid hormone receptors and detect signaling activity are described in this report. These stably replicating plasmids reported ligand-induced transcriptional activation via lacZ assays in Baker's yeast (Saccharomyces cerevisiae). The ligand concentrations needed to activate signaling in yeast expressing these plasmids spanned five orders of magnitude as based on comparisons of EC(50) values. Radicicol, a direct inhibitor of heat shock protein 90 (Hsp90) and an indirect inhibitor of steroid hormone receptor signaling, was used to determine the functional utility of this yeast reporter system. The inhibitory effect of radicicol was similar on the signaling of all six steroid hormone receptors and was distinguishable from cytotoxic effects that occurred with higher concentrations. These yeast plasmids provide a high throughput system for comparative assessment of steroid hormone receptor signaling and may be useful in screening for pharmacological or xenobiotic activities.
Collapse
|
81
|
Ai J, Wang Y, Dar JA, Liu J, Liu L, Nelson JB, Wang Z. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol 2009; 23:1963-72. [PMID: 19855091 DOI: 10.1210/me.2009-0188] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of castration-resistant prostate cancer (PCa) requires that under castration conditions, the androgen receptor (AR) remains active and thus nuclear. Heat shock protein 90 (Hsp90) plays a key role in androgen-induced and -independent nuclear localization and activation of AR. Histone deacetylase 6 (HDAC6) is implicated, but has not been proven, in regulating AR activity via modulating Hsp90 acetylation. Here, we report that knockdown of HDAC6 in C4-2 cells using short hairpin RNA impaired ligand-independent nuclear localization of endogenous AR and inhibited PSA expression and cell growth in the absence or presence of dihydrotestosterone (DHT). The dose-response curve of DHT-stimulated C4-2 colony formation was shifted by shHDAC6 such that approximately 10-fold higher concentration of DHT is required, indicating a requirement for HDAC6 in AR hypersensitivity. HDAC6 knockdown also inhibited C4-2 xenograft tumor establishment in castrated, but not in testes-intact, nude mice. Studies using HDAC6-deficient mouse embryonic fibroblasts cells showed that inhibition of AR nuclear localization by HDAC6 knockdown can be largely alleviated by expressing a deacetylation mimic Hsp90 mutant. Taken together, our studies suggest that HDAC6 regulates AR hypersensitivity and nuclear localization, mainly via modulating HSP90 acetylation. Targeting HDAC6 alone or in combination with other therapeutic approaches is a promising new strategy for prevention and/or treatment of castration-resistant PCa.
Collapse
Affiliation(s)
- Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pennsylvania 15232, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Chen Y, Clegg NJ, Scher HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol 2009; 10:981-91. [PMID: 19796750 PMCID: PMC2935850 DOI: 10.1016/s1470-2045(09)70229-3] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Activation of the androgen receptor is crucial for prostate cancer growth at all points of the illness. Current therapies targeting the androgen receptor, including androgen-depletion approaches and anti-androgens, do not completely inhibit the receptor activity. Prostate cancer cells develop resistance to castration by acquiring changes that include androgen-receptor overexpression and overexpression of enzymes involved in androgen biosynthesis, which result in reactivation of the receptor. Based on an understanding of these resistance mechanisms and androgen biosynthesis pathways, new anti-androgens and androgen-depleting agents have been developed. Notably, promising activity has been shown in early phase trials by MDV3100, a new anti-androgen designed for activity in prostate cancer model systems with overexpressed androgen receptor, and by abiraterone acetate, a CYP17A inhibitor that blocks steroid biosynthesis in the adrenal gland and possibly within the tumour. Both agents are undergoing phase 3 testing. Here, we review the basic science and clinical development of these and other agents.
Collapse
Affiliation(s)
- Yu Chen
- The Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, NY 10065
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, NY 10065
| | - Nicola J. Clegg
- The Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, NY 10065
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, NY 10065
| |
Collapse
|
83
|
Abstract
After first line hormonal therapy (agonist LHRH), metastasic prostate cancer becomes androgen independent in a period of 18 months on average. After this period and after having verified the castration by blood testosterone level, a few options are possible: either inhibit adrenal androgens by maximum androgen blockage (+anti androgens) or by specific adrenal androgen inhibitors. It is also possible to use estrogen or, in a few cases, to propose chemotherapy.
Collapse
Affiliation(s)
- T Lebret
- Service d'Urologie, Hôpital Foch, Faculté de médecine Paris-Ile-de-France-Ouest, UVSQ, France.
| | | |
Collapse
|
84
|
Narayanan R, Mohler ML, Bohl CE, Miller DD, Dalton JT. Selective androgen receptor modulators in preclinical and clinical development. NUCLEAR RECEPTOR SIGNALING 2008; 6:e010. [PMID: 19079612 PMCID: PMC2602589 DOI: 10.1621/nrs.06010] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 11/12/2008] [Indexed: 01/09/2023]
Abstract
Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs.
Collapse
Affiliation(s)
- Ramesh Narayanan
- Preclinical Research and Development, GTx, Inc., Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
85
|
Basak S, Pookot D, Noonan EJ, Dahiya R. Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther 2008; 7:3195-202. [DOI: 10.1158/1535-7163.mct-08-0617] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
86
|
Seaton A, Scullin P, Maxwell PJ, Wilson C, Pettigrew J, Gallagher R, O'Sullivan JM, Johnston PG, Waugh DJJ. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 2008; 29:1148-56. [PMID: 18487223 DOI: 10.1093/carcin/bgn109] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.
Collapse
Affiliation(s)
- Angela Seaton
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Belova L, Brickley DR, Ky B, Sharma SK, Conzen SD. Hsp90 regulates the phosphorylation and activity of serum- and glucocorticoid-regulated kinase-1. J Biol Chem 2008; 283:18821-31. [PMID: 18456663 DOI: 10.1074/jbc.m803289200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SGK-1 (serum- and glucocorticoid-regulated kinase-1), a member of the AGC protein kinase family, plays an important role in regulating ion channel expression and contributes to malignant epithelial cell proliferation and survival. SGK-1 activity is regulated on three levels: transcriptional induction following a variety of environmental and intracellular stresses, proteasomal degradation, and phosphorylation. Here we report that phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of SGK-1 requires formation of a complex between SGK-1 and heat-shock protein 90 (Hsp90). Inactivation of Hsp90 by geldanamycin led to decreased SGK-1 phosphorylation independently of increased proteasomal protein degradation, and inhibition of PI3K activity by LY294002 appeared to eliminate SGK-1 phosphorylation at the same residues as those affected by geldanamycin treatment. Interestingly, geldanamycin-targeted phosphorylation sites were not limited to the known conserved PI3K-dependent sites Thr-256 and Ser-422 in SGK-1 but included additional unknown PI3K-dependent residues. Inhibition of Hsp90 also resulted in a complete loss of SGK-1 kinase activity, suggesting that Hsp90 activity is essential for regulating the PI3K/SGK-1 pathway.
Collapse
Affiliation(s)
- Larissa Belova
- Department of Medicine, Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
88
|
Smith DF, Toft DO. Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol Endocrinol 2008; 22:2229-40. [PMID: 18451092 DOI: 10.1210/me.2008-0089] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An involvement of molecular chaperones in the action and well-being of steroid receptors was recognized early in the molecular era of hormone research. However, this has continued to be a topic of much enquiry and some confusion. All steroid receptors associate with heat shock protein 90, the main character of a series of multiprotein chaperone complexes generally referred to as the "heat shock protein 90 chaperoning machine." Receptor association with chaperones occurs in an ordered, step-wise fashion and is necessary for the maintenance of unliganded receptor in a state ready to bind and respond to hormone. Chaperones additionally modulate how receptors respond to hormone and activate target genes. Although much is known about the participants in this chaperoning process and the consequences of chaperoning, many key questions remain unanswered, particularly those concerning molecular mechanisms, cellular dynamics, and the functions of an array of cochaperone proteins. Here, we point out several areas in need of investigation to encourage new ideas and participants in this burgeoning field.
Collapse
Affiliation(s)
- David F Smith
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA.
| | | |
Collapse
|
89
|
Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE. Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 2008; 121:957-68. [PMID: 18319300 DOI: 10.1242/jcs.022103] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligand-dependent nuclear import is crucial for the function of the androgen receptor (AR) in both health and disease. The unliganded AR is retained in the cytoplasm but, on binding 5alpha-dihydrotestosterone, it translocates into the nucleus and alters transcription of its target genes. Nuclear import of AR is mediated by the nuclear import factor importin-alpha, which functions as a receptor that recognises and binds to specific nuclear localisation signal (NLS) motifs on cargo proteins. We show here that the AR binds to importin-alpha directly, albeit more weakly than the NLS of SV40 or nucleoplasmin. We describe the 2.6-angstroms-resolution crystal structure of the importin-alpha-AR-NLS complex, and show that the AR binds to the major NLS-binding site on importin-alpha in a manner different from most other NLSs. Finally, we have shown that pathological mutations within the NLS of AR that are associated with prostate cancer and androgen-insensitivity syndrome reduce the binding affinity to importin-alpha and, subsequently, retard nuclear import; surprisingly, however, the transcriptional activity of these mutants varies widely. Thus, in addition to its function in the nuclear import of AR, the NLS in the hinge region of AR has a separate, quite distinct role on transactivation, which becomes apparent once nuclear import has been achieved.
Collapse
Affiliation(s)
- Mark L Cutress
- Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | | | | | | | | |
Collapse
|
90
|
Banerji U, Sain N, Sharp SY, Valenti M, Asad Y, Ruddle R, Raynaud F, Walton M, Eccles SA, Judson I, Jackman AL, Workman P. An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models. Cancer Chemother Pharmacol 2008; 62:769-78. [DOI: 10.1007/s00280-007-0662-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 12/08/2007] [Indexed: 10/22/2022]
|
91
|
Kesler CT, Gioeli D, Conaway MR, Weber MJ, Paschal BM. Subcellular Localization Modulates Activation Function 1 Domain Phosphorylation in the Androgen Receptor. Mol Endocrinol 2007; 21:2071-84. [PMID: 17579212 DOI: 10.1210/me.2007-0240] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AbstractAlthough the steady-state distribution of the androgen receptor (AR) is predominantly nuclear in androgen-treated cells, androgen-bound AR shuttles between the nucleus and the cytoplasm. In the present study we have addressed how nucleocytoplasmic shuttling contributes to the regulation of AR. Nuclear transport signal fusions were used to force AR localization to the nucleus or cytoplasm of prostate cancer cells, and the effect of localization on shuttling, transcription, androgen binding, and phosphorylation was determined. Fusing the simian virus 40 nuclear localization signal or c-Abl nuclear export signal to AR resulted in androgen-independent localization to the nucleus or cytoplasm, respectively. AR forced to the nucleus was transcriptionally active on prostate-specific antigen and mouse mammary tumor virus promoters driving reporter genes. AR forced to the cytoplasm was largely inactive on the prostate-specific antigen promoter, but, surprisingly, AR was active on the mouse mammary tumor virus promoter and on two endogenous genes examined. Thus, highly transient nuclear localization of AR is sufficient to activate transcription. Androgen dissociation rates and the dissociation constant (KD) of AR for androgen were similar whether AR was localized to the cytoplasm or the nucleus, suggesting the ligand-binding cycle of AR is not strictly linked to its compartmentalization. Using phosphosite antibodies, we found that compartmentalization influences the phosphorylation state of AR. We show there is a bias for androgen-dependent phosphorylation of Ser81, Ser256, and Ser308 in the nucleus and androgen-independent phosphorylation of Ser94 in the cytoplasm. We propose that one function of nucleocytoplasmic shuttling is to integrate the signaling environment in the cytoplasm with AR activity in the nucleus.
Collapse
Affiliation(s)
- Cristina T Kesler
- Center for Cell Signaling, Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
92
|
Adachi H, Waza M, Katsuno M, Tanaka F, Doyu M, Sobue G. Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy. Neuropathol Appl Neurobiol 2007; 33:135-51. [PMID: 17359355 DOI: 10.1111/j.1365-2990.2007.00830.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is a motor neurone disease characterized by muscle atrophy, weakness, contraction fasciculations and bulbar involvement. SBMA mainly affects males, while females are usually asymptomatic. SBMA is caused by expansion of a polyglutamine (polyQ)-encoding CAG trinucleotide repeat in the androgen receptor (AR) gene. AR belongs to the heat shock protein 90 (Hsp90) client protein family. The histopathologic hallmarks of SBMA are diffuse nuclear accumulation and nuclear inclusions of the mutant AR with expanded polyQ in residual motor neurones in the brainstem and spinal cord as well as in some other visceral organs. There is increasing evidence that the ligand of AR and molecular chaperones play a crucial role in the pathogenesis of SBMA. The success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of its pathophysiology using animal models has led to the development of disease-modifying drugs, that is, Hsp90 inhibitor and Hsp inducer, which inhibit the pathogenic process of neuronal degeneration. SBMA is a slowly progressive disease by nature. The degree of nuclear accumulation of mutant AR in scrotal skin epithelial cells was correlated with that in spinal motor neurones in autopsy specimens; therefore, the results of scrotal skin biopsy may be used to assess the efficacy of therapeutic trials. Clinical and pathological parameters that reflect the pathogenic process of SBMA should be extensively investigated.
Collapse
Affiliation(s)
- H Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
93
|
Robzyk K, Oen H, Buchanan G, Butler LM, Tilley WD, Mandal AK, Rosen N, Caplan AJ. Uncoupling of hormone-dependence from chaperone-dependence in the L701H mutation of the androgen receptor. Mol Cell Endocrinol 2007; 268:67-74. [PMID: 17336451 PMCID: PMC1904484 DOI: 10.1016/j.mce.2007.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/10/2007] [Accepted: 01/25/2007] [Indexed: 11/15/2022]
Abstract
The mechanisms underlying androgen receptor (AR)-mediated progression of prostate cancer following androgen ablation have yet to be fully determined. On this basis we screened naturally occurring mutants of human AR for hormone-independent activity using a yeast model system. An initial screen of 43 different mutants revealed that ARs having a Leu701His mutation (AR(L701H)) exhibited hormone-independent activation of a lacZ reporter gene. The AR(L701H) mutant bound dihydrotestosterone to a similar extent as did wild type AR, although its ability to be induced by hormone for transactivation was reduced substantially. Subsequent studies focused on the dependence of AR(L701H) on molecular chaperones for folding to the active state. We found that AR(L701H) was highly dependent on Hsp90 for its hormone-independent activation, suggesting that this chaperone functions in AR(L701H) folding. However, the mutant did not respond specifically to increased levels of FKBP52, suggesting that this chaperone functions at the hormone-dependent activation stage in the folding process. Further studies of AR(L701H) in PC3 cells suggested that this mutant is prohibited from hormone-independent transactivation in mammalian cells. However, basal expression of a reporter gene by AR(L701H) was not impaired by the presence of 17-allylamino-17-demethoxygeldanamycin as was wild type AR, suggesting differential interactions of these receptors with molecular chaperones in animal cells.
Collapse
Affiliation(s)
- Kenneth Robzyk
- Department of Medicine and Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 2007; 25:151-9. [PMID: 17218278 PMCID: PMC1839984 DOI: 10.1016/j.molcel.2006.12.008] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/01/2006] [Accepted: 12/12/2006] [Indexed: 12/21/2022]
Abstract
Heat-shock protein 90 (Hsp90) chaperones a key subset of signaling proteins and is necessary for malignant transformation. Hsp90 is subject to an array of posttranslational modifications that affect its function, including acetylation. Histone deacetylase (HDAC) inhibitors and knockdown of HDAC6 induce Hsp90 acetylation and inhibit its activity. However, direct determination of the functional consequences of Hsp90 acetylation has awaited mapping of specific sites. We now demonstrate that Hsp90 K294 is acetylated. Mutational analysis of K294 shows that its acetylation status is a strong determinant of client protein and cochaperone binding. In yeast, Hsp90 mutants that cannot be acetylated at K294 have reduced viability and chaperone function compared to WT or to mutants that mimic constitutive acetylation. These data suggest that acetylation/deacetylation of K294 plays an important role in regulating the Hsp90 chaperone cycle.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Lattouf JB, Srinivasan R, Pinto PA, Linehan WM, Neckers L. Mechanisms of disease: the role of heat-shock protein 90 in genitourinary malignancy. ACTA ACUST UNITED AC 2007; 3:590-601. [PMID: 17088927 DOI: 10.1038/ncpuro0604] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/14/2006] [Indexed: 12/28/2022]
Abstract
Insight into the molecular biology of cancer has allowed the development of novel therapeutic strategies that target specific oncogenic pathways. Molecular therapeutic strategies are now part of the armamentarium available against urologic malignancy. Among the many targets of interest in urologic cancer, heat-shock protein 90 (HSP90) shows great promise. This molecule has a major role in prostate as well as in renal malignancy. In contrast to other targets, where cancer might escape inhibition via alternative pathways, HSP90 operates at multiple checkpoints in a cancer cell. Its inhibition could, therefore, prove more difficult for neoplastic cells to overcome. Inhibitors of HSP90, such as geldanamycin and its derivatives (17-allylamino-17-demethoxygeldanamycin and 17-dimethylaminoethylamino-17-demethoxygeldanamycin, known as 17AAG and 17DMAG, respectively) are available and have shown activity both in vivo and in vitro. 17AAG is currently being tested for efficacy in humans after having completed phase I trials, while 17DMAG is still in phase I evaluation. Phase II trials of HSP90 inhibitors in urologic malignancy are being conducted in kidney and advanced prostate cancer. Beyond monotherapy, HSP90 inhibitors might also prove to be beneficial in combination therapy with other chemotherapeutic agents in advanced disease. Studies being conducted in prostate cancer will hopefully help to define this potential application better.
Collapse
Affiliation(s)
- Jean-Baptiste Lattouf
- Urologic Oncology Branch, National Cancer Institute, Room 1-5942, Building 10 CRC, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
96
|
Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G. Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med (Berl) 2006; 84:635-46. [PMID: 16741751 DOI: 10.1007/s00109-006-0066-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Abnormal accumulation of disease-causing protein is a commonly observed characteristic in chronic neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and polyglutamine (polyQ) diseases. A therapeutic approach that could selectively eliminate would be a promising remedy for neurodegenerative disorders. Spinal and bulbar muscular atrophy (SBMA), one of the polyQ diseases, is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. The pathogenic gene product is polyQ-expanded androgen receptor (AR), which belongs to the heat shock protein (Hsp) 90 client protein family. 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a novel Hsp90 inhibitor, is a new derivative of geldanamycin that shares its important biological activities but shows less toxicity. 17-AAG is now in phase II clinical trials as a potential anti-cancer agent because of its ability to selectively degrade several oncoproteins. We have recently demonstrated the efficacy and safety of 17-AAG in a mouse model of SBMA. The administration of 17-AAG significantly ameliorated polyQ-mediated motor neuron degeneration by reducing the total amount of mutant AR. 17-AAG accomplished the preferential reduction of mutant AR mainly through Hsp90 chaperone complex formation and subsequent proteasome-dependent degradation. 17-AAG induced Hsp70 and Hsp40 in vivo as previously reported; however, its ability to induce HSPs was limited, suggesting that the HSP induction might support the degradation of mutant protein. The ability of 17-AAG to preferentially degrade mutant protein would be directly applicable to SBMA and other neurodegenerative diseases in which the disease-causing proteins also belong to the Hsp90 client protein family. Our proposed therapeutic approach, modulation of Hsp90 function by 17-AAG treatment, has emerged as a candidate for molecular-targeted therapies for neurodegenerative diseases. This review will consider our research findings and discuss the possibility of a clinical application of 17-AAG to SBMA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Masahiro Waza
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, 466-8550 Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
97
|
Segal S, Narayanan R, Dalton JT. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery. Expert Opin Investig Drugs 2006; 15:377-87. [PMID: 16548787 DOI: 10.1517/13543784.15.4.377] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.
Collapse
|
98
|
Prescott J, Coetzee GA. Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett 2006; 231:12-9. [PMID: 16356826 DOI: 10.1016/j.canlet.2004.12.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 12/29/2004] [Indexed: 11/17/2022]
Abstract
Aberrant signaling by the androgen receptor contributes to the initiation and progression of prostate cancer. The involvement of molecular chaperones in the processes of folding, activation, trafficking, and transcriptional activity of the androgen receptor provide different points along the signaling axis where regulation of androgen receptor activity can be hijacked to provide growth signals for clonal selection in cancer progression. Evidence exists of abnormal chaperone expression that could contribute to the upregulation of AR activity in prostate tumors. Regardless of whether chaperones are involved in the causation of prostate carcinogenesis, molecular chaperones provide therapeutic targets for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jennifer Prescott
- Department of Urology and Preventive Medicine, Norris Cancer Center, USC Keck School of Medicine, Los Angeles, CA 90089, USA
| | | |
Collapse
|
99
|
Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M, Judson I, Workman P. Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res 2006; 11:7023-32. [PMID: 16203796 DOI: 10.1158/1078-0432.ccr-05-0518] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To establish the pharmacokinetic and pharmacodynamic profile of the heat shock protein 90 (HSP90) inhibitor 17-allylamino, 17-demethoxygeldanamycin (17-AAG) in ovarian cancer xenograft models. EXPERIMENTAL DESIGN The effects of 17-AAG on growth inhibition and the expression of pharmacodynamic biomarkers c-RAF-1, CDK4, and HSP70 were studied in human ovarian cancer cell lines A2780 and CH1. Corresponding experiments were conducted with established tumor xenografts. The variability and specificity of pharmacodynamic markers in human peripheral blood lymphocytes (PBL) were studied. RESULTS The IC50 values of 17-AAG in A2780 and CH1 cells were 18.3 nmol/L (SD, 2.3) and 410.1 nmol/L (SD, 9.4), respectively. Pharmacodynamic changes indicative of HSP90 inhibition were demonstrable at greater than or equal the IC50 concentration in both cell lines. Xenograft experiments confirmed tumor growth inhibition in vivo. Peak concentrations of 17-AAG achieved in A2780 and CH1 tumors were 15.6 and 16.5 micromol/L, respectively, and there was no significant difference between day 1 and 11 pharmacokinetic profiles. Reversible changes in pharmacodynamic biomarkers were shown in tumor and murine PBLs in both xenograft models. Expression of pharmacodynamic markers varied between human PBLs from different human volunteers but not within the same individual. Pharmacodynamic biomarker changes consistent with HSP90 inhibition were shown in human PBLs exposed ex vivo to 17-AAG but not to selected cytotoxic drugs. CONCLUSION Pharmacokinetic-pharmacodynamic relationships were established for 17-AAG. This information formed the basis of a pharmacokinetic-pharmacodynamic-driven phase I trial.
Collapse
Affiliation(s)
- Udai Banerji
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Mantoni TS, Reid G, Garrett MD. Androgen receptor activity is inhibited in response to genotoxic agents in a p53-independent manner. Oncogene 2006; 25:3139-49. [PMID: 16434973 DOI: 10.1038/sj.onc.1209347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The androgen receptor (AR) is fundamental to androgen signalling within the prostate gland, and deregulation of its activity is frequently linked to the development of prostate cancer. Advanced prostate cancer is often treated with chemotherapy and most of these drugs exert their function by generating genotoxic stress such as DNA damage. We have investigated here the effects of genotoxic agents used in chemotherapeutic regimens on AR function and expression. We have discovered that endogenous AR activity in LNCaP cells is inhibited in response to the chemotherapeutic agents etoposide and cisplatin. This loss of AR activity is not caused by a change in cell cycle distribution, a change in subcellular localisation of the AR nor by induction of apoptosis. In addition, we found that inhibition of AR activity in response to genotoxic stress is independent of p53 function. Interestingly, our studies revealed that genotoxic stress inhibits the hormone-stimulated recruitment of AR to androgen response elements. Thus, we report for the first time a mechanism by which the AR activity is inhibited in response to different chemotherapeutic agents.
Collapse
|