51
|
Adamsky K, Schilling J, Garwood J, Faissner A, Peles E. Glial tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase beta (RPTPbeta) to tenascin C. Oncogene 2001; 20:609-18. [PMID: 11313993 DOI: 10.1038/sj.onc.1204119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2000] [Revised: 11/13/2000] [Accepted: 11/16/2000] [Indexed: 01/06/2023]
Abstract
The extracellular domain of receptor protein tyrosine phosphatase beta (RPTPbeta) is composed of several domains which mediate its interactions with distinct ligands present on the surface of either neurons or glial cells. Here, we demonstrate that the fibronectin type III domain (FNIII) of RPTPbeta binds to glial tumor-derived cell lines and primary astrocytes. We used affinity purification to isolate several proteins that specifically bind to the FNIII domain of RPTPbeta. One of these, a 240 kDa protein that was purified from U118MG glioblastoma cell, was identified as tenascin C based on the amino acid sequence of several tryptic peptides. The interaction of RPTPbeta with tenascin C was found to mediate cell adhesion. Adhesion and spreading of SF763T astrocytoma cells expressing RPTPbeta on tenascin C was specifically abolished by the addition of a soluble fragment containing the FNIII domain of the receptor. RPTPbeta-dependent cell adhesion was mediated by binding to the alternatively spliced FNIII repeats A1,2,4 (TnfnA1,2,4) of tenascin C. Furthermore, COS cells expressing RPTPbeta adhere to TnfnA1,2,4, while the parental cells did not. These results demonstrate that the FNIII domain of RPTPbeta binds to tenascin C and suggest that RPTPbeta present on glial tumor cells is a primary adhesion receptor system to the extracellular matrix.
Collapse
Affiliation(s)
- K Adamsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
52
|
Saghatelyan AK, Gorissen S, Albert M, Hertlein B, Schachner M, Dityatev A. The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. Eur J Neurosci 2000; 12:3331-42. [PMID: 10998116 DOI: 10.1046/j.1460-9568.2000.00216.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Perisomatic inhibition of pyramidal cells regulates efferent signalling from the hippocampus. The striking presence of HNK-1, a carbohydrate expressed by neural adhesion molecules, on perisomatic interneurons and around somata of CA1 pyramidal neurons led us to apply monoclonal HNK-1 antibodies to acute murine hippocampal slices. Injection of these antibodies decreased GABAA receptor-mediated perisomatic inhibitory postsynaptic currents (pIPSCs) but did not affect dendritic IPSCs or excitatory postsynaptic currents. The decrease in the mean amplitude of evoked pIPSCs by HNK-1 antibodies was accompanied by an increase in the coefficient of variation of pIPSC amplitude, number of failures and changes in frequency but not amplitude of miniature IPSCs, suggesting that HNK-1 antibodies reduced efficacy of evoked GABA release. HNK-1 antibodies did not affect pIPSCs in knock-out mice deficient in the extracellular matrix molecule tenascin-R which carries the HNK-1 carbohydrate as analysed by immunoblotting in synaptosomal fractions prepared from the CA1 region of the hippocampus. For control, HNK-1 antibody was applied to acute sections of mice deficient in the neural cell adhesion molecule NCAM, another potential carrier of HNK-1, and resulted in decrease of pIPSCs as observed in wild-type mice. Reduction in perisomatic inhibition is expected to promote induction of long-term potentiation (LTP) by increasing the level of depolarization during theta-burst stimulation. Indeed, LTP was increased by HNK-1 antibody applied before stimulation. Moreover, LTP was reduced by an HNK-1 peptide mimic, but not control peptide. These results provide first evidence that tenascin-R and its associated HNK-1 carbohydrate modulate perisomatic inhibition and synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- A K Saghatelyan
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
An important biological consequence of the initial interactions between the cell surface and its extracellular environment is the diversity of cellular responses ranging from overt repulsion or avoidance reaction to stable adhesion or final positioning. It is now evident that positive and negative guiding mechanisms are equally relevant to normal pattern formation during development and decisive for the outcome of a regenerative process. In this context, the present review summarizes the knowledge about the extracellular matrix glycoprotein tenascin-R, a member of the tenascin gene family. In contrast to all other known family members, tenascin-R is exclusively expressed in the central nervous system of vertebrates by oligodendrocytes and neuronal subsets at later developmental stages and in adulthood. We focus on the glycoprotein's structure, tissue distribution and functional implications in the molecular control of axon targeting, neural cell adhesion, migration and differentiation during nervous system morphogenesis and pathology.
Collapse
Affiliation(s)
- P Pesheva
- Department of Nuclear Medicine, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | | |
Collapse
|
54
|
Bernhardt RR, Schachner M. Chondroitin sulfates affect the formation of the segmental motor nerves in zebrafish embryos. Dev Biol 2000; 221:206-19. [PMID: 10772802 DOI: 10.1006/dbio.2000.9673] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondroitin sulfates have been implicated in the promotion and in the inhibition of axon growth. In the zebrafish embryo, chondroitin sulfates are present at the interface of the somites and the notochord where spinal motor axons extend ventrally to establish the midsegmental ventral motor nerves. Injection of chondroitinase ABC prior to motor axon outgrowth effectively removed all chondroitin sulfate immunoreactivity and induced abnormal axonal outgrowth in many (39%) of the ventral motor nerves. The most common abnormality was the formation of side branches, approximately half of which extended posteriorly, the others anteriorly. The effect was specific to the removal of chondroitin sulfates, since injections of vehicle solution or of heparinase III did not affect the ventral motor nerves. Electron microscopic examination demonstrated that the injections caused no damage to spinal cord, somite, and notochord. This suggests that chondroitin sulfates normally constrain the outgrowth of the ventral motor nerves. Consistent with this hypothesis, injections of soluble chondroitin sulfates, either as a mixture or individually, led to truncated or missing ventral motor nerves. Truncations were most frequent after injection of chondroitin sulfate-B (up to 23%) while chondroitin sulfate-A had a lesser, and chondroitin sulfate-C no apparent, effect.
Collapse
Affiliation(s)
- R R Bernhardt
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, D-20246, Germany
| | | |
Collapse
|
55
|
Oohira A, Matsui F, Tokita Y, Yamauchi S, Aono S. Molecular interactions of neural chondroitin sulfate proteoglycans in the brain development. Arch Biochem Biophys 2000; 374:24-34. [PMID: 10640392 DOI: 10.1006/abbi.1999.1598] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aggrecan family proteoglycans, phosphacan/RPTPzeta/beta, and neuroglycan C (NGC) are the major classes of chondroitin sulfate proteoglycan in the developing mammalian brain. A multidomain is a common structural feature of these proteoglycans which can interact with various molecules including growth factors, cell adhesion molecules, and extracellular matrix molecules. Individual proteoglycans are distributed in the developing brain in a distinct temporal and spatial pattern, suggesting that they are involved in distinct phases of the brain development through multiple molecular interactions. This review mainly summarizes recent studies on the involvement of these three classes of proteoglycan in cell-cell and cell-substratum interactions during the brain development. Their expressions and proposed functional roles in injured brains are also mentioned. In addition, this review briefly covers potential functions of other neural chondroitin sulfate proteoglycans such as decorin, testican, NG2 proteoglycan, and amyloid precursor protein (APP) in developing and injured brains.
Collapse
Affiliation(s)
- A Oohira
- Department of Perinatology and Neuroglycoscience, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, 480-0392, Japan.
| | | | | | | | | |
Collapse
|
56
|
Zamze S, Harvey DJ, Pesheva P, Mattu TS, Schachner M, Dwek RA, Wing DR. Glycosylation of a CNS-specific extracellular matrix glycoprotein, tenascin-R, is dominated by O-linked sialylated glycans and "brain-type" neutral N-glycans. Glycobiology 1999; 9:823-31. [PMID: 10406848 DOI: 10.1093/glycob/9.8.823] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a member of the tenascin family of extracellular matrix glycoproteins, tenascin-R is located exclusively in the CNS. It is believed to play a role in myelination and axonal stabilization and, through repulsive properties, may contribute to the lack of regeneration of CNS axons following damage. The contrary functions of the tenascins have been localized to the different structural domains of the protein. However, little is known concerning the influence of the carbohydrate conjugated to the many potential sites for N - and O -glycosylation (10-20% by weight). As a first analytical requirement, we show that >80% of the N -glycans in tenascin-R are neutral and dominated by complex biantennary structures. These display the "brain-type" characteristics of outer-arm- and core-fucosylation, a bisecting N -acetylglucosamine and, significantly, an abundance of antennae truncation. In some structures, truncation resulted in only a single mannose residue remaining on the 3-arm, a particularly unusual consequence of the N -glycan processing pathway. In contrast to brain tissue, hybrid and oligomannosidic N -glycans were either absent or in low abundance. A high relative abundance of O -linked sialylated glycans was found. This was associated with a significant potential for O -linked glycosylation sites and multivalent display of the sialic acid residues. These O -glycans were dominated by the disialylated structure, NeuAcalpha2-3Galbeta1-3(NeuAcalpha2-6)GalNAc. The possibility that these O -glycans enable tenascin-R to interact in the CNS either with the myelin associated glycoprotein or with sialoadhesin on activated microglia is discussed.
Collapse
Affiliation(s)
- S Zamze
- Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Damage to the central nervous system (CNS) results in a glial reaction, leading eventually to the formation of a glial scar. In this environment, axon regeneration fails, and remyelination may also be unsuccessful. The glial reaction to injury recruits microglia, oligodendrocyte precursors, meningeal cells, astrocytes and stem cells. Damaged CNS also contains oligodendrocytes and myelin debris. Most of these cell types produce molecules that have been shown to be inhibitory to axon regeneration. Oligodendrocytes produce NI250, myelin-associated glycoprotein (MAG), and tenascin-R, oligodendrocyte precursors produce NG2 DSD-1/phosphacan and versican, astrocytes produce tenascin, brevican, and neurocan, and can be stimulated to produce NG2, meningeal cells produce NG2 and other proteoglycans, and activated microglia produce free radicals, nitric oxide, and arachidonic acid derivatives. Many of these molecules must participate in rendering the damaged CNS inhibitory for axon regeneration. Demyelinated plaques in multiple sclerosis consists mostly of scar-type astrocytes and naked axons. The extent to which the astrocytosis is responsible for blocking remyelination is not established, but astrocytes inhibit the migration of both oligodendrocyte precursors and Schwann cells which must restrict their access to demyelinated axons.
Collapse
Affiliation(s)
- J W Fawcett
- Department of Physiology and MRC Cambridge Centre for Brain Repair, University of Cambridge, UK.
| | | |
Collapse
|
58
|
Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J Neurosci 1999. [PMID: 10341229 DOI: 10.1523/jneurosci.19-11-04245.1999] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tenascin-R (TN-R), an extracellular matrix glycoprotein of the CNS, localizes to nodes of Ranvier and perineuronal nets and interacts in vitro with other extracellular matrix components and recognition molecules of the immunoglobulin superfamily. To characterize the functional roles of TN-R in vivo, we have generated mice deficient for TN-R by homologous recombination using embryonic stem cells. TN-R-deficient mice are viable and fertile. The anatomy of all major brain areas and the formation and structure of myelin appear normal. However, immunostaining for the chondroitin sulfate proteoglycan phosphacan, a high-affinity ligand for TN-R, is weak and diffuse in the mutant when compared with wild-type mice. Compound action potential recordings from optic nerves of mutant mice show a significant decrease in conduction velocity as compared with controls. However, at nodes of Ranvier there is no apparent change in expression and distribution of Na+ channels, which are thought to bind to TN-R via their beta2 subunit. The distribution of carbohydrate epitopes of perineuronal nets recognized by the lectin Wisteria floribunda or antibodies to the HNK-1 carbohydrate on somata and dendrites of cortical and hippocampal interneurons is abnormal. These observations indicate an essential role for TN-R in the formation of perineuronal nets and in normal conduction velocity of optic nerve.
Collapse
|
59
|
Revest JM, Faivre-Sarrailh C, Maeda N, Noda M, Schachner M, Rougon G. The interaction between F3 immunoglobulin domains and protein tyrosine phosphatases zeta/beta triggers bidirectional signalling between neurons and glial cells. Eur J Neurosci 1999; 11:1134-47. [PMID: 10103110 DOI: 10.1046/j.1460-9568.1999.00521.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
F3, a mouse glycosyl-phosphatidylinositol anchored molecule of the immunoglobulin superfamily, is known to influence axonal growth and fasciculation via multiple interactions of its modular immunoglobulin-like domains. We prepared an Fc chimeric molecule (F3IgFc) to identify molecules interacting with these domains and characterize the functional impact of the interactions. We affinity-isolated tenascin-C and isoforms of the proteoglycan-type protein tyrosine phosphatases zeta/beta (PTPzeta/RPTPbeta) from extracts of developing mouse brain. We showed that both PTPzeta/RPTPbeta and tenascin-C can bind directly to F3, possibly in an exclusive manner, with the highest affinity for the F3-PTPzeta/RPTPbeta interaction. We observed a strong binding of F3IgFc-coated fluorospheres to astrocytes in neural primary cultures and to C6 astrocytoma cells, and demonstrated, in antibody perturbation experiments, that F3-Ig binding on astrocytes depends on its interaction with PTPzeta/RPTPbeta. We also found by confocal analysis that tenascin-C and PTPzeta/RPTPbeta were colocalized on astrocytes which suggests a complex interplay of interactions between PTPzeta/RPTPbeta, tenascin-C and F3. We showed that the interaction between PTPzeta/RPTPbeta and F3-Ig-like domains can trigger bidirectional signalling. C6 glia-expressed PTPzeta/RPTPbeta stimulated neurite outgrowth by cortical and cerebellar neurons, whereas preclustered F3IgFc specifically modified the distribution of phosphotyrosine labelling in these glial cells. Both effects could be prevented and/or mimicked by anti-F3 and anti-6B4PG antibodies. These results identify F3 and PTPzeta/RPTPbeta as potential mediators of a reciprocal exchange of information between glia and neurons.
Collapse
Affiliation(s)
- J M Revest
- Laboratoire de Génétique et Physiologie du Développement, CNRS 6545 Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
60
|
Meiners S, Powell EM, Geller HM. Neurite outgrowth promotion by the alternatively spliced region of tenascin-C is influenced by cell-type specific binding. Matrix Biol 1999; 18:75-87. [PMID: 10367733 DOI: 10.1016/s0945-053x(98)00008-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated the impact of cellular environment on the neurite outgrowth promoting properties of the alternatively spliced fibronectin type-III region (fnA-D) of tenascin-C. FnA-D promoted neurite outgrowth in vitro when bound to the surface of BHK cells or cerebral cortical astrocytes, but the absolute increase was greater on astrocytes. In addition, different neurite outgrowth promoting sites were revealed within fnA-D bound to the two cellular substrates. FnA-D also promoted neurite outgrowth as a soluble ligand; however, the actions of soluble fnA-D were not affected by cell type. Therefore, we hypothesized that different mechanisms of cellular binding can alter the growth promoting actions of bound fnA-D. We found that fnA-D utilizes two distinct sequences to bind to the BHK cell surface as opposed to the BHK extracellular matrix. In contrast, only one of these sequences is utilized to bind to the astrocyte matrix as opposed to the astrocyte surface. Furthermore, Scatchard analysis indicated two types of receptors for fnA-D on BHK cells and only one type on astrocytes. These results suggest that active sites for neurite outgrowth within fnA-D are differentially revealed depending on cell-specific fnA-D binding sites. Therefore, the function of tenascin-C and its various domains must be considered in terms of cellular context.
Collapse
Affiliation(s)
- S Meiners
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
61
|
David CL, Orpiszewski J, Zhu XC, Reissner KJ, Aswad DW. Isoaspartate in chrondroitin sulfate proteoglycans of mammalian brain. J Biol Chem 1998; 273:32063-70. [PMID: 9822681 DOI: 10.1074/jbc.273.48.32063] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian brain contains a high mass protein (HMAP) that is unusually rich in atypical L-isoaspartyl (isoAsp) linkages. HMAP has now been purified from bovine brain by anion exchange, hydroxylapatite, and size exclusion chromatography. It is self-aggregating, acidic, and soluble in 5% trichloroacetic acid. Treatment with chondroitinase ABC eliminates the self-aggregation of HMAP and generates several distinct core proteins with estimated masses of 350-450 (doublet), 180, and 100 kDa, indicating that it is composed mainly of chondroitin sulfate proteoglycans (CSPGs). Most of the isoAsp resides in the 350-450-kDa core protein, which was identified by immunoblotting as phosphacan, a CSPG abundant in adult brain. The regional distribution and developmental profile of HMAP in rat brain support this identification. The 180-kDa core protein contains a tenascin-R-related molecule, consistent with recent observations that phosphacan forms a tight complex with tenascin-R. The average phosphacan molecule in adult brain contains at least seven isoAsp sites. Molecular heterogeneity due to isoAsp may explain some of the complex binding properties phosphacan exhibits with its natural ligands. Formation of isoAsp may be important in the roles that phosphacan and other CSPGs play in development of the nervous system.
Collapse
Affiliation(s)
- C L David
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900, USA
| | | | | | | | | |
Collapse
|
62
|
Clement AM, Nadanaka S, Masayama K, Mandl C, Sugahara K, Faissner A. The DSD-1 carbohydrate epitope depends on sulfation, correlates with chondroitin sulfate D motifs, and is sufficient to promote neurite outgrowth. J Biol Chem 1998; 273:28444-53. [PMID: 9774473 DOI: 10.1074/jbc.273.43.28444] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neural chondroitin sulfate (CS) proteoglycan (PG) DSD-1-PG was originally identified with the monoclonal antibody (mAb) 473HD. It promotes neurite outgrowth of hippocampal neurons when coated as a substrate in the presence of polycations. This effect is inhibited by mAb 473HD that specifically recognizes the DSD-1 epitope. The DSD-1 epitope is also detectable in CS-C and CS-D preparations from shark cartilage but not in other chondroitin sulfates that are structurally related and differ in their sulfation patterns. Non-sulfated DSD-1-PG and chemically desulfated CS-D were not recognized by mAb 473HD, suggesting that the DSD-1 epitope depends on sulfation. It was possible to enrich DSD-1 epitope-bearing carbohydrates and D disaccharide units from CS-C and CS-D preparations on a mAb 473HD affinity matrix. This indicates that the DSD-1 epitope represents a distinct glycosaminoglycan structure containing D units. The analysis of glycosaminoglycan digestion products by high pressure liquid chromatography revealed that DSD-1-PG preparations contain a unique D disaccharide unit as well as an A, a C, and a non-sulfated disaccharide unit. In neurite outgrowth assays with hippocampal neurons, substrate-bound CS-D promoted neurite outgrowth, whereas CS-A, CS-B, or CS-C did not. This effect of CS-D was inhibited by mAb 473HD. DSD-1 epitope-enriched fractions obtained from CS-D and CS-C promoted neurite outgrowth, whereas CS-C had no such effect prior to enrichment on the mAb 473HD matrix. Based on these findings we conclude that the DSD-1 epitope by itself is sufficient to promote neurite outgrowth and that this activity is possibly associated with D motifs.
Collapse
Affiliation(s)
- A M Clement
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Milev P, Chiba A, Häring M, Rauvala H, Schachner M, Ranscht B, Margolis RK, Margolis RU. High affinity binding and overlapping localization of neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J Biol Chem 1998; 273:6998-7005. [PMID: 9507007 DOI: 10.1074/jbc.273.12.6998] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have studied the interactions of the nervous tissue-specific chondroitin sulfate proteoglycans neurocan and phosphacan with the extracellular matrix protein tenascin-R and two heparin-binding proteins, amphoterin and the heparin-binding growth-associated molecule (HB-GAM), using a radioligand binding assay. Both proteoglycans show saturable, high affinity binding to tenascin-R with apparent dissociation constants in the 2-7 nM range. Binding is reversible, inhibited in the presence of unlabeled proteoglycan, and increased by approximately 60% following chondroitinase treatment of the proteoglycans, indicating that the interactions are mediated via the core (glyco)proteins rather than by the glycosaminoglycan chains, which may in fact partially shield the binding sites. In contrast to their interactions with tenascin-C, in which binding was decreased by approximately 75% in the absence of calcium, binding of phosphacan to tenascin-R was not affected by the absence of divalent cations in the binding buffer, although there was a small but significant decrease in the binding of neurocan. Neurocan and phosphacan are also high affinity ligands of amphoterin and HB-GAM (Kd = 0.3-8 nM), two heparin-binding proteins that are developmentally regulated in brain and functionally involved in neurite outgrowth. The chondroitin sulfate chains on neurocan and phosphacan account for at least 80% of their binding to amphoterin and HB-GAM. The presence of amphoterin also produces a 5-fold increase in phosphacan binding to the neural cell adhesion molecule contactin. Immunocytochemical studies showed an overlapping localization of the proteoglycans and their ligands in the embryonic and postnatal brain, retina, and spinal cord. These studies have therefore revealed differences in the interactions of neurocan and phosphacan with the two major members of the tenascin family of extracellular matrix proteins, and also suggest that chondroitin sulfate proteoglycans play an important role in the binding and/or presentation of differentiation factors in the developing central nervous system.
Collapse
Affiliation(s)
- P Milev
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|